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Numerical solution of coupled nonlinear Klein-Gordon equations on unbounded domains
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The numerical solution of coupled nonlinear Klein-Gordon equations on unbounded domains is considered
by applying the artificial boundary method. Based on the unified approach to overcome the coupled nonlinearity,
local artificial boundary conditions are designed on the introduced artificial boundaries. The original problem
is reduced to an initial boundary value problem on a bounded domain, which can be efficiently solved by the
finite difference method. Some numerical examples are provided to verify the accuracy and effectiveness of the
proposed method.
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I. INTRODUCTION

The coupled nonlinear Klein-Gordon equations on un-
bounded domain have considerable applications in the field
of mathematical physics, such as hydrodynamics, plasma
physics, optical fiber, solid physics, chemical kinematics,
chemical physics, and geochemistry [1,2]. A particularly
important application of these equations is in the area of
relativistic quantum mechanics. In this paper, we consider the
numerical solution of the following coupled nonlinear Klein-
Gordon equations (CNLKGEs) with cubic nonlinearity:

ψtt (x, t ) − a2∇2ψ (x, t ) + f (ψ, φ) = 0, (1)

φtt (x, t ) − a2∇2φ(x, t ) + g(ψ, φ) = 0, (2)

ψ (x, 0) = ψ (0)(x), ψt (x, 0) = ψ (1)(x), (3)

φ(x, 0) = φ(0)(x), φt (x, 0) = φ(1)(x), (4)

where (x, t ) ∈ Rd × (0, T ], and ∇ represents a d-dimensional
gradient operator with d = 1, 2. The coupled nonlinear func-
tions f (ψ, φ) and g(ψ, φ) are given as

f (ψ, φ) = a1ψ + b1ψ
3 + c1ψφ2,

g(ψ, φ) = a2φ + b2φ
3 + c2φψ2.

These equations model the motion of charged mesons in an
electromagnetic field. The real-valued functions ψ (x, t ) and
φ(x, t ) are scalar fields of charged mesons with masses a1/2

1

and a1/2
2 . bi and ci (i = 1, 2) represent the interaction con-

stants of two charged mesons, and they are both positive or
negative. The CNLKGEs satisfy the following energy conser-
vation in the whole space:

E (t ) :=
∫
Rd

{c2

c1
[(ψt )

2 + a2|∇ψ |2] + (φt )
2

+a2|∇φ|2 + G(ψ, φ)
}

dx = E (0), (5)
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where

G(ψ, φ) = c2

c1

(
a1ψ

2 + b1

2
ψ4

)
+ a2φ

2 + b2

2
φ4 + c2(ψφ)2 + M

with constant M, and the mass conservation

Mtot(t ) :=
∫
Rd

(|ψ |2 + |φ|2)dx ≡ Mtot(0), t � 0. (6)

On the bounded domains, many literatures have studied
nonlinear Klein-Gordon equations in numerical aspects, such
as finite difference method [3], finite element method [4], and
exponential spectral method [5]. For the CNLKGEs, Ji [6]
proposed a three-layer conserved nonlinear compact differ-
ence scheme with the second-order accuracy in time and the
fourth-order accuracy in space, and the discrete conservation
law, convergence, and stability of the scheme are discussed.
Xu [7] presented a spectral method based on a Gautschi-type
integral, which has the second-order convergence rate in time
and the spectral convergence rate in space, and estimated the
error of the proposed method. Dong designed a scheme for
N-coupled nonlinear Klein-Gordon equations based on the
trigonometric polynomials, and the accuracy and stability are
presented [8].

However, few works studied the numerical solution for the
CNLKGEs on unbounded domains, due to the unboundedness
of the physical domain. One popular and efficient approach
to overcome the unboundedness is the artificial boundary
method, in which the idea is to truncate the unbounded domain
into the bounded computational domain by developing the ap-
propriate artificial or absorbing boundary conditions (ABCs)
on the introduced artificial boundaries. Generally speaking,
the ABCs can be divided into global [9–17] and local [18,19]
ABCs. The global ABCs are easy to design and the algorithm
is robust, but the computation is large and the geometry of
the computational domain is strict. Although the precision of
the local ABCs is generally inferior to the global ABCs, the
algorithm and computation of the local ABCs are simple and
small, respectively. Thus, the local ABCs have succeeded to
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FIG. 1. Settings of unbounded domain.

solve many partial differential equations on unbounded do-
main, such as the wave equation [18] and heat equation [20].

Another difficulty to design the local ABCs for the CN-
LKGEs is the nonlinearity of the coupled equations. The
unified approach, stemming from the well-known operator
splitting method, is developed to construct the local ABCs
for the nonlinear partial differential equations, including the
nonlinear Schrödinger equation and nonlinear wave equa-
tion [21–24]. Han and Zhang [25–27] proposed the local
ABCs of a nonlinear Klein-Gordon equation by using the
idea of operator splitting, and extended this idea from one
dimension to two dimensions and for a two-level Schrödinger
equation. Zhou and Cheng [28] adopted the method of op-
erator splitting to solve the coupled nonlinear Schrödinger
equations, in which the linear subproblem is introduced into
the artificial boundary, and the nonlinear subproblem is an
ordinary differential equation that can be solved accurately.
Li and Guo [29,30] proposed the local ABCs of the coupled
nonlinear Schrödinger equation by using the idea of operator
splitting, and introduced the auxiliary function to analyze the
stability of the reduced initial boundary value problem.

The organization of this paper is as follows. In Sec. II,
based on ideas of the artificial boundary method and operator
splitting approach, the local ABCs for the two-dimensional
CNLKGEs are derived on the introduced artificial boundaries,
and an initial boundary value problem (IBVP) is obtained. The
finite difference scheme for the reduced IBVP is established
in Sec. III. In Sec. IV, some numerical examples are presented
to verify the validity and convergence of the proposed scheme.
Some concluding remarks are given in Sec. V.

II. DESIGN OF ABCs

In this section, for the sake of simplicity, we fo-
cus on the derivation of local ABCs for two-dimensional

TABLE II. An exact solution and numerical solution on the arti-
ficial boundary point for different times.

T = 0.5 T = 0.6 T = 0.7 T = 0.8 T = 0.9 T = 1

Exact 0.01197 0.03254 0.08829 0.23631 0.57688 0.89441
Numerical 0.01193 0.03242 0.08795 0.23537 0.57448 0.89212

CNLKGEs by adopting the idea of the well-known operator
splitting method. As shown in Fig. 1, the unbounded do-
main was divided into two parts, including interior domain
�i and exterior domain �e = R2\�̄i, by the east-, south-,
west- and north-artificial boundaries � = {�e, �s, �w, �n}.
{CSE, CSW, CNW, CNE} represent the corresponding corners,
respectively, where

�i = {(x, y)|xw < x < xe, ys < y < yn},
�e = {(x, y)|x = xe, ys < y < yn},
�s = {(x, y)|y = ys, xw < x < xe},
�w = {(x, y)|x = xw, ys < y < yn},
�n = {(x, y)|y = yn, xw < x < xe}.

Introducing some auxiliary variables

� = [ψ, φ]T , � = [�,�t ]
T ,

P(�) = −[ f (ψ, φ), g(ψ, φ)]T .

For the sake of simplicity, we consider the original problem in
the following operator form:

�t ≡ (�t , �tt )
T = L� + N�, (7)

with

L� =
(

�t

a2(�xx + �yy)

)
and N� :=

(
0

P(�)

)
,

where L and N represent the kinetic energy and potential
energy operator. The operator splitting method means that the
wave propagation performs the action of kinetic energy step
and potential energy step, respectively, in a small time size τ .
In a small time interval, we have the following equation by
using the operator splitting method:

�(x, y, t + τ ) ≈ e(L+N )τ�(x, y, t ). (8)

In order to design the local ABCs, the idea is to approximate
linear operator L by the operator L̃ and obtain the one-way
equation.

TABLE I. The L1, L∞, and L2 error and the corresponding convergence order with the parameters a = √
101, a1 = 1, b1 = −2,

c1 = −1, a2 = 1, b2 = −3, c2 = −1, v = 10 at time T = 0.5.

Mesh L1-E Order L∞-E Order L2-E Order

h = 1
10 2.100 × 10−3 2.520 × 10−2 2.920 × 10−2

h = 1
20 5.085 × 10−4 2.046 5.800 × 10−3 2.119 6.300 × 10−3 2.213

h = 1
40 1.256 × 10−4 2.018 1.400 × 10−3 2.050 1.500 × 10−3 2.071

h = 1
80 3.131 × 10−5 2.004 3.556 × 10−4 1.964 3.775 × 10−4 1.991
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FIG. 2. The evolution of |ψ | for a = √
101, a1 = 1, b1 = −2, c1 = −1, a2 = 1, b2 = −3, c2 = −1, v = 10, xw = −10, xe = 10,

h = 1/40, τ = h2 in Example 1.

Higdon [18] approximated the dispersion relation with
high precision, and obtained the regular ABCs on the east
boundary �e,

p∏
l=1

(cos θl∂t + a∂x )� = 0,

where p is an integer and ±θl (l = 1, 2, . . . , p) are the angles
between the wave incident direction and the normal direction
of the boundary. The east ABCs are composed of p factor
cos θl∂t + a∂x. The parameter p is selected as p = 2 in this
paper, and the ABCs of the linear wave equations on the east
boundary are as follows:

cos θ1 cos θ2ψtt + a(cos θ1 + cos θ2)ψxt + a2ψxx = 0, (9)

cos θ1 cos θ2φtt + a(cos θ1 + cos θ2)φxt + a2φxx = 0. (10)

Then, we derive the approximate linear operator L̃. Setting

Q =

⎛⎜⎝ 1 0 0 0
a(cos θ1 + cos θ2)∂x 0 cos θ1 cos θ2 0

0 1 0 0
0 a(cos θ1 + cos θ2)∂x 0 cos θ1 cos θ2

⎞⎟⎠,

Eqs. (9) and (10) can be equivalently rewritten by

�t = Q−1

⎛⎜⎜⎝
ψt

−a2ψxx

φt

−a2φxx

⎞⎟⎟⎠ ≡ L̃�. (11)

By considering the linear subproblem in operator form, the
approximate operator L̃ can be obtained:

L ≈ L̃ := Q−1

⎛⎜⎜⎝
0 0 1 0

−a2∂2
x 0 0 0

0 0 0 1
0 −a2∂2

x 0 0

⎞⎟⎟⎠. (12)

FIG. 3. The evolution of |φ| for a = √
101, a1 = 1, b1 = −2, c1 = −1, a2 = 1, b2 = −3, c2 = −1, v = 10, xw = −10, xe = 10,

h = 1/40, τ = h2 in Example 1.
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FIG. 4. The energy, mass, and reflection ratios for the parameters a = √
101, a1 = 1, b1 = −2, c1 = −1, a2 = 1, b2 = −3,

c2 = −1, v = 10, xw = −10, xe = 10, h = 1/40, τ = h2 in Example 1.

There are four boundaries in the two-dimensional case. Each
boundary of the coupled equations requires two ABCs. Below,
we only give the ABCs of linear subproblem ψ in the west,
north, and south directions in turn.

cos θ1 cos θ2ψtt − a(cos θ1 + cos θ2)ψxt + a2ψxx = 0, (13)

cos θ1 cos θ2ψtt + a(cos θ1 + cos θ2)ψyt + a2ψyy = 0, (14)

cos θ1 cos θ2ψtt − a(cos θ1 + cos θ2)ψyt + a2ψyy = 0. (15)

Next we construct the local ABCs of the CNLKGEs. Since
the designed process of all the ABCs on the artificial bound-
aries is similar, we only give the derivation of the ABCs on the
east boundary. Now we have derived the approximation linear
operator L̃ and brought it into the one-way equation

�t = L̃� + N�. (16)

By multiplying Eq. (16) by operator Q, we can obtain
the ABCs of the coupled nonlinear equations on the east
boundary:

cos θ1 cos θ2ψtt + a(cos θ1 + cos θ2)ψxt + a2ψxx

− cos θ1 cos θ2 f (ψ, φ) = 0, (17)

cos θ1 cos θ2φtt + a(cos θ1 + cos θ2)φxt + a2φxx

− cos θ1 cos θ2g(ψ, φ) = 0. (18)

By repeating the above process, we can get the following
local ABCs of the CNLKGEs on the west, north, and south
boundaries in turn:

cos θ1 cos θ2ψtt − a(cos θ1 + cos θ2)ψxt + a2ψxx

− cos θ1 cos θ2 f (ψ, φ) = 0, (19)

cos θ1 cos θ2ψtt + a(cos θ1 + cos θ2)ψyt + a2ψyy

− cos θ1 cos θ2 f (ψ, φ) = 0, (20)

cos θ1 cos θ2ψtt − a(cos θ1 + cos θ2)ψyt + a2ψyy

− cos θ1 cos θ2 f (ψ, φ) = 0, (21)

cos θ1 cos θ2φtt − a(cos θ1 + cos θ2)φxt + a2φxx

− cos θ1 cos θ2g(ψ, φ) = 0, (22)

cos θ1 cos θ2φtt + a(cos θ1 + cos θ2)φyt + a2φyy

− cos θ1 cos θ2g(ψ, φ) = 0, (23)

cos θ1 cos θ2φtt − a(cos θ1 + cos θ2)φyt + a2φyy

− cos θ1 cos θ2g(ψ, φ) = 0. (24)

Coupling those local ABCs (17)–(24) with the CN-
LKGEs (1)–(4), the original problem on unbounded domain
was reduced to an IBVP on a bounded domain, which can be
solved by applying the finite difference method efficiently.

FIG. 5. The evolution of |ψ | and |φ| for a = √
401, a1 = 1, b1 = −2, c1 = −1, a2 = 1, b2 = −3, c2 = −1, v = 20, x0 = 4, h =

1/40, τ = h2 in Example 2.
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FIG. 6. The energy, mass, and reflection ratios for the parameters a = √
401, a1 = 1, b1 = −2, c1 = −1, a2 = 1, b2 = −3, c2 =

−1, v = 20, x0 = 4, h = 1/40, τ = h2 in Example 2.

Remark 1. Although this paper only presents the local
ABCs in two dimensions for CNLKGEs, in fact, the local
ABCs can be easily extended to CNLKGEs in one dimension.

III. DISCRETIZATION

In this section, we consider the discretization of the re-
duced IBVPs (1)–(4) and (17)–(24) on a bounded region
of a rectangle � = [xw, xe] × [ys, yn] × [0, T ], and set hx =

(xe − xw )/J, hy = (yn − ys)/K , and τ = T/N for the grid size
in space and time. For simplicity, the following notations will
be used hereafter:

D+
τ un

j,k = un+1
j,k − un

j,k

τ
, D−

τ un
j,k = un

j,k − un−1
j,k

τ
,

D+
hx

un
j,k = un

j+1,k − un
j,k

hx
, D−

hx
un

j,k = un
j,k − un

j−1,k

hx
,

FIG. 7. The evolution of ψ for a = 1, a1 = 1, b1 = −1, c0 = 10, c1 = 1, a2 = 1, b2 = −2, c2 = 0.5, v = 1, h = 1/32, τ = h2 in
Example 3.
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FIG. 8. The evolution of ψ for a = 1, a1 = 1, b1 = −1, c0 = 10, c1 = 1, a2 = 1, b2 = −2, c2 = 0.5, v = 1, h = 1/32, τ = h2 in
Example 3.

D0
τ un

j,k = un+1
j,k − un−1

j,k

2τ
, D0

hx
un

j,k = un
j+1,k − un

j−1,k

2hx
,

S0
τ un

j,k = un+1
j,k + un−1

j,k

2
.

The IBVPs (1)–(4) and (17)–(24) are discretized on the inte-
rior points (x j, yk, tn) of the grid �:

D+
τ D−

τ ψn
j,k = a2

(
D+

hx
D−

hx
S0

τψ
n
j,k + D+

hy
D−

hy
S0

τψ
n
j,k

)
+ f

(
ψn

j,k, φ
n
j,k

)
,

D+
τ D−

τ φn
j,k = a2

(
D+

hx
D−

hx
S0

τ φ
n
j,k + D+

hy
D−

hy
S0

τ φ
n
j,k

)
+ g

(
ψn

j,k, φ
n
j,k

)
,

where 1 � j � J − 1, 1 � k � K − 1.
All the local ABCs (17)–(24) and corners are discretized

similarly; we only give the discrete finite difference schemes
of ABCs on the east boundary and the northeast corner, and
the discretization of other boundary conditions can be ob-
tained by analogy. The local ABCs (17) and (18) on the east
boundary can be discretized by

a(cos θ1 + cos θ2)D0
hx

D0
τψ

n
J−1,k + cos θ1 cos θ2D+

τ D−
τ ψn

J−1,k

+ a2D+
hx

D−
hx

S0
τψ

n
J−1,k − cos θ1 cos θ2 f

(
ψn

J−1,k, φ
n
J−1,k

) = 0,

a(cos θ1 + cos θ2)D0
hx

D0
τ φ

n
J−1,k + cos θ1 cos θ2D+

τ D−
τ φn

J−1,k

+ a2D+
hx

D−
hx

S0
τ φ

n
J−1,k − cos θ1 cos θ2g

(
ψn

J−1,k, φ
n
J−1,k

) = 0,

where 1 � k � K − 1.

For the corner point (J, K ), the discretized scheme is pre-
sented as follows:

a(cos θ1 + cos θ2)D0
hx

D0
τψ

n
J−1,K + cos θ1 cos θ2D+

τ D−
τ ψn

J−1,K

+ a2D+
hx

D−
hx

S0
τψ

n
J−1,K − cos θ1 cos θ2 f

(
ψn

J−1,K , φn
J−1,K

)
+ a(cos θ1 + cos θ2)D0

hy
D0

τψ
n
J,K−1

+ cos θ1 cos θ2D+
τ D−

τ ψn
J,K−1 + a2D+

hy
D−

hy
S0

τψ
n
J,K−1

− cos θ1 cos θ2 f
(
ψn

J,K−1, φ
n
J,K−1

) = 0,

a(cos θ1 + cos θ2)D0
hx

D0
τ φ

n
J−1,K + cos θ1 cos θ2D+

τ D−
τ φn

J−1,K

+ a2D+
hx

D−
hx

S0
τ φ

n
J−1,K − cos θ1 cos θ2g

(
ψn

J−1,K , φn
J−1,K

)
+ a(cos θ1 + cos θ2)D0

hy
D0

τ φ
n
J,K−1

+ cos θ1 cos θ2D+
τ D−

τ φn
J,K−1 + a2D+

hy
D−

hy
S0

τ φ
n
J,K−1

− cos θ1 cos θ2g
(
ψn

J,K−1, φ
n
J,K−1

) = 0.

Similarly, the discretization of the reduced IBVPs (1)–(4)
and (17)–(24) on the bounded domain is obtained.

IV. NUMERICAL RESULTS

In this section, some numerical examples are given to ver-
ify the accuracy and validity of the local ABCs of CNLKGEs,
and simulate the evolution of CNLKGEs.
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FIG. 9. The evolution of φ for a = 1, a1 = 1, b1 = −1, c1 = 1, a2 = 1, b2 = −2, c2 = 0.5, v = 1, h = 1/32, τ = h2 in Example 3.

FIG. 10. The evolution of φ for a = 1, a1 = 1, b1 = −1, c1 = 1, a2 = 1, b2 = −2, c2 = 0.5, v = 1, h = 1/32, τ = h2 in Example 3.
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FIG. 11. The energy, mass, and reflection ratios for the parameters a = 1, a1 = 1, b1 = −1, c1 = 1, a2 = 1, b2 = −2, c2 = 0.5,

v = 1, h = 1/32, τ = h2 in Example 3.

A. One-dimensional examples

An exact solution of CNLKGEs in one dimensio is given
in [1]:

ψ (x, t ) = A1sech[B(x− vt )], φ(x, t ) = A2sech[B(x− vt )],

where

A1 =
√

2a1(c1 − b2)

b1b2 − c1c2
, A2 =

√
2a2(b1 − c2)

c1c2 − b1b2
,

B =
√ −a1

v2 − a2
.

The L1, L2, L∞ errors are defined to present the accuracy
of numerical solution by

L1-E =

J∑
j=0

N∑
n=0

[∣∣ψn
j − ψex(x j, tn)

∣∣ + ∣∣φn
j − φex(x j, tn)

∣∣]
2(J + 1)(N + 1)

,

L2-E =
(

h

2

J∑
j=0

[∣∣ψn
j −ψex(x j, tn)

∣∣2+∣∣φn
j −φex(x j, tn)

∣∣2])1/2

,

L∞-E = max
{∣∣ψn

j − ψex(x j, tn)
∣∣} + max

{∣∣φn
j − φex(x j, tn)

∣∣}
2

,

where φex(x j, tn) and ψex(x j, tn) are exact solutions of the φ

and ψ at the point (x j, tn), respectively.
Example 1. Assume that the initial conditions are chosen

as

ψ (0)(x) = A1sech(Bx), φ(0)(x) = A2sech(Bx),

ψ (1)(x) = BvA1sech(Bx)tanh(Bx),

φ(1)(x) = BvA2sech(Bx)tanh(Bx).

The numerical solutions were obtained on the compu-
tational interval [−10, 10] with the time step τ = h2. We
observe that the work of this local ABC is stable and con-
sists of nearly perfect second-order accuracy from Table I.
Figures 2 and 3 show that the artificial boundary is nearly
transparent when the wave passes through the right artificial
boundary. The energy and mass of CNLKGEs are plotted on
the computational interval [−10, 10] in Figs. 4(a) and 4(b).
One can easily observe that when the wave moves out of the
bounded domain, the energy and mass decay to zero and it
shows that the boundary is almost transparent for wave prop-
agation. Table II lists the corresponding numerical solutions
and exact solutions at artificial boundary for different times.
For the nonlinear Klein-Gordon equation on the unbounded
domain, Han and Zhang [25] used the operator splitting
method to construct boundary conditions, and we label the
first-order operator splitting method as splitting local artificial
boundary (SLAB) method. It can be seen from Table III that
our method has higher accuracy under the same temporal
and spatial steps, but needs longer time. Another important
method to test the local ABCs is to show the reflection ratios
at t n defined by [22]

r =
J∑

j=0

(∣∣ψn
j

∣∣ + ∣∣φn
j

∣∣)/ J∑
j=0

(∣∣ψ0
j

∣∣ + ∣∣φ0
j

∣∣).
The reflection ratios r = 1 and r = 0 indicate that the

wave is fully reflected back into the calculation area and
all across the boundary, respectively. Figure 4(c) shows how
the reflection ratio changes over time in one dimension, and

TABLE III. Comparisons of the errors and CPU time of the present scheme and the SLAB method at T = 1 with τ = 1/5000.

Mesh Scheme L1-E L∞-E L2-E CPU time (s)

h = 1
10 Present 3.059 × 10−4 8.100 × 10−3 2.700 × 10−3 12.869

SLAB 4.726 × 10−4 1.900 × 10−2 1.670 × 10−2 11.931
h = 1

20 Present 1.477 × 10−4 3.700 × 10−3 1.500 × 10−3 40.248
SLAB 2.088 × 10−4 9.100 × 10−3 8.800 × 10−3 30.716

h = 1
40 Present 1.167 × 10−4 2.600 × 10−3 1.300 × 10−3 154.584

SLAB 1.454 × 10−4 5.300 × 10−3 5.400 × 10−3 43.849
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TABLE IV. The reference solution and numerical solution on the
right artificial boundary point for different times.

T = 0.6 T = 0.7 T = 0.8 T = 0.9 T = 0.95 T = 1

Exact 0.00161 0.01187 0.08753 0.57115 0.88767 0.57460
Numerical 0.00161 0.01188 0.08758 0.57152 0.88836 0.57534

demonstrates that there is ignored reflection when the wave
travels through the artificial boundaries.

Example 2. In this example, we consider two different ini-
tial conditions:

ψ (0)(x) = A1sech[B(x + x0)],

φ(0)(x) = A2sech[B(x − x0)],

ψ (1)(x) = BvA1sech[B(x + x0)]tanh[B(x + x0)],

φ(1)(x) = −BvA2sech[B(x − x0)]tanh[B(x − x0)].

Figure 5 describes the numerical solution of CNLKGEs
on the computational domain [−15, 15]. In Figs. 6(a)
and 6(b), the energy and mass decay to zero as the wave
passes through the boundaries, which shows the local ABCs
can make the wave pass through the right and left boundaries
well. Figure 6(c) shows how the reflection ratio changes over
time. For comparison, a reference solution is solved in a larger
interval [−40, 40] and zero Dirichlet boundary conditions are
imposed at x = −40 and x = 40. Table IV lists the corre-
sponding numerical solutions and reference solutions at right
artificial boundary for different times.

B. Two-dimensional examples

An exact solution of CNLKGEs in two dimensions is given
in [1]:

ψ (x, y, t ) = A1sech[B1x + B2y − vt],

φ(x, y, t ) = A2sech[B1x + B2y − vt],

where

A1 =
√

2a1(c1 − b2)

b1b2 − c1c2
, A2 =

√
2a1(b1 − c2)

c1c2 − b1b2
,

B1 =
√ −a1

v2 − 2a2
, B2 =

√ −a2

v2 − 2a2
.

In order to test the accuracy of the numerical solution,
the L1, L2, L∞ errors are defined as similar as the one-

dimensional case,

L1-E =
∑J

j=0

∑K
k=0

[∣∣ψn
j,k − exψ

n
j,k

∣∣ + ∣∣φn
j,k − exφ

n
j,k

∣∣]
2(J + 1)(K + 1)

,

L2-E =
[

h2

2

J∑
j=0

K∑
k=0

(∣∣ψn
j,k − ex ψn

j,k

∣∣2+∣∣φn
j,k − exφ

n
j,k

∣∣2)]1/2

,

L∞-E = max
{∣∣ψn

j,k − exψ
n
j,k

∣∣} + max
{∣∣φn

j,k − exφ
n
j,k

∣∣}
2

,

where exψ
n
j,k and exφ

n
j,k are exact solutions of the ψ and ψ at

the point (x j, yk, tn), respectively.
Assuming that the initial value of the original problem is

satisfied, the wave propagates from the artificial boundary to
the outside of the finite domain, and no wave propagates from
the outside to the inside of the finite domain.

Example 3. The initial conditions of the CNLKGEs are
chosen as

ψ (0)(x, y) = A1sech[B1x + B2y − vt − c0],

φ(0)(x, y) = A2sech[B1x + B2y − vt − c0],

ψ (1)(x, y) = A1sech[B1x + B2y − vt − c0]

× tanh[B1x + B2y − vt − c0],

φ(1)(x, y) = A2sech[B1x + B2y − vt − c0]

× tanh[B1x + B2y − vt − c0].

The truncated computational domain is [0, 5] × [0, 5], and
this grid space is equal, i.e., (hx = hy = h). Table V lists the
error and convergence order on T = 0.5. One can observe
that the convergence is almost second order. Figures 7–10
show the propagation of waves on the computational domain
[0, 5] × [0, 5]. Figures 11(a) and 11(b) show the change of
energy and mass with time in the two-dimensional case, which
illustrates the local ABCs method is efficient, because the
local ABCs can make the wave pass through all the boundaries
without dramatic reflection. The reflection ratio is similar to
the one-dimensional case, and Fig. 11(c) shows that the fluctu-
ations can cross artificial boundaries very well. Table VI lists
the corresponding numerical solutions and exact solutions at
the northeast corner for different times.

V. CONCLUSION

In this paper, the efficient local ABCs for CNLKGEs
by applying the ideas of the operator splitting ap-
proach and artificial boundary method are developed. The

TABLE V. L1, L∞, and L2 errors and the corresponding convergence order with the parameters a = 1, a1 = 1, b1 = −1, c1 = 1, a2 =
1, b2 = −2, c2 = 0.5, T = 0.5, τ = h2.

Mesh L∞-E Order L1-E Order L2-E Order

h = 1
2 2.502 × 10−1 2.820 × 10−2 3.348 × 10−1

h = 1
4 5.450 × 10−2 2.199 6.500 × 10−3 2.117 7.040 × 10−2 2.249

h = 1
8 1.300 × 10−2 2.068 1.600 × 10−3 2.022 1.600 × 10−2 2.138

h = 1
16 3.200 × 10−3 2.023 4.173 × 10−4 1.926 4.000 × 10−3 2.000
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TABLE VI. An exact solution and numerical solution on the northeast corner point for different times.

T = 0.5 T = 1 T = 1.5 T = 2 T = 2.5 T = 3 T = 3.5

Exact 1.77262 1.29491 0.84981 0.53262 0.32834 0.20146 0.12346
Numerical 1.77362 1.29611 0.85019 0.53161 0.32614 0.19866 0.12068

original problem defined on an unbounded domain is re-
duced to an initial boundary value problem on a bounded
domain, which can be efficiently solved by finite difference
method. The numerical results show the accuracy and va-
lidity of the local ABCs. However, some related problems
have not been solved, such as general CNLKGEs (more
than three solitary waves), which will be studied in the
future.
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