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Microscopic kinetic theory of the mean collision force of a particle moving in rarefied gases
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The friction of an incident particle interacting with the background molecules is a cornerstone in the nonequi-
librium dynamics and statistics. It is reported that the Stokes force may fail while the Brown particle’s size is
small enough. In this work, the mean collision force of a small classical particle moving through the rarefied
gases is analyzed by the direct calculation of the mean decrease of particle’s velocity by elastic collisions. As an
example, a whole velocity space applicable mean collision force in Maxwell gas is obtained. A self-consistent
solution is further provided based on the numerical simulations. Within the low speed limit, comparison of
the friction and the Stokes force has been demonstrated. Although the two forces are both proportional to the
speed of the particle, their coefficients are different. Unlike the linear speed dependence of Stokes force, the
linear behavior in rarefied gases is broken with increasing the speed of incident particle, and a quadratic speed
dependence is resulted in high speed. This work clarifies the nonequilibrium dynamics of microscopic particles
moving in rarefied gases, and can improve our microscopic understanding of the collision force.
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I. INTRODUCTION

The force of a particle moving in the background fluid or
gas is a cornerstone of the relevant non-equilibrium diffusion
processes [1–22]. The dynamical Langevin equation sug-
gested the force can be split into two parts: a mean term and
a random term [1,2]. Given that a mean value of the Stokes
force, fs = 6πηsRv1 with ηs, R and v1 being the viscosity,
the radius of the Brownian particle and the speed of the
particle, the Stokes-Einstein (SE) relation DR = kBT/6πηs

is deduced [3–5]. Here, D is the diffusion coefficient, kB is
the Boltzmann constant, T is the fluid/gas temperature. It
is believed that for a simple fluid the SE relation holds well
even when the size of the Brownian particle decreases to the
molecular level [6–17]. However, a detailed investigation of
DR in Ref. [18] suggested different size/mass dependencies
of the kinetic friction force f and the hydrodynamic Stokes
force fs.

The Stokes hydrodynamics model is based on a classic
interacting system: the fluid near the sphere is distinguished
as layers with different speeds. A corresponding kinetic in-
terpretation of the viscosity was discovered and introduced
by Maxwell [19], in which ηs = nBm2l v2/3. nB, m2, l , and
v2 are the number density, the molecule mass, the mean free
path, and the mean speed of molecules of the fluid/gas respec-
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tively. For small enough particles, however, the Stokes model
may fail because the interaction is too weak to form laminar
flow [20]. As the particle’s size is much smaller than l (the
Knudsen number is larger than 10) [21], statistics of the fluid
can be assumed unchanged, and a force theory that the particle
collides with equilibrated molecules is needed.

In the present study, the mean collision force of a small
classical particle moving through the rarefied gas at differ-
ent temperatures is solved under a kinetic consideration. The
classical elastic collision is used, particles are taken as hard
spheres [1,2,4,18–22], and the background molecules are as-
sumed to be in equilibrium. By the direct calculation of the
mean collision rate and mean decrease of particle’s velocity,
the friction is obtained. As an important example, a particle
moving in Maxwell gas is provided. Further numerical sim-
ulations demonstrate a self-consistent conclusion. In the low
speed (v1 � v2) cases, we show f = −ηv1, where the friction
coefficient η ∝ nBD2

√
T and D is the radius of the scattering

cross-section. The speed/temperature dependencies of f and
fs are found to be same [19]; however, their size/density
dependencies are different. f ∝ D2 suggested in Ref. [18] is
affirmed by our analytic study. Clearly, it is different with the
linear dependence of fs ∝ R. Beyond the low speed cases,
our theory can be applied to the whole space of velocity.
In particular, we found that the kinetic friction force in the
high (v1 � v2) speed cases changes from the linear function
to a quadratic function of the speed of incident particles,
f = −η′v2

1 , where η′ is the speed-independent coefficient.
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FIG. 1. Collision sketches. The sketches are pictured in center-
of-mass frame, v1 and v2 are the speeds of the two particles, θ is the
angle of the center line and the moving direction, θ ′ = 2θ is the angle
of the incident line and exit line.

II. COLLISION MODEL AND STATISTICAL HYPOTHESIS

The classical two-particle elastic collision model has been
employed in this work, and the collision process (the change
of the particle’s velocity) is done instantaneously. A picture
to depict the model in the center-of-mass frame is shown in
Fig. 1. Details of the present model are set as follows: (i) En-
ergy and momentum are conserved; (ii) Particles are assumed
as hard spheres, mass center is at the geometric center of each
particle; (iii) The velocities of the particles remain unchanged
except for the moments of collisions. It is easy to prove that
the exiting speeds [as shown in Fig. 1(c)] in the center-of-mass
frame remain unchanged, and the following property is true:
In the center-of-mass frame, the magnitudes of the velocities
(speed) of the two particles remain unchanged in the collision
process. [4,19,23]. Two statistical hypothesizes are proposed.
Hypothesis (i) In the laboratory reference frame, the proba-
bility density function of moving directions of the background
molecules is a constant, with

�1(α, φ) = 1

4π
, (1)

where �1(α, φ) is the probability density of the moving direc-
tion of the background molecules, α ∈ [0, π ], and φ ∈ [0, 2π ]
are the angles of the moving direction in spherical coordinate,
which is shown in Fig. 2. As the solid angle d� = 2π sin αdα

in the range of α → α + dα is dependent on α, the probability

FIG. 2. Spherical coordinate frame. Where α is the angle of the
z-axis and the moving direction, φ is the angle of the x-axis and the
projection of the moving direction in xy plane.

density function of α can be derived as follows

�2(α) = dP

dα
= �1(α, φ)d�

dα
= 1

4π

2πr sin αrdα

r2dα

= 2πr sin αrdα

4πr2dα
= 1

2
sin α, (2)

where r is an arbitrary radius to get the differential solid angle,
dP is the differential probability. Reversely, if �1(α, φ) is
independent of φ, and �2(α) = sin α/2, statistical hypothesis
i is true. Hypothesis ii. The occupied probabilities of every
spatial position by gas molecules are equal. By this hypothesis,
for a random collision, the incident particle (center) distributes
on the area of the scattering cross-section evenly. If r1/r2 is the
radius of the incident/target particle, we have D = r1 + r2,
and the area of scattering cross section is πD2, then the prob-
ability density function of the areas is

�3 = 1/πD2.

As shown in Fig. 1(b), θ ∈ [0, π/2] is the angle between the
incident line and the line through the center of masses at
the colliding moment which is perpendicular to the contact
surface. After collision [Fig. 1(c)], the angle of the exiting line
and the incident line, θ ′ (θ ′ ∈ [0, π ]), will be twice θ , with
θ ′ = 2θ . According to statistical hypothesis ii, the probability
density of θ ′ is

�4(θ ′) = dP

dθ ′ = 1

πD2

2πD sin θD cos θdθ

dθ ′ = 1

2
sin θ ′. (3)

By using the converse of Hypothesis i as we have men-
tioned, another property about the exiting directions in the
center-of-mass frame can be given as: In the center-of-mass
frame, exiting direction is likely equal to all spatial direc-
tions [4,19,21,23]. Note that the background molecules are
assumed in equilibrium, and the molecular chaos hypothesis
is used [21,22].

III. GENERAL FORM OF THE MEAN COLLISION FORCE

The mean collision force of the incident particle (set as
particle A in the next) f , according to Newton’s law, can
be obtained by multiplying the mean collision rate ZAB and
the mean change of the momentums 	p1 in one collision,
with [19,24]

f = dp1

dt
= ZAB 	p1 = m1

∫
dZAB	v1

= m1ZAB

∫
dZAB	v1/ZAB = m1ZAB 	v1, (4)

where p1/m1 is the momentum/mass of particle A, over-
lines of the parameters denote the ensemble averages, 	v1

is the mean velocity change of the particle in one collision,
defined as

	v1 =
∫

dZAB	v1/ZAB,

and dZAB	v1/ZAB is the differential contribution of collisions
of specific parameters (speeds/angles of the gas molecules).
ZAB and 	v1 are the keys to be studied in this article.
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FIG. 3. The relations between v1, v2 and vr . v1 is the velocity of
particle A, v2 is the velocity of particle B (the gas molecule), and vr

is the relative velocity of the two particles.

A. Mean collision rate and mean relative speed

The familiar mean collision rate is [4,19,25]

ZAB = nBπD2vr, (5)

vr is the mean relative speed of particle A to background
molecules (set as particle B), defined as

vr = 1

N

∫ ∞

0
vrdnB(vr ) =

∫ ∞

0
vrρv1 (vr )dvr,

where N is the total number of the background molecules,
dnB(vr ) is the number of the molecules in the relative speed
range vr → vr + dvr , and ρv1 (vr ) = dnB(vr )/N is the density
function of the relative speed while particle A’s speed is v1. As
shown in Fig. 3, v1/v2 is the velocity of particle A/B in lab-
oratory frame, vr = v2 − v1 is the relative velocity, vr is the
magnitude of vr , and α/α′ is the angle between v1 and v2/vr .
It is easy to see in Fig. 3 that v2 =

√
v2

1 + v2
r + 2v1vr cos α′ is

changing with α′, and ρv1 (vr ) should be obtained by integrat-
ing �v1 (vr, α

′) over α′, providing

ρv1 (vr ) =
∫ π

0
�v1 (vr, α

′)dα′,

where �v1 (vr, α
′) is the density function of vr and α′. The

volume of α′ → α′ + dα′, vr → vr + dvr in velocity space
is 2πv2

r sin α′dvrdα′. Let ρsd(v2) be the speed distribution
function, the probability of particle B in vr → vr + dvr, α

′ →
α′ + dα′ is 2πv2

r ρsd(v2) sin α′dvrdα′, and �v1 (vr, α
′) can be

obtained,

�v1 (vr, α
′) = 2πv2

r ρsd
(√

v2
1 + v2

r + 2v1vr cos α′) sin α′.

(6)

Integrating the formula over α′, the relative speed distribution
function in speed space is given as

ρv1 (vr ) =
∫ π

0
�v1 (vr, α

′)dα′

= 2πv2
r

∫ π

0
ρsd
(√

v2
1 + v2

r + 2v1vr cos α′) sin α′dα′,

(7)

with the dimension of [v−1]. The mean relative speed can be
written as

vr =
∫ ∞

0
vrdvr

∫ π

0
�v1 (vr, α

′)dα′. (8)

FIG. 4. z-component of the velocity change. Where γ is the
angle between v1 and vμ, 	μv1 = vμ − v1 is the difference between
vμ and v1 and is the average velocity change of particle A in the
center-mass-frame, vμ is the velocity of the two particle’s mass
center.

Combining Eq. (5) and Eq. (8), the general mean collision rate
can be obtained.

B. Mean velocity change

The mean velocity change can be deduced by the sketches
in Fig. 4. Where v1 is along the z axis, vμ = (m1v1 +
m2v2)/(m1 + m2) is the velocity of the two particle’s mass
center, γ is the angle between v1 and vμ. It should be noted
that vμ’s vector arrow is on the line of vr [see Fig. 4(a)],
cause vμ − v1 = m2vr/(m1 + m2). According to Eq. (3) and
the properties mentioned in Sec. II, after collision, moving
direction of particle A is likely equal for all spatial direc-
tions, and the speed of particle A remains unchanged in the
center-mass-frame. Thus we get the conclusion that, after the
collision, velocity of particle A distributes on the surface of
the sphere [which has been shown in Fig. 4(b)] evenly. The
average velocity change of particle A in Fig. 4(b) is

	μv1 = vμ − v1. (9)

The distribution of v2 is axial symmetry along the z-axis. If
all the possibilities of particle B with parameters (v2, α, φ)
are considered [see Fig. 4(c), where φ ∈ [0, 2π ]], the average
velocity change of particle A must be directed along the z
axis. Thus only the z component of 	μv1 is necessary to be
considered:

	vv1,vr ,α′ = 	μv1 · ez = (vμ − v1) · v1

v1

= m2
(
v1 · v2 − v2

1

)
(m1 + m2)v1

= m2vr cos α′

m1 + m2
(10)

is the average contribution of a collision with parameters
v1, vr and α′ to the mean speed change, ez is the unit vector of
z direction (along v1).

The possibility of particle A colliding with molecules
of definite parameters (vr and α′) can be deduced by the
time averaging. The mean collision rate impacted by the
particles of vr → vr + dvr, α

′ → α′ + dα′ can be given as
follows,

dZ (v1, vr, α
′) = nBπD2vr�v1 (vr, α

′)dvrdα′.
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Meanwhile, the total collision number is ZAB . Thus the differ-
ential probability of collisions is

dPμ = dZ (v1, vr, α
′)

ZAB
= nBπD2�v1 (vr, α

′)vrdvrdα′

nBπD2vr

= vr

vr
�v1 (vr, α

′)dvrdα′.

The density function can be defined as

�coll(vr, α
′) = dPμ

dvrdα′ = vr

vr
�v (vr, α

′). (11)

Integrating the formula over α′ gives

ρcoll(vr ) =
∫ π

0

vr

vr
�v1 (vr, α

′)dα′ = vr

vr
ρv1 (vr ), (12)

is the collision’s possible distribution function of relative

speed. By the definition of 	v1, here 	v1 = ∫
dPμ	μv1 =∫

	μv1dPμ. The mean velocity change can be obtained by
integrating the product of Eq. (10) and Eq. (11) over α′
and vr ,

	v1 = 	v1ev1 = ev1

∫ ∞

0
dvr

∫ π

0
	vv1,v2,α′�coll(vr, α

′)dα′

= ev1

∫ ∞

0
dvr

∫ π

0

m2v
2
r cos α′

(m1 + m2)vr
�v1 (vr, α

′)dα′, (13)

where ev1 is the unit vector along v1, and 	v1 is the scalar
of 	v1. In the next section, we will focus our sight on 	v1.
With the general mean velocity change given above and the
mean collision rate depicted by Eq. (5), if ρsd (v2) is known,
the mean collision force can be obtained by Eq. (4).

IV. MEAN COLLISION FORCE OF SPHERE PARTICLES
MOVING IN MAXWELL INERT-GAS

In this section, the mean collision force of a par-
ticle moving in Maxwell gas is derived by the gen-
eral Eqs. (4)-(13) and the Maxwell distribution ρsd (v2) =
(m2/2πkBT )3/2exp(−m2v

2
2/2kBT ).

A. Mean collision rate and mean relative speed
of the particle to Maxwell molecules

Substituting the Maxwell distribution into Eq. (6) gives

�v1 (vr, α
′) = 2πv2

r

( m2

2πkT

)3/2
e− m2(v2

1+v2
r +2v1vr cos α′ )
2kBT sin α′.

(14)
Integrating the formula over α′ gives

ρv1 (vr ) = vr

v1

( m2

2πkBT

) 1
2

[
e− m2 (v1−vr )2

2kBT − e− m2 (v1+vr )2

2kBT

]
, (15)

is the distribution function of vr in Maxwell gas. Substituting
Eq. (14) into Eq. (8), integrating over vr , the mean relative
speed is derived as

vr =
√

2kBT

πm2
e− m2v2

1
2kBT +

(
v1 + 1

v1

kBT

m2

)
erf

(√
m2

2kBT
v1

)
.

(16)

FIG. 5. Mean relative speed of particle A to the Maxwell gas
molecules. Where T = 300 K, m1 = 1.672623 × 10−27 kg, is ap-
proximatively the mass of the proton and m2 = 4m1 is approximately
the mass of the helium atom, v2 = 1255.3 m/s. The two insets are
the quadratic and linear fittings of limiting low and high speed cases
respectively.

A similar conclusion has been obtained in Refs. [24,26,27].
The dependence of vr on v1 has been plotted in Fig. 5,
where T = 300 K, m1 = 1.672623 × 10−27 kg is approxima-
tively the mass of the proton, m2 = 4m1 is approximately the
mass of the helium atom. The two insets correspond to the
low and high speed cases, respectively. The fittings are pretty
well. In the low speed cases (the first inset of Fig. 5), vr can
be approximated as the addition of v2 = √

8kBT/πm2 and a
small quadratic v1 term. In the high speed cases (the second
inset of Fig. 5), vr ≈ v1, the contribution of the molecules’s
velocities vanishes.

The collision possible distribution function of the particle
moving in Maxwell gas can be obtained by Eq. (15) and
Eq. (16), which gives

ρcoll(vr ) = vr

vr
ρv1 (vr )

= v2
r

v1

( m2

2πkBT

) 1
2

× e− m2 (v1−vr )2

2kBT − e− m2 (v1+vr )2

2kBT√
2kBT
πm2

e− m2v2
1

2kBT + (
v1 + 1

v1

kBT
m2

)
erf
(√ m2

2kBT v1
) .
(17)

Substituting Eq. (16) into Eq. (5), the collision rate can thus
be obtained,

ZAB = nBπD2

[√
2kBT

πm2
e− m2v2

1
2kBT

+
(

v1 + 1

v1

kBT

m2

)
erf

(√
m2

2kBT
v1

)]
. (18)

B. Mean velocity change

Substituting Eq. (14) into Eq. (13), and integrating the
formula, we have

	v1 = − m2

m1 + m2

(
v1 + 1

v1

kBT

m2
R

)
(19)
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FIG. 6. Comparison of the theory, the simulation, and the linear
approximation 	v1. 10000 runs has been carried in the simulation,
with m2 = 30 × 1.6726231−27 kg, m1 = 1000 m2, T = 300 K,

with

R =

√
2kBT
πm2

e− m2v2
1

2kBT + (
v1 − 1

v1

kBT
m2

)
erf
(√ m2

2kBT v1
)

√
2kBT
πm2

e− m2v2
1

2kBT + (
v1 + 1

v1

kBT
m2

)
erf
(√ m2

2kBT v1
) , (20)

where R is a dimensionless parameter depending on v1, m2,

and T .
Simulation has been launched to check the calculation. The

results have been shown in Fig. 6. Three random numbers of
0 → 1 have been used to determine the initial state of particle
B: one to determine the relative speed vr by Eq. (17), one
to determine the angle α′ by Eq. (14), and the last one to
determine the angel φ by Eq. (1). Two other random num-
bers of 0 → 1 are used to determine the direction (θ ′ and
φ′) in the sphere frame of vμ by Eq. (3). The magnitude
of the final velocity v1a is thus determined by vμ, θ ′, φ′,
and 	μv1. The mean velocity change in the simulation is
the averaging of the velocity changes of 10000 runs, with
m2 = 30 × 1.6726231−27 kg, m1 = 1000 m2, and T = 300 K.
Some points can be distinguished in Fig. 6: (i) Eq. (19) agrees
with the simulation’s result perfectly well; (ii) 	v1 is always
negative, implying that 	v1 is always opposite to v1; (iii) the
difference of the theory and the linear approximation of 	v1

increases with the increasing of the speed, and |	v1| of the
theory is less than the one in linear approximation; (iv) in
the limiting cases, while v1 � v2 and/or v1 � v2, the mean
velocity change increases (but opposite the direction) with v1

linearly. Note that the simulation is only designed to test the
self-consistency of the theory, a rigorous check must be done
by Monte Carlo collision simulations or direct experiments.

C. Mean collision force of particles moving in Maxwell inert gas

By Eq. (18) and Eq. (19), the friction force (scalar f) is thus
obtained,

f = m1ZAB 	v1

= −nBπD2 m1m2

m1 + m2

{(
v1 + 1

v1

kBT

m2

)√
2kBT

πm2
e− m2v2

1
2kBT

+
[
v2

1 + 2kBT

m2
− 1

v2
1

(
kBT

m2

)2]
erf

(√
m2

2kBT
v1

)}
. (21)

FIG. 7. Dependence of | f | = − f on the speed of particle A v1.
Here m2 = 30 × 1.6726231−27 kg, m1 = 1000m2, T = 300 K, nB =
2.68 × 1025/m3, and D = 2.59 × 10−9 m.

As we know in Fig. 6, f is always opposite the moving di-
rection, with f = −| f |. Dependence of | f | on v1 has been
plotted and shown in Fig. 7, and the parameters are the same
with Fig. 6. The insets propose linear/quadratic dependence
of f on v1 in low/high speed cases.

V. DISCUSSIONS AND APPROXIMATIONS
IN THE TWO LIMITING CASES

In this section, Eq. (21) is applied to the limiting low and
high speed cases, discussions and approximations are made.

A. Low speed cases

While v1 � v2, expand the exponential terms up to third
order Taylor’s series, we have the approximations

e− m2v2
1

2kBT ≈ 1 − m2v
2
1

2kBT
+ 1

2

(
m2v

2
1

2kBT

)2

− 1

6

(
m2v

2
1

2kBT

)6

,

erf

(√
m2

2kBT
v1

)
≈ 2√

π

⎡
⎣
√

m2v
2
1

2kBT
− 1

3

⎛
⎝
√

m2v
2
1

2kBT

⎞
⎠

3

+ 1

10

⎛
⎝
√

m2v
2
1

2kBT

⎞
⎠

5

− 1

42

⎛
⎝
√

m2v
2
1

2kBT

⎞
⎠

7⎤
⎦.

The mean relative speed can be approximated as [see Eq. (A1)
in Appendix]

vr ≈ v2 + 4v2
1

3πv2
− 8v4

1

15π2v2
3 + 32π2v6

1

105π4v2
5 ,

The quadratic dependence of vr on v1 in this formula is in
agreement with the first inset in Fig. 5. 	v1 can be approxi-
mated as [for details see Eq. (A2) in Appendix]

	v1 ≈ − m2

m1 + m2

(
4

3
v1 − 32v3

1

45πv2
2 + 256v5

1

189π2v2
4

)
.

Approximation of f in this case is [for details see Eq. (A3)]

f ≈ −nBπD2 m1m2

m1 + m2

(
4

3
v2v1 + 16v3

1

15πv2
− 32v5

1

105π2v2
3

)
.

(22)
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Beyond the linear approximation, odd terms of v1 should be
considered, such as the cubic term (16v3

1/15πv2) and the
quintic term (−32v5

1/105π2v2
3) in Eq. (22). In the linear

approximation,

f ≈ −ηv1, (23)

with

η = 4nBπD2m1m2v2

3(m1 + m2)
= 4

3

m1

m1 + m2
ρBσABv2 (24)

is the friction coefficient (here, η is somewhat different with
the viscosity coefficient in fluid, as the microscopic mecha-
nism of the force is limited to the present collision model, and
the size/boundary dependence is involved) of the collision
force at low speed cases, where ρB is the mass density of the
background gas, and σAB is the area of the scattering cross
section. While m1 � m2, we get

η = 4
3ρBσABv2.

That is to say, f is proportional to v1 and a linear approxima-
tion is proposed.

Since f and fs are all about the force that a particle
is moving in fluid/gas, it is necessary to compare the two
forces. In some way, the two forces are quite similar. The
velocity/temperature dependencies are the same: f = −ηv1

and fs = −6πηsr1v1 (here, R = r1), with η ∝ v2 ∝ √
T and

ηs = nBm2l v2/3 ∝ v2 ∝ √
T [19,21,25,28]. Note that a 0.75

power dependence of η on T has been discovered in the
air, which was attributed to the increase of the scattering
cross section with the temperature increasing for polyatomic
molecules[21,23]. The difference of the two forces displays
in three aspects as the result of different microscopical mech-
anisms. The first is about the dependence of nB, η ∝ nB but ηs

is independent of nB (counteracted by nB and l in Maxwell’s
model); the second is about the dependence of D, f ∝ D2

but fs ∝ r1; the third is about the mass dependence, f ∝
m1/(m1 + m2) but fs is independent of m1. The difference
suggests the Stokes force may fail for small particles of a
large Knudsen number (l/D � 1), which is supported by the
studies in Refs. [18,29,30] where a quadratic size dependence
is reported. The D2 dependence is the essential distinction
of the kinetic model compared to the Stokes hydrodynamic
model.

B. High speed cases

While v1 � v2, the exponent relevant terms can be approx-
imated as

e− m2v2
1

2kBT ∼ 0, erf

(√
m2

2kBT
v1

)
∼ 1,

R ≈ 1 − 2kBT

m2v
2
1

+ k2
BT 2

m2
2v

4
1

.

The mean relative speed can be approximated as

vr ≈ v1 + kBT

m2v1
≈ v1,

which is in agreement with the suggestion in the second inset
in Fig. 5. Approximation of 	v1 is

	v1 ≈ − m2

m1 + m2

[
v1 + 1

v1

kBT

m2
− 2

1

v3
1

(
kBT

m2

)2]

≈ − m2v1

m1 + m2
.

f can be approximated as

f ≈ −nBπD2 m1m2

m1 + m2

(
v2

1 + 2kBT

m2
− k2

BT 2

m2
2v

2
1

)
≈ −η′v2

1,

(25)

which increases with v2
1 linearly, with

η′ = ρBσABm1/(m1 + m2). (26)

While m1 � m2, it gives

η′ = ρBσAB.

That is, the force is proportional to ρB, σAB and v2
1 , but

independent of the gas temperature T . Beyond the low
order approximation, a small constant resistent force (no
speed involved) related to the density and temperature
of the background gas can be employed as an addition:
−2nBσABkBT m1/(m1 + m2).

The SE relation is found to be dependent on the size/mass
of the Brownian particle [18,29,30]. A decomposing of the
kinetic contribution and the hydrodynamic contribution in the
transitional range can be found in Ref. [18] as well. Here, we
focus on the friction force of a particle moving through rar-
efied gases. Under the classical elastic model of hard spheres
and the molecular chaos hypothesis, a general formula of the
particle’s speed, f (v1), is obtained by the direct calculation of
ZAB and 	v1. In the low speed cases, the result is consistent
with Ref. [18] and the D2 dependence is distinguished. Be-
yond the low speed cases studied in Ref. [18], our results can
be applied to all speed ranges. Benefiting from the simplicity
of the kinetic model, the analytical Eq. (21) works with a
wide range of parameters as long as the sparse requirement
is satisfied.

VI. CONCLUSION

Of the explicit force formula Eq. (21), some points are
summarized: (i) f = −ηv1 and f = −η′v2

1 are the approxima-
tions for the low and high speed respectively. It shows that the
speed dependence is increased with the increasing of v1. (ii)
Throughout the speed ranges, f ∝ nBD2 holds well. (iii) The
temperature dependence decreases with the increasing of v1,
and in the high speed limiting, the temperature dependence
tends to vanish. By the dependencies, using experiments of
small particle Brownian motion to verify the theory is becom-
ing possible[18]. Moreover, in the high vacuum environment
such as the space tracks, by the direct friction measurement of
the macroscopical objects, a verification may also be possible.
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APPENDIX: APPROXIMATIONS AT LOW SPEED LIMITING CASE

While v1 � v2, the exponent can be expanded to Taylor’s series, here up to the third rank, with

e− m2v2
1

2kT ≈ 1 − m2v
2
1

2kT
+ 1

2

(
m2v

2
1

2kT

)2

− 1

6

(
m2v

2
1

2kT

)3

,

erf

(√
m2

2kBT
v1

)
= 2√

π

∫ √
m2v2

1
2kT

0
e− m2v2

1
2kT d

√
m2v

2
1

2kT

≈ 2√
π

[√
m2

2kT
v1 − 1

3

(√
m2

2kT

)3

v3
1 + 1

10

(√
m2

2kT

)5

v5
1 − 1

42

(√
m2

2kT

)7

v7
1

]
.

The term in the mean relative speed in Eq. (16) at low speed limiting can be approximated as

vr =
√

2kT

πm2
e− m2v2

1
2kT +

(
v1 + kT

v1m2

)
erf

(√
m2

2kBT
v1

)

≈
√

2kT

πm2

[
1 − m2v

2
1

2kT
+ 1

2

(
m2v

2
1

2kT

)2

− 1

6

(
m2v

2
1

2kT

)3
]

+
(

v1 + kT

v1m2

)
2√
π

[√
m2

2kT
v1 − 1

3

(√
m2

2kT

)3

v3
1 + 1

10

(√
m2

2kT

)5

v5
1 − 1
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(√
m2

2kT
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v7
1

]

=
√

kT

m2

√
2
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√
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√
2

π

m2v
2
1
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√
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√
2

π

(
m2v

2
1

2kT
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√
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√
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(
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√
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√
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And mean velocity change in Eq. (19) at low speed limiting can be approximated as
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The brace in Eq. (21) at low speed limiting can be approximated as
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