
PHYSICAL REVIEW E 106, 025316 (2022)

Modified radius-weighted lattice Boltzmann model to address singularities in axisymmetric
multiphase flows

Xingchun Xu,1 Yanwei Hu,2 Yurong He,2 Jiecai Han,1 and Jiaqi Zhu 1,3,*

1National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,
Harbin Institute of Technology, Harbin 150080, China

2School of Energy Science & Engineering, Harbin Institute of Technology, Harbin 150001, China
3Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150080, China

(Received 5 November 2021; revised 3 April 2022; accepted 2 August 2022; published 29 August 2022)

The radius-weighted lattice Boltzmann model has achieved great success in the simulation of axisymmetric
flows. However, severe spurious currents near the axis are observed when this model is extended to simulate
axisymmetric multiphase flows. In this study, to determine the origin of this singularity, we conducted a
truncation error analysis based on high-order Taylor series expansion and identified the leading error terms
through dimensionless analysis. By neglecting the error terms in proportion to the radius, we obtained the final
forms of the singular terms in the axisymmetric lattice Boltzmann model. We proposed a modified model by
including an additional correction term, to remove the singularity at the third order. We validated the proposed
model using numerical tests for flat and spherical interfaces. Results showed that the present modified model
reduced the spurious currents near the axis by two orders of magnitude compared with the original model.
This modified model also has been successfully applied to predict bubble dynamics in an air-water system. Our
numerical results are in excellent agreement with available experimental observations in terms of bubble shapes
and terminal velocities.
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I. INTRODUCTION

Axisymmetric models are widely used in science and
engineering to simulate cylindrical flows. Compared with
three-dimensional (3D) models, axisymmetric models bypass
elaborate cylindrical boundary conditions and have lower
computational costs. Recently, the lattice Boltzmann (LB)
method has received increasing attention due to its meso-
scopic and kinetic nature. However, standard LB models are
developed within the Cartesian coordinate system, and addi-
tional treatment must be taken to obtain a consistent LB model
for the axisymmetric case.

Existing axisymmetric LB models can be classified into
two categories. The first is built within the pseudo-Cartesian
coordinate system by adding virtual source terms, which
is referred to as a top-down model. Early top-down mod-
els had complex source terms and required additional finite
difference calculations to obtain velocity gradients [1–3].
Zhou [4] proposed a simplified axisymmetric LB model, in
which fewer source terms were introduced but velocity gra-
dients were maintained. Li et al. [5] proposed an efficient
approach for recovering the velocity gradient term using
the nonequilibrium part of the distribution function, which
was further incorporated into the collision operator with a
radius-dependent relaxation time. In a similar way, Zhou [6]
removed the velocity gradient in his revised axisymmetric
model; unlike the Li et al. [5] model, this revised model
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applied semi-implicit centered schemes for the source terms
so that macroscopic variables can be determined using the
same formulas employed in the conventional two-dimensional
(2D) LB model. In contrast, Guo et al. [7] developed a dif-
ferent type of axisymmetric LB model from the continuous
Boltzmann equation in cylindrical coordinates; its most dis-
tinguishing feature was the adoption of a new distribution
function that was multiplied by the radius, and thus this type
of model is also referred to as the radius-weighted lattice
Boltzmann (RW-LB) model. The main advantages of this
model are that it solves axial, radial, and azimuthal velocity
in a consistent manner, and that the source terms are simple
without nonlocal velocity gradients. A comparative study of
different axisymmetric LB models was conducted by Zhang
et al. [8] and demonstrated the superior accuracy and compu-
tation time of the RW-LB model compared with Li et al. [5]
model and Zhou’s modified model [6]. The RW-LB model has
been widely extended to various applications including the
analysis of thermal flow [9], solid-liquid phase change [10],
and multiphase flow [11,12].

Based on different physical background, various LB mod-
els for multiphase flow have been proposed, including the
color-gradient method [13], pseudopotential method [14,15],
free energy model [16,17], and phase field model [18–21].
One undesirable feature common to these models is the ex-
istence of spurious currents near the phase interface. A review
of spurious currents in different lattice Boltzmann models for
multiphase flow can be found in Ref. [22]. Theoretically, such
an artificial velocity field arises from an imbalance between
discretized forces in the interfacial region [23]. The magnitude
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of the spurious current is related to the radius of the drop,
surface tension, ratio of viscosity, and details of the method.
These unphysical flows affect numerical stability, limit the
density ratio, and reduce accuracy [13].

Many studies have attempted to reduce or eliminate these
spurious currents using different approaches. Shan [14] re-
duced the spurious current in a pseudopotential-based model
by increasing the isotropy of the discrete gradient operator.
Leclaire et al. [13] adopted high-order isotropic color-gradient
operators in a color gradient model to reduce spurious currents
caused by standard anisotropic schemes by an order of mag-
nitude. As for the free energy- or phase field-based models,
the formulations of surface tension force and corresponding
discrete schemes are essential factors influencing the forma-
tion of spurious currents. Swift et al. [16] first proposed a free
energy-based lattice Boltzmann model for two-phase flows by
introducing a pressure tensor in the equilibrium function. Seta
and Okui [24] analyzed the truncation errors of the derivatives
in the pressure tensor and found that applying fourth-order
schemes reduced spurious currents by approximately one half
of those obtained using second-order schemes. Pooley and
Furtado [25] redesigned the pressure tensor by selecting the
best stencils for the first derivative and Laplacian operator,
which decreased spurious currents by an order of magnitude
compared with the original models. Wagner [23] replaced
the pressure tensor divergence with surface tension force in
a potential form; although the spurious current was reduced,
numerical instability occurred, necessitating the addition of
a small amount of numerical viscosity to this model. Subse-
quently, Lee and Fischer [26] proposed a stable discretization
scheme using the second-order mixed difference for the gra-
dient terms. Guo et al. [27] analyzed force balance at the
discrete level for a flat interface and demonstrated that a small
imbalance force would inevitably produce artificial velocity in
conventional LB models. Very recently, Guo [28] performed
a further analysis of the discrete errors and developed a well-
balanced LB model that could achieve the equilibrium state.

Despite these achievements, we note all pertain to 2D
cases; few studies have examined spurious currents in the 2D
axisymmetric model. From a theoretical perspective, axisym-
metric models are often associated with complex or unique
virtual source terms, making it much harder to realize force
balance at the discrete level. As a result, larger spurious cur-
rents occur in the phase interface region. The consistency
of the RW-LB model when extended to multiphase flow
simulations also remains to be demonstrated. The use of ra-
dial coordinates in the distribution function and force term
may modify the truncation error terms; the effect on model
precision should be clearly stated. This study describes the
phenomenon of a singularity in the RW-LB model, which
produced large spurious currents near the axis. The objective
of this study is to determine the origin of this singularity and
develop a modified model to eliminate it. The remainder of
this paper is organized as follows. In Sec. II the extension
of the RW-LB model to the axisymmetric multiphase flow
is reviewed; to guarantee mass conservation, we develop an
alternative LB model for the axisymmetric Allen-Cahn equa-
tion. Then in the next section, the truncation errors of the
RW-LB model are derived from the Taylor series expansion,
and the third-order leading error terms are extracted based on

the dimensionless analysis. In Sec. IV we describe our devel-
opment of a modified model to remove singular terms through
the introduction of an additional discrete source term. Numer-
ical tests are conducted in Sec. V to demonstrate the capability
of the proposed model to reduce spurious currents. Also, we
simulated the single rising bubble driven by buoyancy force
to check the validity of our model in capturing realistic phase
interfaces. Finally, a brief summary is presented in Sec. VI.

II. METHODOLOGY

A. Macroscopic governing equations

The method of combining phase field and Navier-Stokes
equations has been widely applied in multiphase flow simula-
tions. For the axisymmetric case, the conservative Allen-Cahn
equation in pseudo-Cartesian coordinates (r, z) can be written
as [12]

∂tφ + ∂α (φuα ) + φur

r
= ∂α[Mφ (∂αφ − θnα )]

+ Mφ

r
(∂rφ − θnr ), (1)

where Greek letter subscripts take their possible values from
[r, z] and follow the Einstein summation convention. Mφ is the
mobility parameter and φ is the order parameter, which takes a
value of φh and φl for the heavy and light phases, respectively.
The phase interface is determined by φ0 = (φh + φl )/2. The
unit vector normal to the interface can be expressed as n =
∇φ

|∇φ| with ∇φ = (∂rφ, ∂zφ). θ is the magnitude of phase field
gradient at equilibrium, θ = |∇φeq|. The phase field at equi-
librium exhibits a hyperbolic tangent profile,

φeq(ξ ) = φh + φl

2
+ φh − φl

2
tanh

(
2ξ

W

)
, (2)

where W is the interface width, the coordinate axis ξ is normal
to the interface, and ξ = 0 is located at the phase interface.
Following Eq. (2), we have θ = | dφeq

dξ
| = 4(φ−φh )(φ−φl )

W (φl −φh ) .
The chemical potential μφ is defined as

μφ = 4β(φ − φl )(φ − φh)(φ − φ0) − κ (∂ββφ + ∂rφ/r),
(3)

where coefficients β and κ are related to the surface tension
σ and interface width W according to β = 12σ

|φh−φl |4W and κ =
3

2|φh−φl |2 W σ . It is important to note that the formulas for θ , β,
and κ provided in a previous study [29] apply only to the case
of φh = 1 and φl = 0.

The Navier-Stokes equations are expressed in a form cor-
responding to the recovered macroscopic equation for the
axisymmetric RW-LB model [12]:

∂β (ruβ ) = 0, (4a)

rρ(∂t uα + uβ∂βuα ) = −∂α (r p) + ∂β[rνρ(∂βuα + ∂αuβ )]

+ r(Fbα + Fsα ) +
(

p − 2ρν

r
ur

)
δαr,

(4b)

where ρ, p, and ν are the density, pressure, and kinematic vis-
cosity, respectively. Fb is the body force. The surface tension
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force Fs can be expressed in different continuous formula-
tions [30]. In this study, we adopted the form of Fs = μφ∇φ,
which is simple and involves only the nonlocal expressions of
∂αφ and ∂ββφ.

B. The LB model for the Allen-Cahn equation

For the axisymmetric Allen-Cahn equation, Liang
et al. [12] proposed a radius-weighted lattice Boltzmann
model; however, this model lacks mass conservation for
rough meshes, even without flow [29]. To avoid this problem,
we omitted the last term in Eq. (1), which is feasible because
the phase field remains in a quasi-equilibrium state during
its convective motion, such that this term Mφ (∂rφ − θnr )/r
theoretically equals zero. The LB evolution equation for the
order parameter can be expressed as

hi(x + eiδt , t + δt ) − hi(x, t )

= −hi(x, t ) − heq
i (x, t )

τm
+

(
1 − 1

2τm

)
δt Hi(x, t ), (5)

where the relaxation time τm is related to the mobility by
Mφ = (τm − 0.5)c2

s δt . For the D2Q9 lattice model, the sound
speed is defined as cs = c/

√
3, where c is the ratio of lattice

length δx and time step δt . The equilibrium distribution is
given by

heq
i = wiφ + φsi(u) (6)

with

si(u) = wi

[
ei · u

c2
s

+ (ei · u)2

2c4
s

− u · u
2c2

s

]
. (7)

The lattice vectors ei = (eir, eiz ) are defined as

e =
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
c, (8)

and the weighting coefficients for the lattice vectors are given
by w0 = 4/9, w1−4 = 1/9, and w5−8 = 1/36. To recover the
macroscopic equation, the source term Hi is given by

Hi = wieiαθnα − wi
φur

r
. (9)

The macroscopic order parameter can be calculated by

φ =
∑

i hi

1 + 0.5δt ur/r
(10)

and the density ρ can be calculated by linear interpolation of
the densities for the light phase (ρl ) and heavy phase (ρh), as
follows:

ρ = φ − φl

φh − φl
(ρh − ρl ) + ρl . (11)

The present Allen-Cahn equation-based axisymmetric LB
model is similar to that one for 2D case [31,32]. A subtle
difference is the additional term involved ur/r in Eqs. (9)
and (10). When the velocity is zero everywhere, both models
are identical such that the mass conservation can be guaran-
teed in our axisymmetric model in the same manner as a 2D
model. As the convection process is considered, theoretical
analysis and numerical validation of the present model are
presented in the Appendix A and B, respectively.

C. The RW-LB model for hydrodynamics

In this section we recall the RW-LB model for axisym-
metric multiphase flow proposed by Liang et al. [11]. The
evolution equation for the axisymmetric fluid flow can be
written as

fi(x + eiδt , t + δt ) − fi(x, t ) = − fi − f eq
i

τ
+ δt

(
1 − 1

2τ

)
Ri,

(12)

where the relaxation factor τ is related to viscosity through
ν = (τ − 0.5)c2

s δt . The viscosity in the interface region can
be obtained through the harmonic interpolation [33]:

1

τ
= 1

τl
+ φ − φl

φh − φl

(
1

τh
− 1

τl

)
. (13)

The equilibrium state of the particle distribution function
fi is defined as

f eq
i = r

(
wi

p

c2
s

+ ρsi(u)

)
. (14)

The source term is designed as

Ri = (eiα − uα )
{
rsi(u)∂α

(
ρc2

s

) + rFα[wi + si(u)]
}

c2
s

+ wiuα

(
ρc2

s − p
)
δβr

(
ciαciβ − c2

s δαβ

)
c4

s

, (15)

where the equivalent total force is Fα = Fsα + Fbα +
r p−2ρνur

r2 δαr . Following high-order expansion on δt , Fα con-
sists of two different orders: Fα = F0α + δt F1α , where F0α =
Fsα + Fbα + p

r δαr and F1α = − 2ρ(τ−0.5)c2
s ur

r2 δαr .
The macroscopic pressure is obtained from the distribution

function by

p = c2
s

r

∑
fi + c2

s δt

2
uα∂αρ, (16)

and the fluid velocity is

uα =
∑

eiα fi

rρ
+ δt

2ρ
Fα, (17)

which can be rewritten explicitly as [12]

uα =
∑

i eiα fi + 0.5δt rF0α

rρ + δt r−1νρδαr
. (18)

The isotropic schemes of the spatial derivatives involved
in the collision process and velocity calculation can be calcu-
lated as

∇φ = 1

c2
s δt

∑
i

eiwiφ(x + eiδt , t ) (19)

and

∇2φ = ∂ββφ = 2

c2
s δ

2
t

∑
i

wi[φ(x + eiδt , t ) − φ(x, t )]. (20)

These expressions for the RW-LB model presented have
been slightly simplified. The equilibrium distribution function
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in Eq. (14) is expressed in a unified compact form, whereas
in the model of Liang et al. [11] the equilibrium distribu-
tion function at rest (i = 0) is distinguished from those in
other directions. As a result, the expression used to update
the hydrodynamic pressure in Eq. (16) is simpler than that
given by Liang et al. [11]. It should be pointed out that this
modification has no effect on third-order truncation errors. In
other words, the singularity emerged in the RW-LB model
cannot be removed by adjusting the equilibrium distribution
function at rest ( f eq

0 ).

III. THIRD-ORDER TRUNCATION ERROR ANALYSIS

Following the truncation error analysis of Holdych
et al. [34], we analyzed the RW-LB model for multiphase flow
up to the third order. By shifting the time continuum by −δt ,
Eq. (12) can be recast in the following form:

fi(x, t ) =
(

1 − 1

τ

)
fi(x − eiδt , t − δt )

+ 1

τ
f eq
i (x − eiδt , t − δt )

+ δt

(
1 − 1

2τ

)
Ri(x − eiδt , t − δt ). (21)

With the recursive application of such an expression over an
infinite number of time steps, the distribution function fi is
obtained from the equilibrium function f eq

i (x − neiδt , t − nδt )
and source term Ri(x − neiδt , t − nδt ) as follows:

fi = 1

τ

∞∑
n=1

(
1 − 1

τ

)n−1

f eq
i (x − neiδt , t − nδt )

+ δt

(
1 − 1

2τ

) ∞∑
n=1

(
1 − 1

τ

)n−1

Ri(x − neiδt , t − nδt ).

(22)

Using the Taylor series expansion gives

fi = f eq
i + τ

∞∑
m=1

p[τ, m]

m!
(δt Di )

m f eq
i

+ δt
2τ − 1

2
Ri + δt

2τ − 1

2
τ

∞∑
m=1

p[τ, m]

m!
(δt Di )

mRi,

(23)

where Di = ∂t + eiα∂α and p[τ, m] is defined as

p[τ, m] = 1

τ 2

∞∑
n=1

(
1 − 1

τ

)n−1

(−n)m. (24)

For m = 0, 1, 2, 3, we have [35]

p[τ, 0] = 1/τ, p[τ, 1] = −1,

p[τ, 2] = 2τ − 1, p[τ, 3] = −6τ 2 + 6τ − 1. (25)

For convenience of the high-order truncation error analy-
sis, the zeroth and first velocity moments of the distribution
function and source terms are obtained as follows:∑

i

fi = r p

c2
s

− δt

2
ruα∂αρ,

∑
i

f eq
i = r p

c2
s

,
∑

i

Ri = ruα∂αρ, (26a)

∑
i

eiα fi = ρruα − δt

2
rFα,

∑
i

eiα f eq
i = ρruα,

∑
i

eiαRi = rFα. (26b)

High-order moments of equilibrium equation and
source term are expressed as �0

αβ = ∑
i eiαeiβ f eq

i ,
Q0

αβγ = ∑
i eiαeiβeiγ f eq

i , A0
αβγ δ = ∑

i eiαeiβeiγ eiδ f eq
i ,

�αβ = ∑
i eiαeiβRi, and �αβγ = ∑

i eiαeiβeiγ Ri. The zeroth
and first velocity moments of Eq. (23) form the continuity
equation

r

c2
s

∂t p + ∂α (ρruα ) = ruα∂αρ + (τ − 0.5)δt

[
r

c2
s

∂tt p + 2∂tα (ρruα ) + ∂αβ�0
αβ − ∂t (ruα∂αρ) − ∂α (rFα )

]

+
(

−τ 2 + τ − 1

6

)
δ2

t

[
r

c2
s

∂ttt p + 3∂ttα (ρruα ) + 3∂tαβ�0
αβ + ∂αβγ Q0

αβγ

]

+
(

τ − 1

2

)2

δ2
t [∂tt (ruα∂αρ) + 2∂tα (rFα ) + ∂αβ�αβ] + O

(
δ3

t

)
(27)

and momentum equation

∂t (ρruα ) + ∂β�0
βα = rFα + (τ − 0.5)δt

[
∂tt (ρruα ) + 2∂tβ�0

αβ + ∂βγ Q0
βγα − ∂t (rFα ) − ∂β�βα

]
+

(
−τ 2 + τ − 1

6

)
δ2

t

[
∂ttt (ρruα ) + 3∂ttβ�0

βα + 3∂tβγ Q0
βγα + ∂βγ δA0

βγ δα

]

+
(

τ − 1

2

)2

δ2
t [∂tt (rFα ) + 2∂tβ�βα + ∂βγ �βγα] + O

(
δ3

t

)
. (28)
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The momentum equation is then used recursively for the second and third lines in Eq. (28). Retaining the terms up to O(δ2
t ),

we have

∂t (ρruα ) + ∂β�0
βα = rFα + (τ − 0.5)δt∂β

(
∂t�

0
αβ + ∂γ Q0

βγα − �βα

)
+

(
−τ 2 + τ − 1

12

)
δ2

t ∂ttβ�0
βα +

(
−2τ 2 + 2τ − 1

4

)
δ2

t ∂tβγ Q0
βγα

+
(

−τ 2 + τ − 1

6

)
δ2

t ∂βγ δA0
βγ δα +

(
τ − 1

2

)2

δ2
t (∂tβ�βα + ∂βγ �βγα ) + 1

12
δ2

t ∂tt (rF0α ) + O
(
δ3

t

)
. (29)

Recall that Fα = F0α + δt F1α , and thus only F0α is retained
in the last term. In Eq. (29) the first line corresponds to
the recovered macroscopic equation up to the second-order
expansion, where the terms in brackets can be expressed as

∂t�
0
αβ + ∂γ Q0

γαβ − �αβ = rρc2
s (∂αuβ + ∂βuα ). (30)

Similarly, using Eq. (29) and recursive substitution of
Eq. (27), the continuum equation can be simplified as

r

c2
s

∂t p+ ρ∂α (ruα ) = δ2
t

12
[∂tαβ�0

αβ + ∂αβγ Q0
αβγ + ∂tt (ruα∂αρ)

+ 2∂tα (rF0α )] + O
(
δ3

t

)
. (31)

We applied dimensional analysis to identify the leading
error terms of Eq. (29) at the third order. The scales for
length and velocity are L and U , respectively. The normalized
variables are obtained as

r̄ = r/L, ū = u/U, t̄ = tU/L, p̄ = p/ρc2
s , F̄α = FαL/

(
ρc2

s

)
.

(32)

Dropping the bar for simplicity, the nondimensional form of
the recovered equation can be written as

Ma2r(∂t uα + uβ∂βuα )

= −∂α (r p)+ rF0α+ KnMa
[
∂β (r∂βuα+ r∂αuβ )− 2

ur

r
δαr

]
+ Eα, (33)

where the Mach number Ma = U/cs and Knudsen number
Kn = cs(τ − 0.5)δt/L are related to the Reynolds number
Re = LU/ν by Ma = ReKn. Among the third-order terms
included in Eα , the terms ∂ttβ�0

βα , ∂tβγ Q0
βγα , ∂tβ�βα , and

∂tt (rF0α ) are on the order of Kn2Ma2 and can be neglected
by assuming Ma � 1 and Kn < 1. The remaining terms,
∂βγ δA0

βγ δα and ∂βγ �βγα , are on the order of Kn2 and can be

expressed explicitly as

∂βγ δA0
βγ δα = c2

s ∂β[∂γγ (r p)δαβ + ∂αβ (r p) + ∂βα (r p)], (34a)

∂βγ �βγα = c2
s ∂β[∂γ (rF0γ )δαβ + ∂α (rF0β ) + ∂β (rF0α )]

+ O(δt ). (34b)

Using the relationship

−∂α (r p) + rF0α = O(Ma2, KnMa) (35)

gives

Eα = 1
12 Kn2∂β[∂γ (rF0γ )δαβ + ∂α (rF0β ) + ∂β (rF0α )]

+ O(Kn2Ma2, Kn3Ma). (36)

Thus, the final form of the recovered equation involved the
leading error term up to the third order is

rρ(∂t uα + uβ∂βuα ) = −∂α (r p) + rF0α

+ ∂β[rνρ(∂βuα + ∂αuβ )]

− 2ρνur/rδαr + Eα (37)

with the error term given by

Eα = 1
12δ2

t c2
s ∂β[∂γ (rF0γ )δαβ + ∂α (rF0β ) + ∂β (rF0α )]. (38)

These error terms at the third order can also be derived through
high-order Chapmann-Enskog expansion [36]. Generally, Eα

is a high-order small quantity, which can be ignored in the 2D
and 3D cases. However, in the axisymmetric RW-LB model
for the multiphase flow, these error terms show a singularity
near the axis of symmetry, which will produce large spurious
currents. In the next section, we analyze these error terms and
take measures to reduce the spurious currents caused by the
singularity.

IV. MODIFIED RW-LB MODEL TO REMOVE
SINGULARITY

One way to directly remove the error term Eα is to add an
additional source term in the evolution equation. Assuming
that the additional source term takes the form of (1 − 1

2τ
)δt R′

i,
its moments should satisfy the following relationships:

∑
i

R′
i = 0,

∑
i

eiαR′
i = 0,

∑
i

eiαeiβeiγ R′
i = �′

αβγ = 0, (39a)

∑
i

eiαeiβR′
i = � ′

αβ = 1

12(τ − 0.5)
δt c

2
s [∂γ (rF0γ )δαβ + ∂α (rF0β ) + ∂β (rF0α )]. (39b)
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FIG. 1. Schematic diagrams for tests of spurious currents near
(a) flat and (b) spherical interfaces.

Thus, the additional source term can be designed as

(
1 − 1

2τ

)
δt R

′
i = w̄i

12τ
δ2

t

eiαeiβ∂α (rF0β )

c2
s

, (40)

where w̄0 = − 5
9 and w̄0 = w0. Following similar high-order

analysis as Sec. III, we obtain the correct macroscopic equa-
tion without the leading error terms at the third order. Spatial
derivatives in Eq. (40) complicate the algorithm. When we
incorporated Eq. (40) into the LB model, the singularity
of spurious currents cannot be removed. Instead, the region
of spurious currents was increased, which is unsurprising
because the difference schemes introduced additional dis-
cretization errors.

To examine the origins of the singularity in Eq. (38) in
greater detail, the force terms F0α are divided into two parts,
i.e., F0α = F̂0α + pδαr/r, where the first part is independent of
the radius and the second part produces a singularity at the
axis. As well, we have the following relationships:

∂β[∂γ (rF̂0γ )δαβ + ∂α (rF̂0β ) + ∂β (rF̂0α )]

= r(∂αγ F̂0γ + ∂αβ F̂0β + ∂ββ F̂0α )

+ 2∂β (F̂0αδβr + F̂0βδαr + F̂0rδαβ ). (41)

Two types of error term are included in these expressions: one
that is proportional to r and one that is the first derivative of the
force terms. Dividing both sides of Eq. (37) by r, the first type
of error term shows no increasing trend near the axis, whereas
the second type of error term causes a singularity at r = 0. By
neglecting error terms that are proportional to r, Eq. (38) can
be reorganized as

Eα = 1
4δ2

t c2
s ∂β

(
F̂0αδβr + F̂0βδαr + F̂0rδαβ

)
, (42)

where we adopt the relationship −∂α p + F̂0α = 0, which is
valid at the third order. These expressions show that the sin-
gularity depends on grid resolution and smooth force in the
interface region.

FIG. 2. Time history of (a) maximum magnitude of velocity
(Umax) and (b) kinetic energy (E ) obtained by models I and II.

To remove the error terms in Eq. (42), we introduce an
additional source term as(

1 − 1

2τ

)
δt R

′
i = w̄i

4τ
δ2

t

eiαeiβ (F̂0αδβr )

c2
s

. (43)

Compared with Eq. (40), Eq. (43) is simpler and can be
conducted locally. The inclusion of this correction term allows
us to remove the singularity caused by error terms at the third
order. We summarize the modified model as follows:

fi(x + eiδt , t + δt ) − fi(x, t )

= − fi − f eq
i

τ
+ δt

(
1 − 1

2τ

)
Ri + Radd

i , (44)

where the additional source term is

Radd
i = w̄i

4τ
δ2

t

eireiαF̂0α

c2
s

, (45)

where F̂0α = Fsα + Fbα . The equilibrium function f eq
i and

source term Ri are identical to those in the original model, as
shown in Eqs. (14) and (15), respectively. For a static bubble
without external body force, the singularity is produced by
the surface tension force, Fs. As the gravitational force (Fb)
considered, it also produces a singularity due to the nonzero
gradients near the interface.

V. RESULTS AND DISCUSSION

In this section we validate the proposed model based on
tests of static interfaces and a single rising bubble. The orig-
inal RW-LB model and our modified one are referred to as
models I and II, respectively. A comparative study is con-
ducted on their performances of reducing spurious currents.
Here we consider static flat and spherical interfaces in a
cylinder, as shown in Fig. 1. The lateral walls are enforced
by the half-way bounce-back conditions. The top and bottom

FIG. 3. Contours of spurious currents for a flat interface obtained
by (a) model I and (b) model II.
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FIG. 4. Contour for the values of ξu = rNRU in model I.

walls are periodic. In the RW-LB model, the axis boundary
conditions cannot be directly treated at r = 0. Guo et al. [7]
proposed a symmetric scheme by setting the symmetry axis
out the computational domain with an offset 0.5δx. Then the
first lattice line is located at r = 0.5δx and the symmetric
boundary conditions can be adopted for the ghost lattice at
r = −0.5δx:

f ∗
1 (xA, t ) = f ∗

3 (xB, t ), f ∗
5 (xA, t ) = f ∗

6 (xB, t ),

f ∗
8 (xA, t ) = f ∗

7 (xB, t ), (46)

where f ∗
i is the postcollision distribution function. Based on

the same mesh rearrangements, David et al. [35] proposed
a radius-weighted symmetric boundary scheme, in which the
values of f ∗

i on the ghost lines are multiplied by −1:

f ∗
1 (xA, t ) = − f ∗

3 (xB, t ), f ∗
5 (xA, t ) = − f ∗

6 (xB, t ),

f ∗
8 (xA, t ) = − f ∗

7 (xB, t ). (47)

As for the distribution function gi, its equilibrium function is
not in a radius-weighted form, and thus only the symmetric
boundary schemes can be adopted at the axis.

A. Flat interface

In the first test, the computational domain is a cylinder with
radius R = 1 and height Z = 2, as shown in Fig. 1(a). Initially,
a flat interface is located at zc = 1 and corresponding phase

field can be initialized by its equilibrium state:

φ(r, z) = φh + φl

2
+ φh − φl

2
tanh

(
2(zc − z)

W/NR

)
, (48)

where W = 4, φl = 0, and φh = 1. The other parameters
are set as ρh = 1, ρl = 0.001, νh = νl = 0.1, σ = 0.001,
and Mφ = 0.01. For the flat phase interfaces, the mesh size
NR × NZ has no effects on the spurious currents. We adopt
a uniform 128 × 256 mesh here. The symmetric boundary
condition in Eq. (46) is applied for the postcollision distri-
bution function. Figure 2 presents the time history of the
maximum magnitude of velocity Umax and the kinetic en-
ergy E = ∫

2πrρ|u|2 dr dz. At the time t = 1 × 106 in the
lattice unit, Umax is on the order of O(10−5) for model I
and is reduced to O(10−8) in model II. Both Umax and E
remain approximately constant in model I at t � 104, indi-
cating that the singularity plays an important role in present
case and cannot be reduced by increasing the number of
iterations.

The magnitude of the spurious current obtained by model
I is shown in Fig. 3(a). The maximum unphysical veloc-
ity occurs near the intersection of the phase interface and
axis. In model II the spurious current is much smaller and
uniformly distributed in two separate phases, as shown in
Fig. 3(b). According to the macroscopic equation in Eq. (37)
and error terms in Eq. (42), the contribution of the singular-
ity is inversely proportional to the radius. Thus, the product
of velocity and r should be approximately constant along
the radius coordinate in model I. We introduce the variable
ξu(r, z) = rNRU (r, z) and plot its distribution in Fig. 4. As
expected, ξu is uniformly distributed in the r direction and has
a maximum value along the interface, which demonstrates that
the peak of velocity in Fig. 3(a) is actually caused by third-
order error terms. Variations of U and ξu along the radius are
plotted in Fig. 5. Using U = ξu/(rNR) as the fitting function,
we obtain ξu = 1.98 × 10−5 at z = 1 and ξu = 4.22 × 10−5

at z = 1 + 2/NR. Interestingly, the maximum of U is not
located at the interface but is offset by a distance of 2/NR

in the z direction. Discrepancies between the numerical re-
sults and fitted data occur near the axis, indicating that the

FIG. 5. Distribution of U and ξu = rNRU along the radius coordinate at z = 1 and z = 1 + 2/NR. Curves obtained through data fitting are
shown for comparison.
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FIG. 6. The effect of mesh size on the maximum spurious current
Umax.

singularity is partially inhibited by the symmetric boundary
condition.

It is worth mentioning that a spurious current for the flat in-
terface test is rarely reported. Due to the zero curvature, force
balance conditions are often approximately satisfied in most
two-phase models, producing small unphysical velocities. Un-
physical flows of order O(10−2) near the 2D flat interface have
been observed in a finite difference-based LB model [37].
However, as argued by Shan [14], these unphysical flows were
caused by an incorrect velocity definition, not discrete errors
of imbalanced forces, and they were not spurious currents in
the strict sense. To our knowledge, the present study is the first
to report a flat interface producing large spurious currents due
to third-order truncation error terms.

B. Spherical interface

To further compare models I and II, we simulated a spheri-
cal bubble immersed in a cylindrical domain 1 × 2. As shown
in Fig. 1(b), The bubble is centered at (rc, zc) = (0, 1) and its
radius is R0 = 0.5. The order parameters for the bubble and
liquid are denoted by 0 and 1, respectively. As a result, the

phase field can be initialized by its equilibrium state,

φ(r, z) = 1

2
+ 1

2
tanh

(
2

√
(r − rc)2 + (z − zc)2 − R0

W/Nx

)
,

(49)
where the interface width is W = 4. The mobility and den-
sities for each phase are fixed at Mφ = 0.01, ρh = 1, and
ρl = 0.001. We set νh = νl = 0.1 and σ = 10−4 to check the
effects of grid resolution. As shown in Fig. 6, the maximum
of spurious current decreases with NR for both models. As
NR approaches infinity, the circular interface near the axis
becomes flat. However, it still suffers from the singular terms
based on the discussion in the previous subsection. We also
compared the axis boundary conditions for fi using Eqs. (46)
and (47). No obvious discrepancies were observed between
symmetric and RW-symmetric boundary conditions in terms
of reducing the spurious current. In the following studies, we
use 128 × 256 lattices and RW-symmetric boundary condi-
tions unless specified. The phase field distribution along the
axis in the initial and equilibrium states is shown in Fig. 7(a).
As can be seen, both models captured the phase interface cor-
rectly. The total pressure distribution along the axis is plotted
in Fig. 7(b), where the expression for the total pressure P can
be found in Ref. [11]. According to the Laplace law, the pres-
sure difference of two phases should satisfy the relationship
�P = 2σ/R0. The ratios between surface tension calculated
by the LB model and the analytical one, i.e., σLBM/σ , are
0.9872 and 0.9885 for models I and II, respectively. This
good agreement demonstrates that both models can resolve
the pressure field accurately.

Next, we examine the effect of surface tension on the
spurious current. The viscosity is fixed at νh = νl = 0.1, and
the surface tension varies from 10−5 to 10−2. As an example,
the magnitudes of spurious current for the cases σ = 10−5 and
σ = 10−2 are shown in Fig. 8. As seen, the spurious current
is distributed around the phase interface for both models. In
model I, the third-order error term produces the singularity of
velocity in the region near the axis, which is greatly reduced
in model II. For σ = 10−5, periodic fluctuation of the spurious
current occurs outside the circle interface, corresponding to
eightfold symmetry of the vortex, as previously reported in
Ref. [14]. For σ = 10−3, a similar singularity of velocity

FIG. 7. Comparisons of the phase field and pressure profiles along the axis: (a) phase field profile and (b) pressure profile.
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FIG. 8. Magnitude of spurious current distribution by each
model at different surface tension values: (a) model I, σ = 10−5;
(b) model II, σ = 10−5; (c) model I, σ = 10−2; (d) model II, σ =
10−2.

distribution occurs in model I and can be eliminated by our
modified model. Quantitative comparisons of the velocity
magnitude at the axis between models I and II are shown in
Fig. 9. The maximum spurious current, Umax, is smaller in
model II than model I by two orders of magnitude. In model II
the velocity distribution along the axis remains approximately
constant, demonstrating elimination of the singularity. The
maximum magnitudes of the spurious current for different
surface tension values are shown in Fig. 10. Since the max-
imum values of velocity in model I are located at the axis,
we also present the results of model II at r = 0 for better
comparison. It can be seen that the maximum magnitudes
of the spurious current in model II are always smaller than
those in model I among different surface tension values. At
the axis, the maximal values of velocity are reduced by our
modified model by two orders of magnitude compared with
the original RW-LB model. We also note that Umax is lin-

FIG. 10. Relationship between the maximum magnitude of the
spurious current and surface tension for models I and II.

early related to σ in both models, which can be explained
through the theoretical analysis below. For convenience, we
reproduce the recovered macroscopic equation in Eq. (37) as
follows:

rρ(∂t uα + uβ∂βuα ) = −∂α (r p) + rF0α

+ ∂β[rνρ(∂βuα + ∂αuβ )]

− 2ρνur/rδαr + Eα.

The left-hand side of the macroscopic equation is on the order
of Ma2, which is neglected in the static bubble test. Eα can be
considered as the discrete error of −∂α (r p) + rF0α = 0. As a
result, the spurious currents are produced by Eα and governed
by the simplified relation

∂β[rνρ(∂βuα + ∂αuβ )] − 2ρνur/rδαr + Eα = 0. (50)

The definition of chemical potential μφ in Eq. (3) indicates
that the surface tension force Fs is linear to σ . Based on
expressions for Eα in Eq. (38) or Eq. (42), we derive the linear
relationship between the spurious current and surface tension.

FIG. 9. Magnitude of the spurious current along the axis at surface tension values of (a) σ = 10−5 and (b) σ = 10−2.
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FIG. 11. Magnitude of the spurious current distribution at differ-
ent viscosity values: (a) model I, νh = 0.01; (b) model II, νh = 0.01;
(c) model I, νh = 0.12; (d) model II, νh = 0.12.

To examine the effect of viscosity, we fix σ at 10−3 and
adjust νh from 0.01 to 0.12. Contours of the magnitude of
spurious current distribution at νh = 0.01 and νh = 0.12 are
shown in Fig. 11. In both cases model II reduces the large
spurious current near the intersection of the axis and phase
interface. At νh = 0.01, a larger magnitude and wider distri-
bution of the spurious current are observed. The magnitudes of
the spurious current at singularities have a comparable value
with that far from the axis, indicating that the viscosity ratio
plays an equivalent important role in spurious current forma-
tion. We compare the magnitude of the spurious current along
the axis obtained by models I and II in Fig. 12. At νh = 0.01,
the maximum spurious current in model II is about one third
that for model I. Although the third-order terms producing the
singularity have been removed, large spurious currents remain
near intersections of the phase field and axis. At νh = 0.12, the
magnitude of the spurious current at the axis is reduced by two
orders of magnitude in model II. The maximum magnitude of
the spurious current with different viscosity are summarized

FIG. 13. Relationship between the maximum magnitude of the
spurious current and viscosity for models I and II.

in Fig. 13. Again the maximum magnitudes of velocity at the
axis in model I are also plotted for comparison. The Umax

values in our modified model are consistently lower than
those for model I, and the gap widens as νh increases. At
0.04 � νh � 0.12, the effect of νh on the spurious current is
very small. At νh < 0.4, the values of Umax increases rapidly
as νh decreases, indicating balance force conditions are hard
to achieve at small kinematic viscosity ratios.

C. Rising bubble

To check the validity of our model in capturing realistic
phase interfaces, we conduct a single rising bubble simulation
and compare with corresponding experimental and numerical
results [38–40]. The buoyancy-driven bubble is one of the
most common gas-liquid flow phenomena. A fundamental
understanding of the bubble dynamics is essential for many
industrial applications such as gas-liquid column reactors [41]
and microfludic devices [42]. Extensive experimental and
numerical studies have been performed to investigate the mo-
tion and deformation of a rising bubble in a viscous liquid.

FIG. 12. Magnitude of the spurious current along the axis for viscosity values of (a) νh = 0.01 and (b) νh = 0.12.
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TABLE I. Dimensionless numbers and parameter settings for
different cases.

Case Mo Bo g σ Shape regime

A 711 17.7 1 × 10−6 2.31 × 10−4 Spherical
B 8.2 × 10−4 32.2 4 × 10−6 5.08 × 10−4 Ellipsoidal
C 266 243 4 × 10−6 6.74 × 10−5 Dimpled

ellipsoidal cap
D 4.63 × 10−3 115 8 × 10−6 2.85 × 10−4 Spherical cap

Theoretically, the bubble dynamics are governed by four in-
dependent dimensionless parameters: the density ratio λρ =
ρh/ρl , viscosity ratio λμ = μh/μl , Bond number,

Bo = ρhgd2
0

σ
, (51)

and Morton number,

Mo = gμ4
h

ρhσ 3
, (52)

where d0 is the bubble diameter, g is the magnitude of grav-
itational acceleration, and μh/l is the viscosity for the liquid
or bubble phase. In addition, the Reynolds number (Re) are
commonly used to describe the steady motion,

Re = ρhUt d0

μh
, (53)

where Ut is the terminal velocity of the bubble.
In our LB simulation, the ratios of density and viscosity

are fixed at λρ = 1000 and λμ = 100, which correspond to
the parameters in a air-water system. Initially, a spherical gas
bubble is placed on the axis at 4d0 above the bottom of a
cylindrical cavity. The size of the computational domain is
set as 4d0 × 16d0 so that effects of the lateral and top walls
can be neglected. The buoyancy force in the vertical direc-

FIG. 14. Temporal evolution of the bubble interfaces with a time
interval of �t̄ = 2. Contours from left to right correspond to (a) case
A, (b) case B, (c) case C, and (d) case D, respectively.

tion is given by Fbz = (ρh − ρ)g. The dimensionless time is
defined by t̄ = t

√
g/d0. We set d0 = 64 in lattice units and

thus have a uniform grid of resolution 256 × 1024, which is
fine enough to obtain grid-independent results. The mobil-
ity parameter and interface width are Mφ = 0.1 and W = 4,
respectively. Both liquid and bubble phases are assumed qui-
escent at t∗ = 0. The phase field and density are initialized
according to Eqs. (2) and (11). Axial symmetric boundary
conditions are used at r = 0, while half-way bounce-back
boundary conditions are adopted for other sides. Four cases
with different values of Bo and Mo are tested. Detailed lattice
parameter settings are given in Table I, and corresponding
physical parameters can be found in Ref. [40]. We set ρh = 1
and ρl = 0.001 in the present studies. Once the value of g is

TABLE II. Terminal bubble shapes and Reynolds number compared with experimental tests [38]
and numerical results in literature [39,40].
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FIG. 15. Temporal evolution of the bubble rising parameters for different cases: (a) case A, (b) case B, (c) case C, and (d) case D. Curves
from left to right represent the variation with time of the bubble diameter, center of mass, and rise velocity, respectively.

specified, other unknown parameters can be determined based
on Eqs. (51) and (52).

Figure 14 presents the temporal evolution of bubble shapes
at a time interval of �t̄ = 2. At t̄ = 10, all cases reach their
steady states. The bubble for case A moves slowly and almost
maintains its initial spherical shape during the rising process.
As Bo increases, the role of surface tension becomes weak,
and the bubble tends to undergo large deformation. In cases
B, C, and D, the terminal bubble shapes are ellipsoidal, dim-
pled ellipsoidal cap, and spherical cap, respectively. Following
Ref. [40], we plot the bubble diameter, center of mass, and ris-
ing velocity as a function of time for different cases in Fig. 15.
Compared with the 3D level-set method (LSM) [40], good

agreements are achieved by our axisymmetric LB method.
Some slight differences between them may originate from dif-
ferent mesh sizes and different interface-capturing approaches
adopted. In Table II we compare the terminal bubble shapes
and Reynolds numbers with experiments reported by Bhaga
and Weber [38], and numerical predictions using the axisym-
metric front-tracking method (FTM) [40] and 3D level-set
method. The bubble shapes obtained by our modified model
are consistent with those experimental and numerical re-
sults. Quantitative comparison of the Reynolds numbers also
shows quite good agreements. The slight discrepancy between
the experiments and numerical simulation can be attributed
to the experimental uncertainties and numerical errors. The
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experimental uncertainties include measurement errors, initial
shape perturbations, and effects of surfactants. The numerical
errors mainly come from the 3D effects, the discretization
errors, and the assumption of spherical shape and stagnant
flow for the initial conditions. Even so, it can be demonstrated
from Table II that the present axisymmetric lattice Boltzmann
model can properly capture single bubble dynamics in a viscus
fluid.

VI. CONCLUSION

In this study severe spurious currents near the axis in the
RW-LB model were shown to be caused by singularity of
the error terms through high-order Taylor series expansion.
Dimensionless analysis was used to obtain the leading error
terms at the third order. We carefully designed an appropriate
source term to develop a modified model that eliminates the
singularity of the RW-LB model. This additional source term
is very simple and can be implemented locally. The modified
model was validated for flat and spherical interfaces; the re-
sults showed that the modified model reduced the spurious
currents near the axis by two orders of magnitude compared
with the original RW-LB model for most cases. These spuri-
ous currents in our modified model may be further decreased
using multiple-relaxation-time (MRT) collision operators [43]
or high-order differential schemes for derivatives of the order
parameter [11]; however, these additional modifications are
beyond the scope of this study. Although the correction term
implemented in our modified model is designed for the phase-
field-based RW-LB model, it can be directly extended to other
types of RW-LB models, e.g., a free-energy-based model, for
multiphase or multicomponent flows.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF
AXISYMMETRIC LB MODEL FOR THE ALLEN-CAHN

EQUATION

Second-order Taylor series expansion of the evolution
equation, Eq. (5), yields

Dihi + δt

2
D2

i hi = −hi − heq
i

τmδt
+

(
1 − 1

2τm

)
Hi. (A1)

Through the Chapman-Enskog expansion, the following mul-
tiscale expansions are introduced:

∂t = ε∂t1 + ε2∂t2, ∂α = ε∂1α,

hi = h(0)
i + εh(1)

i + ε2h(2)
i + · · · , Hi = εH (1)

i . (A2)

Substituting these expansions into Eq. (A1), the evolution
equation can be reorganized in consecutive orders of ε as

ε0: h(0)
i = heq

i , (A3a)

ε1: D1ih
(0)
i = − h(1)

i

τmδt
+

(
1− 1

2τm

)
H (1)

i ,

(A3b)

ε2: ∂t2h(0)
i + D1ih

(1)
i + δt

2
D2

1ih
(0)
i = − 1

τmδt
h(2)

i , (A3c)

FIG. 16. Phase interfaces obtained at (a) t = T/8, (b) t = T/4, (c) t = 3T/8, (d) t = T/2, (e) t = 5T/8, (f) t = 3T/4, (g) t = 7T/8, and
(h) t = 0 (red line) and t = T (black line).
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whereD1i = ∂t1 + eiα∂1α . Substituting Eq. (A3b) in Eq. (A3c)
gives

ε2: ∂t2h(0)
i + D1i

[(
1 − 1

2τm

)(
h(1)

i + 0.5δt H
(1)
i

)]

= − 1

τmδt
h(2)

i . (A4)

The moments of the equilibrium distribution function and
source term are expressed as

∑
i heq

i = φ,
∑

i eiαheq
i =

φuα ,
∑

i eiαeiβheq
i = c2

s φδαβ + φuαuβ ,
∑

i H (1)
i = −φur/r,

and
∑

i eiαH (1)
i = c2

s θnα . From Eq. (10) and Eq. (A3a), we
can derive

∑
i h0

i = φ,
∑

h(1)
i = 0.5δtφur/r and

∑
h(2)

i = 0.
Taking summation of Eq.(A3b) and Eq.(A4) over i, we obtain
the following equation:

∂t1φ + ∂1α (φuα ) = −φur/r, (A5a)

∂t2φ + ∂1αP(1)
α = 0, (A5b)

where P(1)
α is calculated by

P(1)
α = (τm − 0.5)δt

∑
i

eiα
(
H (1)

i − D1ih
(0)
i

)
= (τm − 0.5)δt

[
c2

s θnα− ∂t1(φuα )− c2
s ∂αφ− ∂β (φuβuα )

]
.

(A6)

Combining Eq. (A5a) and Eq. (A5b), the macroscopic equa-
tion can be recovered as

∂tφ + ∂α (φuα ) + φur

r
= ∂α[Mφ (∂αφ − θnα )] + Eφ, (A7)

where the error terms Eφ = Mφ

c2
s

[∂tα (φuα ) + ∂αβ (φuαuβ )] are

on the order of O(Ma2) and are therefore negligible in the
present studies. At large Mach number, the error terms can
be eliminated by adding a correction term [12], modify-

ing the collision process [44], or adopting a modified MRT
scheme [21,45].

APPENDIX B: BENCHMARK TEST FOR THE
ALLEN-CAHN EQUATION

To evaluate the performance of our LB model for the
Allen-Cahn equation in capturing the complex interface, we
design a benchmark test analogous to the 2D drop test in
shear flow [46]. The cylindrical computational domain is set
as NR = NZ = 512. A 2D axisymmetric circular bubble with
radius 100 is located at (256, 256). The rotational velocity
field is given by the stream function equation, as follows:

ψ = U0

nπ
[r2 sin(nπr) cos(nπz)] cos

πt

T
. (B1)

Thus, the velocity can be obtained from u = 1
r

∂ψ

∂z , v = − 1
r

∂ψ

∂r ,[
u
v

]
= −U0

[
r sin (nπr) × sin (nπz)[ 2 sin(nπr)

nπ
+ r cos (nπr)

] × cos (nπz)

]
cos

πt

T
,

(B2)
where the period time is T = 1.25NR/U0. Other parameters
are set as n = 4, U0 = 0.01, W = 4, and Mφ = 0.005. The
left and right boundaries are enforced by symmetric boundary
conditions. The vertical boundaries are periodic. The phase
interface evolution during one period is shown in Fig. 16,
where the computational domain length is scaled by NR. The
circle is stretched and spiraled during the first half period and
reaches the maximum deformation at t = T/2. Subsequently,
the phase interface moves in the opposite direction and returns
to its initial state at time T . Unlike the behavior of a 2D drop
in shear flow (Fig. 9 in Ref. [46]), the symmetry of the phase
interface is broken for the axisymmetric case. In Fig. 16(h)
the final phase interface profile is in a good agreement with
its initial state (denoted by red line). The relative error of the
phase field is 6.91 × 10−4, and the relative volume change for
the bubble is −2.05 × 10−5. We conclude that our modified
model for an axisymmetric Allen-Cahn equation is able to not
only obtain a stable and accurate interface but also guarantee
the mass conservation.
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