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Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order
WENO-based finite-difference lattice Boltzmann method
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A discrete-velocity Boltzmann equation (DVBE) with Bhatnagar-Gross-Krook (BGK) approximation is
discretized in time and space using a third-order Runge-Kutta (RK3) and fifth-order weighted essentially
nonoscillatory (WENO) finite-difference scheme to simulate benchmark inviscid compressible flows. The
implementation of the WENO ensures that solutions behave with minimal or no oscillations, narrowing the gap
between the exact and the numerical results. Discrete-velocity sets given by Kataoka and Tsutahara [Phys. Rev. E
69, 056702 (2004)] are used. The additional dissipation terms as well as artificial viscosity are incorporated in the
formulation to solve the compressible flows at high Mach number. Further, the flows which are subjected initially
to a high density ratio are effectively simulated. In this article, one-dimensional benchmarks are simulated at
initial Mach number up to 30 and density ratio up to 1000, whereas, the benchmarks in two dimensions are
simulated with a Mach number up to 10. The algorithm is assessed by simulating numerous benchmarks, namely,
(i) one-dimensional Riemann problem for various shock waves combinations [namely (a) shock-shock waves in
the case of different Mach numbers, (b) rarefaction-shock waves for various density ratios, (c) sudden contact
shock discontinuity, and (d) shock-rarefaction waves for density ratio 5], (ii) isentropic vortex convection test,
(iii) regular shock reflection (RR) for Mach numbers 2.9 and 10, (iv) double Mach reflection (DMR) for inflow
Mach numbers as 6 and 10, and (v) forward-facing step for inflow Mach numbers 2 to 5. Further, the effect of
change in Mach numbers and wedge angles on the flow structures in the case of DMR are detailed. In the case
of a forward-facing step, the variations of flow structure (e.g., the Mach stem height, triple points location, and
shock standoff distance) are detailed with respect to Mach number, step height, and specific-heat ratios. Finally,
the numerical stability of the proposed formulation is carried out to assess the behavior of the free parameters.
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I. INTRODUCTION

The lattice Boltzmann equation (LBE) method has matured
in the past three decades and is now one of the popular tools
for solving various fluid flow problems. In the LBE method,
the particle distributions are evolved on a regular lattice struc-
ture. The discrete-velocity Boltzmann equation (DVBE) is
solved with a chosen velocity set at a discrete-spatial node
satisfying the conservation laws, Galilean invariance, etc.
In LBE, due to the coupled velocity and spatial discretiza-
tion, the streaming process is straightforward with only a
near-neighbor shift and hence exhibits high parallel comput-
ing efficiency. The lattice Boltzmann equation is subjected
to the Chapman-Enskog expansion analysis to recover the
macroscopic equations [1–3]. The LBE method is used for
simulation of a variety of fluid flow problems such as in-
compressible flows, multiphase flows, high-Knudsen-number
flows, flow through porous medium and microchannels, tur-
bulent flows, and many more.

The coupled space-velocity discretization limits the ap-
plication of LBE method on the uniform square and cubic
Cartesian meshes. However, recent developments allow use
of rectangular meshes [4–6]. The coupling restricts the choice
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of discrete velocities, as “off-lattice” velocity sets need in-
terpolation or extrapolation while streaming the distribution
functions. However, in the case of compressible flows, mi-
croflows, and multicomponent flows, it is desirable to use
general discrete velocities that may not be suited to lattice
structures [7]. Few efforts have been made to broaden the
applications of a standard LBE method to nonregular (i.e.,
nonuniform, unstructured) meshes, and several so-called the
off-lattice Boltzmann (OLB) methods have been developed
using various schemes such as finite difference [8,9], fi-
nite volume [10,11], and finite element [12–14]. These OLB
methods vary from each other in the temporal and spatial
discretizations, for example, OLB methods are constructed,
by using a time-splitting strategy in solving the DVBE [14,15]
where it is decomposed into a collision subequation and
followed by a pure advection subequation. The collision is
entirely local and discretized directly which is similar to the
traditional LBE whereas the advection of the distribution is
handled using various schemes, e.g., flux balance.

In the case of high-Mach-number (Ma) simulation, the
compressibility effects are more pronounced [16]. Such high-
speed flows are employed to understand the flow over aircraft,
aerodynamics, flow through jet engines, gas pipelines, rocket
motors, re-entry flows, and many others. A robust high-Mach-
number LB solver may be employed for such problems. LBE
method has been successful in simulating the incompressible
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flows and weakly compressible flows, but it has encountered
difficulties while simulating high-Mach-number compressible
fluid flow problems. This error is attributed to the low-Mach-
number assumption in the truncated Taylor series expansion
while deriving the equilibrium distribution function in the
traditional LBE method and the restrictions on the lattice
velocity sets. Various attempts to simulate compressible fluid
flows are summarized as follows: Alexander et al. [17] pro-
posed a model which allowed selecting speed of sound by
carefully selecting parameters from the equilibrium distribu-
tion function. They suggested lowering the speed of sound to
increase the Mach number; however, the model only works for
nearly isothermal compressible systems. Qian [18] derived a
nonlinear deviation term using Chapman-Enskog expansion
and numerically simulated one-dimensional shock-tube prob-
lem. Sun [19] proposed an adaptive model where the particle
microscopic velocity was accounted by using local fluid ve-
locity and internal energy. The model was able to simulate the
flow up to 2.9 Mach. The same model was extended further
which was able to simulate problems up to Mach 10 [20].
Yu and Zhao [21] proposed an alternative to the model given
by Alexander et al. [17] by introducing an attractive forcing
term. This addition helped in an effective softening of the
sound speed hence enabling the model to simulate high Mach
numbers. The model was able to reproduce the flow up to
5.09 Mach.

Further, Kataoka and Tsutahara [22] in 2004 proposed
finite-difference lattice Boltzmann (FD-LB) scheme for com-
pressible Euler flows. The scheme overcomes the earlier
limitation on the restriction of the specific heat ratio. Fur-
thermore, the scheme uses the D2Q9 model instead of the
D2Q17 model [23], which helps to reduce the computational
time. However, numerical instabilities are seen for flows with
Mach numbers more than unity. The stability issue associated
with the LBE method at a high Mach number is addressed
profusely in the literature. Many efforts have been made to
eliminate or at least reduce the instabilities from the compress-
ible flows LB models to widen the applicability [24]. Popular
techniques to improve numerical stability include the flux
limiter method [8], multiple-relaxation time for compressible
flows [25], and addition of dispersion and artificial viscosity
[26,27]. Over the years, Kataoka and others have proposed
different compressible LB models as well [28–30]. Watari
[31] proposed FD-LB models for the viscous and inviscid
flows in two dimensions (2D) and three dimensions (3D),
respectively. In his work, the 3D Euler model consisted of 12
microscopic velocities, which was an improvement compared
to the D3Q15 model of Kataoka and Tsutahara [22]. Yan et al.
[32] proposed a three-speed and energy level D2Q25 model
and were able to simulate the flow up to 4.0 Mach. Next, Gan
et al. [27] proposed an improved model based on the thermal
model by Watari and Tsutahara [33], which eliminated the
constraint of selecting equal relaxation time and time step.
Attempts have been made to couple the double-distribution
function (DDF) approach with the multispeed models to sim-
ulate the compressible fluid flows [34–36]. Recently, several
other methods such as density- and pressure-based regular-
ized LBM (referred to as HRR-ρ and HRR-p, respectively)
[37,38], hybrid lattice Boltzmann method (HLBM) [39–41],
and semi-Lagrangian lattice Boltzmann method (SLLBM)

[42–45] have been proposed to simulate compressible
flows.

The presence of shock and contact discontinuities in high-
speed compressible flows necessitates design of numerical
schemes which can capture these features while avoiding
spurious oscillations. The commonly used CFD methods to
generate nonoscillatory solutions are ENO and WENO [46].
The WENO scheme concept was originally utilized by Liu
et al. [47] and enhanced further by Jiang and Shu [48], and
uses weighted stencils for the ENO scheme. Unlike ENO,
WENO scheme considers all the possible stencils instead of
picking only the smooth one. Hence, it has improved the
accuracy and resolution [49]. Further, various other aspects
of WENO scheme such as FV and FD implementations, time
integration, and order of convergence are discussed in detail
by Shu [50]. The WENO-based study on different lattice
Boltzmann flux solvers (LBFS) has been carried out in the
past. In the LBFS, the local solution of 1D- and 2D-LB model
is used to construct the flux solver at the cell interface. The
LBFS can provide good positivity property for simulation
of flows with shock waves and can be well applied to sim-
ulate both compressible and incompressible flows. Further,
it gives greater flexibility in the case of nonuniform meshes
and complex geometries. Also, the memory storage for the
simulation result decreased substantially and the boundary
conditions can be implemented easily. The performance and
systematic investigation pertaining to its accuracy, stability,
and efficiency needs to be carried out [51]. Finite-difference
WENO (FD-WENO) [48,52–54] and finite-volume WENO
(FV-WENO) [55,56] are implemented by incorporating the
Runge-Kutta (RK) scheme for time discretization and fifth-
order compact FD scheme for space discretization have been
considered in the literature. Shu has suggested [49] use of
FD-WENO scheme in practice, due to the high accuracy,
high resolution, and minimal set of calculations. In this work,
third-order RK in time and fifth-order WENO scheme in space
are implemented to minimize the numerical oscillations and
to achieve high order accuracy for FD-LB algorithm pro-
posed by Kataoka and Tsutahara [22] with additional terms
as suggested by Pan et al. [26]. This coupling is done to
ensure that the resulting scheme is TVD. The proposed RK3
+ WENO finite-difference approach to solve DVBE instead
of the traditional collision-streaming methodology may add
computational overheads leading to deterioration in the com-
pute performance.

The classical 1D Riemann problem is crucial to bench-
mark as it exhibits abrupt changes in the properties across
the two adjacent domains [57]. Hence, RK3 + WENO-based
FD-LB algorithm is first assessed for three 1D benchmark
problems, namely, 1D Riemann problem, shock-tube prob-
lem, and contact discontinuity. Further, the shock reflection
and associated flow structures due to the presence of wedge in
the flow form an interesting benchmark for the oblique shock
solution [58,59]. The 2D double Mach reflection (DMR) and
the supersonic inviscid flow over forward-facing step are ex-
tensively used for assessing numerical schemes [60–62]. In
this article, the applicability of the algorithm is demonstrated
by simulating these 2D problems. Further, the effect of Mach
number and wedge angle is studied in case of 2D-DMR. The
variations in the flow structures are obtained by varying the
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inlet Mach number, step height, and specific heat ratio for the
flow over the forward-facing step.

The rest of the paper is organized as follows. Section II
presents the FD-LB methodology with RK3 and fifth-order
WENO for one- and two-dimensional computational domains.
Section III presents numerical simulations for assessing the
RK3 + WENO-based FD-LB method. The algorithm is
assessed by simulating numerous benchmarks, namely, (i)
1D Riemann problem for various combinations of wave
[(a) shock-shock waves for different Mach numbers, (b)
rarefaction-shock waves for different density ratios, (c) sud-
den contact shock discontinuity, and (d) shock-rarefaction
waves], (ii) isentropic vortex convection test, (iii) regular
shock reflection (RR) for Mach numbers 2.9 and 10, (iv) DMR
for inflow Mach numbers as 6 and 10, and (v) forward-facing
step for inflow Mach numbers 2 to 5, step height, and specific
heat ratio variation. Finally, Sec. IV draws conclusions and
perspectives on the work.

II. MATHEMATICAL FORMULATION

The lattice Boltzmann equation can be derived from the full
Boltzmann equation [63,64]. The Boltzmann equation with
the Bhatnagar-Gross-Krook (BGK) approximation is written
as [1]

∂ fi

∂t
+ ciβ

∂ fi

∂xβ

= 1

τ

(
f eq
i − fi

)
, (1)

with the initial conditions

fi = f eq
i (ρ0, u0

β, T 0), (2)

where f eq
i is the discrete local equilibrium distribution func-

tion, superscript 0 reprsesnts the initial physical values, and
ciβ is the discrete particle velocity, i = 0, 1, 2, ..., N − 1,
where N is the total number of discrete velocity components,
τ is the BGK relaxation time, and β and γ represent spatial
coordinates. Further, ηi is introduced to govern the specific
heat ratio. The above equation is a typical workhorse of the
LBE method and approximates the Navier-Stokes equations in
the CFD with continuum approximation in certain situations
such as when higher order contributions O(Kn2) and O(Ma4)
tends to zero [65]. The nondimensional variables and equa-
tions, which are convenient for the numerical analysis and
calculation, are listed below. Let L, ρ0, and T0 represent the
reference length, density, and temperature, respectively, and
the nondimensional variables are defined in Ref. [22] as t̂ =

t
L/

√
RT0

, x̂β = xβ

L , ĉiβ = ciβ√
RT0

, η̂i = ηi√
RT0

, f̂i = f
ρ0

, f̂ eq
i = f eq

i
ρ0

,

ρ̂ = ρ

ρ0
, ûβ = uβ√

RT0
, T̂ = T

T0
, and p̂ = p

ρ0RT0
. The nondimen-

sional flow variables which are derived in the LBE method
using the moments of the discrete distribution functions are
defined as

ρ̂ =
N−1∑
i=0

f̂i, (3)

ρ̂ûβ =
N−1∑
i=0

f̂i ĉiβ, (4)

ρ̂(bT̂ + û2
β ) =

N−1∑
i=0

f̂i
(
ĉ2

iβ + η̂2
i

)
. (5)

0 v1 2vv v2 1- -

FIG. 1. D1Q5 lattice model.

Hence, the kinetic Eq. (1) in the nondimensional form is

∂ f̂i

∂ t̂
+ ĉiβ

∂ f̂i

∂ x̂β

= 1

ε

(
f̂ eq
i − f̂i

)
, (6)

where ε is the Knudsen number defined by

ε = τ
√

RT0

L
. (7)

Here, f̂ eq
i satisfies the following constraints,

ρ̂ =
N−1∑
i=0

f̂ eq
i , (8)

ρ̂ûβ =
N−1∑
i=0

f̂ eq
i ĉiβ, (9)

p̂δβγ + ρ̂ûβ ûγ =
N−1∑
i=0

f̂ eq
i ĉiβ ĉiγ , (10)

ρ̂(bT̂ + û2
β ) =

N−1∑
i=0

f̂ eq
i

(
ĉ2

iβ + η̂2
i

)
, (11)

ρ̂
[
(b + 2)T̂ + û2

γ

]
ûβ =

N−1∑
i=0

f̂ eq
i

(
ĉ2

iγ + η̂2
i

)
ĉiβ. (12)

The pressure-field p̂ is computed from the ρ̂ and T̂ using
the nondimensional equation of state ( p̂ = ρ̂T̂ ). The com-
mon terminologies used in LBE method for referring the
dimension of the problem (m) and the number of streaming
directions (n) are represented as DmQn. It is worth noting
that the macroscopic behavior of the Euler equations cannot
be fully recovered by Eqs. (8)–(12) as these equilibrium mo-
ments relate only to convective fluxes but not diffusive fluxes
[22]. The models used for solving one- and two-dimensional
compressible flow problems following Ref. [22] are discussed
subsequently.

1. One-dimensional lattice structure (m = 1, n = 5)
The D1Q5 lattice structure (as shown in Fig. 1) discrete

velocities are given as

ĉi1 =
⎧⎨
⎩

(0) i = 0;
v1 cos (i + 1)π i = 1, 2;
v2 cos (i + 1)π i = 3, 4.

(13)

The η̂i in Eq. (12) for each discrete velocity component is
given as

η̂i =
{
η0 i = 0;
0 i = 1, 2, 3, 4.

(14)

In Eqs. (13) and (14), v1, v2( �= v1) and η0 are given nonzero
constants. v1 is generally taken as inlet Mach number, v2

is two times v1, and η0 is average of v1 and v2, as per
numerical problem setup. Further, the Courant-Friedrichs-
Lewy (CFL) number can be calculated using �t and �x as
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CFL = v2�t/�x. The local equilibrium distribution function in the nondimensional form given in Eq. (6) is obtained as [22]

f̂ eq
i = ρ̂(Ai + Biû1ĉi1), (15)

where

Ai =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b−1
η2

0
T̂ i = 0;
1

2(v2
1−v2

2 )

[
−v2

2 +
(

(b − 1) v2
2

η2
0
+ 1

)
T̂ + û2

1

]
i = 1, 2;

1
2(v2

2−v1
1 )

[
−v2

1 +
(

(b − 1) v2
1

η2
0
+ 1

)
T̂ + û2

1

]
i = 3, 4.

(16)

Bi =

⎧⎪⎨
⎪⎩

−v2
2+(b+2)T̂ +û2

1

2v2
1

(
v2

1−v2
2

) i = 1, 2;

−v2
1+(b+2)T̂ +û2

1

2v2
2

(
v2

2−v2
1

) i = 3, 4.
(17)

Here, b = 2
(γ−1) is a given constant, where γ is the specific heat ratio and ĉi1, η̂i, f̂ eq

i given above satisfies the constraints given
by Eqs. (8)–(12).

2. Two-dimensional model (m = 2, n = 9)
The D2Q9 lattice structure (as shown in Fig. 2) discrete velocities are given as

(ĉi1, ĉi2) =

⎧⎪⎨
⎪⎩

(0, 0) i = 0;

v1
[
cos (i+1)π

2 , sin (i+1)π
2

]
i = 1, 2, 3, 4;

v2
[
cos π

( (i+1)
2 + 1

4

)
, sin π

( (i+1)
2 + 1

4

)]
i = 5, 6, 7, 8;

(18)

and

η̂i =
{
η0 i = 0;
0 i = 1, 2, 3, . . . , 8.

(19)

In Eqs. (18) and (19), v1, v2( �= v1), and η0 are given nonzero constants as described subsequently:

f eq
i = ρ̂(Ai + Biûβ ĉiβ + Diûβ ĉiβ ûγ ĉiγ ), (20)

where

Ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(b−2)

η2
0

)
T i = 0;

1

4
(
v2

1−v2
2

)[
−v2

2 +
(

(b − 2) v2
2

η2
0
+ 2

)
T + v2

2

v2
1
u2

β

]
i = 1, 2, 3, 4;

1

4
(
v2

2−v2
1

)[
−v2

1 +
(

(b − 2) v2
1

η2
0
+ 2

)
T + v2

1

v2
2
u2

β

]
i = 5, 6, 7, 8;

(21)

Bi =
⎧⎨
⎩

−v2
2+(b+2)T +u2

γ

2v2
1 (v2

1−v2
2 ) i = 1, 2, 3, 4;

−v2
1+(b+2)T +u2

γ

2v2
1 (v2

2−v2
1 ) i = 5, 6, 7, 8;

(22)

Di =
{

1
2v4

1
i = 1, 2, 3, 4;

1
2v4

2
i = 5, 6, 7, 8;

(23)

where ĉiβ , η̂i, and f̂ eq
i given above satisfy the constraints given

by Eqs. (8)–(12). From this point onward, the nondimensional
notation (·̂) is dropped with assumption of the nondimen-
sionality of the equations and boundary conditions. As stated
earlier, the salient highlights of finding regarding the values
of v1, v2, and η0 from different problems imply chosing the
value of v1 to be equal to inlet Mach number. Further, in the
case of the rarefaction shock wave problem, the inflow Mach
number is zero; however, for the consideration of high-density
ratio, a small value of v1 is considered. It should be noted
that the claim of v1 equal to inlet Mach number is empirical,
which if represented mathematically, would become equal to√

γ T Ma.

A. Space discretization using WENO scheme

A conservative finite-difference spatial discretization for
partial derivatives [employed in Eq. (6)] may be obtained [46],
e.g., for ∂ fi

∂x as

∂ fi

∂x

∣∣∣∣
p,q

= 1

�x

(
fi

∣∣
p+ 1

2 ,q − fi

∣∣
p− 1

2 ,q

)
, (24)

where fi|p+ 1
2 ,q is the distribution function calculated at (p +

1
2 , q), which is a function of several neighboring values of
the distribution function f (xβ, t ). Since the value of fi|p+ 1

2 ,q

depends upon the stencil, which needs to be chosen depending
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2 v
v

v

1

2

FIG. 2. D2Q9 lattice model.

on ci1 � 0 or ci1 < 0, two stencils are possible. For achiev-
ing fifth-order accuracy in the smooth regions, three stencils
containing three grid points in each stencil are considered as
shown in Fig. 3.

The stencil shown in Fig. 3(a) represents the stencil for
ci1 � 0, where it is left-biased because of the greater number
of points on the left side of fi|p+ 1

2 ,q. On the other hand, the
stencil shown in Fig. 3(b) is right-biased and it is used for
ci1 < 0. f +

i |p+ 1
2 ,q is utilized for approximating the distribu-

tion function biased to the left, whereas f −
i |p+ 1

2 ,q is utilized
for approximating the distribution function biased to the right.
fi|p+ 1

2 ,q, is calculated as given in Eq. (25),

fi

∣∣
p+ 1

2 ,q = f +
i

∣∣
p+ 1

2 ,q + f −
i

∣∣
p+ 1

2 ,q. (25)

Calculation of fi|p+ 1
2 ,q

a. Case I. As stated earlier, when the ci1 � 0, the stencil
biased to the left is considered. The weights corresponding
to each stencil are given by wk , where k = 1, 2, 3 represents
stencils comprising lattice nodes:

f +
i

∣∣
p+ 1

2 ,q =
3∑

k=1

wk f k
i

∣∣
p+ 1

2 ,q. (26)

Now, each individual stencil contribution can be written as

f 1
i

∣∣
p+ 1

2 ,q
= 1

3 fi

∣∣
p−2,q − 7

6 fi

∣∣
p−1,q + 11

6 fi

∣∣
p,q, (27)

f 2
i

∣∣
p+ 1

2 ,q
= − 1

6 fi

∣∣
p−1,q + 5

6 fi

∣∣
p,q + 1

3 fi

∣∣
p+1,q, (28)

and

f 3
i

∣∣
p+ 1

2 ,q
= 1

3 fi

∣∣
p,q + 5

6 fi

∣∣
p+1,q − 1

6 fi

∣∣
p+2,q. (29)

The weighting factors wk in Eq. (26) are given by

wk = wk

w1 + w2 + w3
, wk = δk

(10−6 + σk )2
, (30)

with δ1 = 1/10, δ2 = 3/5, and δ3 = 3/10. The small value
10−6 is added to the denominator to avoid dividing by zero.
The coefficient σk in Eq. (30) are the smoothness indicators
and can be obtained following [46] as

σ1 = 13
12

(
fi

∣∣
p−2,q

− 2 fi

∣∣
p−1,q

+ fi

∣∣
p,q

)2

+ 1
4

(
fi

∣∣
p−2,q − 4 fi

∣∣
p−1,q + 3 fi

∣∣
p,q

)2
, (31)

σ2 = 13
12

(
fi

∣∣
p−1,q − 2 fi

∣∣
p,q + fi

∣∣
p+1,q

)2

+ 1
4

(
fi

∣∣
p−1,q − fi

∣∣
p+1,q

)2
, (32)

and

σ3 = 13
12

(
fi

∣∣
p,q − 2 fi

∣∣
p+1,q + fi

∣∣
p+2,q

)2

+ 1
4

(
3 fi

∣∣
p,q − 4 fi

∣∣
p+1,q + fi

∣∣
p+2,q

)2
. (33)

b. Case II. As stated earlier, when the ci1 < 0, the stencil is
biased to the right:

f −
i

∣∣
p+ 1

2 ,q =
3∑

k=1

wk f k
i

∣∣
p+ 1

2 ,q. (34)

Now, each individual stencil contribution can be written as

f 1
i

∣∣
p+ 1

2 ,q
= − 1

6 fi

∣∣
p−1,q + 5

6 fi

∣∣
p,q + 1

3 fi

∣∣
p+1,q, (35)

f 2
i

∣∣
p+ 1

2 ,q
= 1

3 fi

∣∣
p,q + 5

6 fi

∣∣
p+1,q − 1

6 fi

∣∣
p+2,q, (36)

and

f 3
i

∣∣
p+ 1

2 ,q
= 11

6 fi

∣∣
p+1,q

− 7
6 fi

∣∣
p+2,q

+ 1
3 fi

∣∣
p+3,q

. (37)

The weighting factors wk in Eq. (34) are given by Eq. (30)
with δ1 = 3/10, δ2 = 3/5, and δ3 = 1/10. The coefficient σk

in Eq. (34) are the smoothness indicators and can be obtained
by

σ1 = 13
12

(
fi

∣∣
p−1,q − 2 fi

∣∣
p,q + fi

∣∣
p+1,q

)2

+ 1
4

(
fi

∣∣
p−1,q − 4 fi

∣∣
p,q + 3 fi

∣∣
p+1,q

)2
, (38)

σ2 = 13
12

(
fi

∣∣
p,q − 2 fi

∣∣
p+1,q + fi

∣∣
p+2,q

)2

+ 1
4

(
fi

∣∣
p+2,q

− fi

∣∣
p,q

)2
, (39)
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2

3s

s

 p-2,q p-1,q p,q p+1,q p+2,q

p+1/2,q

s1

2

3s

s

 p-1,q p,q p+1,q p+2,q p+3,q

p+1/2,q

(a) (b)

FIG. 3. Stencils used for the calculation of fi|p+ 1
2 ,q: (a) stencil biased to the left and (b) stencil biased to the right.

025314-5



SHIRSAT, NAYAK, AND PATIL PHYSICAL REVIEW E 106, 025314 (2022)

s1

2

3s

s

 p-3,q p-2,q p-1,q p,q p+1,q

p-1/2,q

s1

2

3s

s

 p-2,q p-1,q p,q p+1,q p+2,q

p-1/2,q

(a) (b)

FIG. 4. Stencils used for the calculation of fi|p− 1
2 ,q: (a) stencil biased to the left and (b) stencil biased to the right.

and

σ3 = 13
12

(
fi

∣∣
p+1,q − 2 fi

∣∣
p+2,q + fi

∣∣
p+3,q

)2

+ 1
4

(
3 fi

∣∣
p+1,q

− 4 fi

∣∣
p+2,q

+ fi

∣∣
p+3,q

)2
. (40)

Similarly, approximation of fi|±p− 1
2 ,q is carried out by consid-

ering appropriate stencils shown in Fig. 4 with respect to case I
and case II. Further, the finite-difference WENO scheme does
not require any special treatment in the case of 2D and 3D, in
contrast to the finite-volume scheme methodology. Hence, the
same methodology can be followed to compute the fluxes in
y and z directions. Further, the calculation of gradient of dis-
tribution function in the y direction is similar and not covered
due to brevity.

B. Additional dissipation and artificial viscosity terms

In the lattice Boltzmann simulation, the discretization pro-
cess in time and space introduces both the dispersion and
dissipation errors, and the collision term introduces a physical
dissipation when the system deviates from the locally defined
equilibrium. In order to avoid spurious local undershoots or
overshoots in the simulation results, dissipation should be
strong enough. It is observed that the model given by Kataoka
and Tsutahara [22] is unstable when the Mach number ex-
ceeds 1, which implies the need for the dissipation term in
order to overcome the numerical instability problem [26].
Hence, a dissipation term (λi

∂2 fi

∂x2
β

) has been introduced to the

above explained LBE method as

∂ fi

∂t
+ ciβ

∂ fi

∂xβ

− λi

(
∂2 fi

∂x2
β

)
= 1

ε
( f eq

i − fi ), (41)

where λi are constants independent of the physical space or
time. The choice of the free parameter λi is one of the key
tasks in these simulations. It is noted that the values of λi

may not be same for all the benchmark cases. The choice may
be guided by the dissipation error associated with the corre-
sponding problem. Further, the discretization of the gradient
term from Eq. (41) is expanded as

∂ fi

∂xβ

= ∂ fi

∂xβ

+ βd�x

(
∂2 fi

∂x2
β

)
. (42)

The additional terms present on the right-hand side of Eq. (42)
are artificial viscosity terms which help to reduce additional
unphysical phenomena. Further, it is observed that the (βd )
terms are not enough to effectively improve the stability of
the compressible LB simulation. In order to discretize the
additional dissipation term from Eq. (41), a second-order
central difference scheme is used. Further, it is important to

note that the macroscopic properties (3)–(5) derived from
these additional terms may deviate from their Euler forms.
However, these deviations can be minimized by controlling
the pre-factors and coefficients present in these additional
terms. Further, a detailed Chapman-Enskog analysis may be
conducted in this regard. It should also be noted that the
instabilities may also emerge from couplings between ghost
and physical nodes [66,67]. However, such cases were not
observed in the present study.

C. RK3 time integration

In order to achieve highly accurate time integration, mul-
tistage time-stepping methods, and oscillation-free scheme,
the class of TVD (total variation diminishing) schemes are
generally used. The TVD schemes were first developed for
time-dependent gas dynamics. The scheme was able to es-
tablish monotonically preserving solution with a desirable
property for a stable, nonoscillatory, higher order scheme.
In order to achieve a monotonically preserving scheme, the
total variation of the discrete solution should diminish with
time. If the fifth-order WENO discretization is coupled with
the first-order forward in time integration or the second-order
Runge-Kutta time integration, then the solution is linearly
unstable [50]. Hence, in the present study in order to avoid
numerical instability, Runge-Kutta third-order time-stepping
method is utilized as shown below:

fi

∣∣1

p,q = fi

∣∣n

p,q + �tL
(

fi

∣∣n

p,q

)
,

fi

∣∣2

p,q = 3
4 fi

∣∣n

p,q + 1
4 fi

∣∣1

p,q + 1
4�tL

(
fi

∣∣1

p,q

)
,

fi

∣∣(n+�t )

p,q = 1
3 fi

∣∣n

p,q + 2
3 fi

∣∣2

p,q + 2
3�tL

(
fi

∣∣2

p,q

)
, (43)

where superscript (n) represents the nth time level and (1), (2),
and (3) are intermediate time levels. L is a spacial discretiza-
tion operator, n + �t is the next time level, and �t is the time
step. In the case of the LBE method, L is defined referring to
Eq. (43) as below,

L = −ciβ
∂ fi

∂xβ

∣∣∣∣
p,q

+ λi

(
∂2 fi

∂x2
β

)
+

f eq
i

∣∣
p,q − fi

∣∣
p,q

ε
. (44)

D. Boundary conditions

The boundary conditions in the reported work are super-
sonic inflow, supersonic outflow, and reflective wall. This
section briefly discusses the boundary condition implemen-
tation.

Supersonic inflow. Dirichlet boundary conditions are
applied by specifying the macroscopic properties at the
boundary. In the present LBE method, it is performed by
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FIG. 5. Schematic of the boundary conditions: (a) supersonic outflow and (b) reflective boundary.

simply equating the distribution functions on the boundary
nodes to the equilibrium distribution functions ( fi = f eq

i ),
which are calculated for the given macroscopic properties
using Eq. (20).

Supersonic outflow. The supersonic outflow boundary
condition is implemented by considering the second-order
gradient of the outflow nodes and the neighboring nodes to
be equal. The calculation of the distribution functions at the
right wall outlet node as shown in Fig. 5(a) is given below:

grad( fi

∣∣
p,q

) =
3 fi

∣∣
p,q − 4 fi

∣∣
p−1,q + fi

∣∣
p−2,q

2�x
,

grad( fi

∣∣
p,q) = grad( fi

∣∣
p−1,q ),

therefore, fi

∣∣
p,q =

4 fi

∣∣
p−1,q − fi

∣∣
p−2,q + 2�xgrad

(
fi

∣∣
p−1,q

)
3.0

,

(45)

where grad( fi|p−1,q ) = ∂ fi

∂x |p−1,q = 1
�x ( fi|p− 1

2 ,q − fi|p− 3
2 ,q ) is

calculated by using the fifth-order WENO scheme.
Reflective boundary. The reflective boundary condition is

implemented at the fluid-solid interfaces. The distribution
functions at the solid nodes are assumed to be reflection of the
values at the immediate fluid nodes. On the reflective bottom
wall, two levels of ghost cells inside the wall are used as
shown in Fig. 5(b) and their distribution functions ( fi), are
determined by [68] following

fi

∣∣
s
= fimirror

∣∣
f l
, fi

∣∣
s−1 = fimirror

∣∣
f l+1. (46)

Here, fi| f l and fi|s represent the distribution functions at
fluid nodes and solid nodes, respectively, and fimirror repre-
sent the distribution functions corresponding to the mirror
direction of particle velocity direction i. However, it is
to note that the boundary aligned distribution functions at

the solid node (i.e., f1|s, f0|s, f3|s) assume the same value
of the distributions at the corresponding fluid node. The
other distributions functions are reflected along the wall sur-
face given by Eq. (46), e.g., ( f5|s = f8| f l , f2|s = f4| f l ), and
( f5|s−1 = f8| f l+1, f2|s−1 = f4| f l+1). The distributions func-
tions are computed at the second level of the ghost cells
inside the wall, i.e., at location (s − 1), in order to obtain
the gradients of the distributions using the fifth-order WENO
described earlier.

III. RESULTS AND DISCUSSION

In this section, benchmark simulation results of widely
studied one- and two-dimensional inviscid flow problems are
given in detail. These benchmarks either have an exact (ana-
lytical) solution [69] or numerical results from the literature
in order to compare with the simulation results obtained us-
ing the RK3 + WENO scheme presented in Sec. II. The
first two problems are associated with minute and sudden
changes in the fluid flow properties. The initial three problems
are 1D and deal with abrupt changes in the flow properties,
whereas the remaining ones depict high-speed flow containing
oblique shocks. Here, one-dimensional lattice structure (see
Fig. 1) is used to solve the first three benchmarks, while
two-dimensional lattice structure (see Fig. 2) is used to solve
the remaining ones.

A. The 1D Riemann problems

The first test problem is an initial value problem of the
different physical parameters such as pressure, temperature,
density, and velocity for gas with a discontinuous initial data,
whose evolution is governed by the Euler equations. The
1D Riemann problems are commonly used for determining
the accuracy of new solvers for inviscid supersonic flows.
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FIG. 6. The results of flow parameters (a) velocity, u1, (b) den-
sity, ρ, (c) pressure, p, and (d) temperature, T , by using RK3 +
WENO LBE method for the shock-shock waves with Mach 1.0,
�x = 0.002, �t = 10−4/4. The simulation results are shown with
by � = 5/3; � = 7/5; and © = 9/7. The solid lines represents the
results obtained by using analytical solutions [69] for γ = 5/3 (solid
lines), γ = 7/5 (dashed lines), and γ = 9/5 (dotted lines). Since the
results are symmetric about x1 = 0, only the results for x1 > 0 are
shown.

In this subsection, various combinations of waves are stud-
ied for different boundary conditions to show the necessity
of the additional terms discussed in Sec. II C. Initially, the
shock-shock wave combination is simulated for three differ-
ent initial conditions comprising inlet Mach numbers (1.0,
10.0, and 30.0). Further, the rarefaction-shock wave combi-
nation for three initial conditions with respect to low- and
high-density ratios, sudden contact shock discontinuity, and
shock-rarefaction wave combination for density ratio 5 are
examined.

1. Shock-shock waves with low Mach number, Ma = O(1)

In order to solve problem involving initial inlet Mach
number of 1.0 involving shock-shock wave combination, a
one-dimensional lattice structure is utilized. The initial con-
ditions are similar to those given in Ref. [22] and reproduced
here:

ρ0 = T 0 = 1, u0
1 =

{
1 for x1 < 0;
−1 for x1 > 0.

(47)

In this work, for simulating Mach 1.0 flow the following
parameters are utilized, namely, v1 = 1.0 (equal to the given
Mach number), v2 = 2.0, and η0 = 1.5. The numerical results
for t = 1 and ε = 10−4 are compared with the analytical
solution [69] for three values of γ = 5/3, 7/5, and 9/7 (or
b = 3, 5, and 7, respectively) as shown in Fig. 6.

2. Shock-shock waves with high Mach numbers, Ma = O(10)

In this subsection, two different high-Mach cases of 1D
Riemann problem involving shock-shock wave combination
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FIG. 7. The results of flow parameters (a) velocity, u1, (b) den-
sity, ρ, (c) pressure, p, and (d) temperature, T , by using RK3 +
WENO LBE method for the shock-shock waves with Mach 10.0,
�x = �y = 0.002, and �t = 10−4 at t = 0.2. The simulation results
are shown with © whereas the dashed lines represent the result
obtained by using analytical solution. The inner windows show the
enlarged portion near the shock.

are detailed. The first case is simulated with Mach 10 and
the other refers to Mach 30. Further, in order to solve the 1D
problem involving high-Mach cases, a two-dimensional lattice
structure is considered with three nodes in the y direction. The
initial macroscopic variables at the left-hand and right-hand
sides of the domain (represented using subscripts L and R) be
ρ0

L , p0
L, u0

L, and ρ0
R, p0

R, u0
R, respectively.

Ma = 10.0. The initial conditions for this 1D Riemann
problem are given by(

ρ0, u0
1, p0)∣∣

R = (10.0, 0.0, 50.0) for x � 0;(
ρ0, u0

1, p0
)∣∣

L = (10.0, 10.0, 50.0) for x < 0. (48)

In this work, for simulating Ma = 10.0 flow following pa-
rameters are utilized, namely, v1 = 10.0, v2 = 20.0, η0 =
15.0, βd = 0.25, λ0 = v1dx, λ1−4 = 0.1v1dx, and λ5−8 = 0.
The simulation results for γ = 7/5 are shown in Fig. 7 and
compared with the analytical solution [69]. The results show
wiggle-free solutions for this benchmark case justifying the
case WENO approach. The values of βd and λi governing
the additional viscosity and dissipation terms, respectively, are
indicated following Ref. [26].

Ma = 30.0. The initial conditions of the 1D Riemann
problem are given below and refer to the test case in
Ref. [26],(

ρ0, u0
1, p0

)∣∣
R = (7/5, 0.0, 1.0) for x � 7.5;(

ρ0, u0
1, p0

)∣∣
L = (7/5, 30.0, 1.0) for x < 7.5. (49)

In this work, for simulating Ma = 30.0 the following param-
eters are selected, namely v1 = 30.0, v2 = 60.0, η0 = 45.0,
βd = 0.25, λ0 = v1dx, λ1−4 = 0.1v1dx, and λ5−8 = 0. The
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FIG. 8. The results of flow parameters (a) velocity, u1, (b) den-
sity, ρ, (c) pressure, p, and (d) temperature, T , by using the RK3
+ WENO LBE method for the shock-shock waves with Mach 30.0,
�x = �y = 0.01, and �t = 10−5 at t = 0.36. The simulation results
are shown with © whereas the dashed lines represent the result
obtained by using analytical solution. The inner windows show the
enlarged portion near the shock.

simulation results for γ = 7/5 are shown in Fig. 8. From the
figure, it is observed that the simulation results compare well
with the analytical data [69].

B. Rarefaction-shock wave problem

In this subsection, the rarefaction-shock wave problem
subjected to high-density ratios is examined using RK3 +
WENO-based LBE.

1. Rarefaction-shock wave with high density ratio
(ρ0|L)/(ρ0|R) = 100 and (ρ0|L)/(ρ0|R) = 1000

Two different high-density ratio cases for rarefaction-shock
wave combination are solved using the RK3 + WENO LBE
method in two dimensions with lattice structure as shown in
Fig. 2 and the numerical results are detailed below.

(ρ0|L)/(ρ0|R) = 100. The initial conditions given in
Ref. [70] are reproduced here:

u1
0 = 0.0, ρ0 =

{
100.0 for x1 < 0.5,

1.0 for x1 � 0.5,
,

p0 =
{

100.0 for x1 < 0.5,

1.0 for x1 � 0.5.
(50)

The model parameters are selected are v1 = 2.0, v2 =
4.0, η0 = 3.0, βd = 0.25, λ0 = v1dx, λ1−4 = 0.1v1dx, and
λ5−8 = 0. The comparisons of the numerical results for γ =
7/5 are shown in Fig. 9. The discrepancies in the density and
temperature plots (see Figs. 8 and 9) may be attributed to the
assumption of v1 equal to the inlet Mach number instead of√

γ T Ma.
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FIG. 9. The results of flow parameters: (a) velocity, u1, (b) den-
sity, ρ, (c) pressure, p, and (d) temperature, T , by using
RK3 + WENO LBE method for rarefaction-shock waves with
(ρ0|L)/(ρ0|R) = 100, �x = �y = 0.0005, �t = 10−4 at t = 0.15.
The simulation results are shown with ©, whereas, the dashed lines
represent the analytical results. The inner windows show the enlarged
portion near the shock.

(ρ0|L)/(ρ0|R) = 1000. The initial conditions given in
Ref. [26] are reproduced here:(

ρ0, u0
1, p0

)∣∣
L = (1000.0, 0.0, 1000.0) for x < 7.5;(

ρ0, u0
1, p0)∣∣

R = (1.0, 0.0, 1.0) for x � 7.5. (51)

The model parameters are v1 = 3.0, v2 = 6.0, η0 = 4.5, βd =
0.25, λ0 = v1dx, λ1−4 = 0.1v1dx, and λ5−8 = 0. The simu-
lation results for γ = 7/5 compare well with the analytical
solution [69] (see Fig. 10). Further, in case of the high-density
(refer Figs. 9 and 10) and high-Mach-number (see Figs. 7 and
8) simulation results, density and temperature profiles are not
captured accurately. It is suspected that the deviation could be
due to the discrete velocity model or lower number of grid
points to capture the shock phenomena.

2. The 1D Riemann problem with stationary contact shock
discontinuity, (ρ0|L)/(ρ0|R) = 1.01

The stationary contact discontinuity problem is examined
using RK3 + WENO-based LBE method. The stationary con-
tact discontinuity originates due to a sudden change in the
parameter at some point in the domain. In order to investigate
the problem involving sudden contact shock discontinuity for
density ratio 1.01, the one-dimensional lattice model is uti-
lized. The initial conditions are given by [70](

ρ0, u0
1, p0

)∣∣
L = (1.01, 0.0, 1.0) for x < 0.5;(

ρ0, u0
1, p0

)∣∣
R = (1.0, 0.0, 1.0) for x � 0.5, (52)

where the subscripts L and R represents the left- and right-
hand sides of the discontinuity, respectively. In order to
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FIG. 10. The results of flow parameters (a) velocity, u1, (b) den-
sity, ρ, (c) pressure, p, and (d) temperature, T , by using RK3
+ WENO LBE method for the rarefaction-shock waves with
(ρ0|L)/(ρ0|R) = 1000, �x = 0.0025, and �t = 2 × 10−4 at t = 1.5.
The simulation results are shown with ©, whereas the dashed lines
represent the analytical results. The inner windows show the enlarged
portion near the shock.

simulate this problem, the flow parameters are selected as
v1 = 1.0, v2 = 2.0, and η0 = 1.5. The comparative results for
u1, ρ, p, and T are shown in Fig. 11, wherein a negligible
amount of overshoots and undershoots are seen (see the u1

plot).
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FIG. 11. The results of flow parameters (a) velocity, u1 (b) den-
sity, ρ, (c) pressure, p, and (d) temperature, T , by using RK3 +
WENO LBE method for the sudden contact shock discontinuity
problem with (ρ0|L)/(ρ0|R) = 1.01, �x = 0.001, and �t = 10−5 at
t = 0.15. The simulation results are shown with © whereas, the
dashed lines represent the analytical results.
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LBE method for shock-rarefaction wave with �x = 0.002, �t =
10−4/4. The simulation results are shown with � = 5/3; � = 7/5;
© = 9/7. The lines represent the results obtained by using analytical
solutions for γ = 5/3 (solid lines), γ = 7/5 (dashed lines), and
γ = 9/5 (dotted lines).

3. Shock-rarefaction waves problem

Here, the problem involving shock-rarefaction waves is
detailed. The shock-rarefaction waves problem differs from
the rarefaction-shock waves only with the change in the high-
density region across the domain. The initial macroscopic
properties given in Ref. [22] are u0

1 = 0, T 0 = 1, p0
1 =

1for x1 < 0, p0
1 = 5 for x1 > 0. In the simulations, v1 =

2.0, v2 = 4.0, and η0 = 3.0 are considered. The numerical
results at t = 1 and ε = 10−4 are compared for three values
of γ = 5/3, 7/5, and 9/7 (or b = 3, 5, and 7) with the ana-
lytical solutions as shown in Fig. 12.

10

outflow

ou
tfl

ow

outflow

in
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w

10

ρ=1.0
u=u
v=0
p=1.0

∞

FIG. 13. A schematic for the isentropic vortex convection test.
Blue and black colored lines respectively represent the isolines of
pressure and (u − u∞)/u∞ in the initial condition.
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(a) )c()b( (d)

FIG. 14. Contour of the pressure field and isolines of (u − u∞)/u∞ in the isentropic vortex convection test. Top row shows the solution for
inlet Mach number Ma∞ = 0.845 at time (a) t = 0, (b) t = 2.5 (c) t = 5, and (d) t = 10. Bottom row is for the Mach number Ma∞ = 1.69 at
time (a) t = 0, (b) t = 1.25, (c) t = 2.5, and (d) t = 5.

C. Isentropic vortex convection test

An isentropic vortex convection test is performed to val-
idate the outflow and nonreflecting boundary condition [71].
An isentropic vortex kept in the flow domain is allowed to
move out of it through an outflow boundary which is un-
der consideration. If the boundary condition is accurate (i.e.,
perfectly nonreflecting), then the vortex exits the domain in
stipulated time without leaving any traces in the computa-
tional domain instead of spurious reflections. This test can
also be used to qualitatively assess the extent of numerical
viscosity values present in the solution. Inviscid flows do not
generate vortices, nor do they effect vortices that are already
present. Hence, in a numerical solution, the deformation of
vortex signifies the addition of numerical viscosity by the flow
solver.

In the present study, an isentropic vortex is kept at the
center of a 10 × 10 square domain at t = 0 having a base
flow (ρ∞ = 1, u∞, v∞ = 0, p∞ = 1) as shown in Fig. 13. The
initial condition for the problem is given as

ρ0 =
[

1 − (γ − 1)b2
v

8γπ2
e1−r2

] 1
γ−1

, p0 = ργ , (53)

u0 = u∞ − bv

2π
e

1
2 (1−r2 )(y − yc), (54)

and

v0 = bv

2π
e

1
2 (1−r2 )(x − xc), (55)

where bv is the strength of the vortex and r =√
(x − xc)2 + (y − yc)2 is the distance from the center

(xc, yc) = (5, 5). For the present study, γ and bv are chosen

FIG. 15. Variation of normalized perturbation kinetic energy
with time for inlet Mach numbers Ma∞ = 0.845 and Ma∞ = 1.69
compared with respective exact results.
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FIG. 16. A schematic for regular shock reflection.

to be 7/5 and 0.5 respectively. Tests are conducted for
inlet velocities u∞ = 1.0, 2.0 (which correspond to Mach
numbers Ma∞ = 0.845, 1.690 respectively). v1, v2, and η0

for these simulations are chosen to be Ma∞, 2Ma∞, and
(v1 + v2)/2 respectively. For the supersonic simulation (i.e.,
Ma∞ = 1.690) dissipation (λ0 = v1dx, λ1−4 = 0.1v1dx,
and λ5−8 = 0) and artificial viscosity (βd = 0) are added.
For the u∞ = 1 flow, it is expected that 50% of the vortex
is moved out of the domain in 5 time units and 100%
in 10 time units, without leaving any traces behind in
the computational domain. For the u∞ = 2 flow, similar
phenomenon is expected at 2.5 and 5 time units respectively.
Figure 14 (top row) shows the pressure contour and isolines
of (u − u∞)/u∞ at time t = 0, 2.5, 5, and 10 respectively, for
Ma∞ = 0.845 and Fig. 14 (bottom row) shows the same for
Ma∞ = 1.69 at time t = 0, 1.25, 2.5, and 5. Small amount
of vortex distortion can be seen in the Ma∞ = 1.69 case
[see Fig. 14 (bottom row)], which perhaps is caused due
to the use of additional terms. For the quantitative measure
of spurious reflections, average perturbation kinetic energy
(PKE) defined as [(u − u∞)2 + (v − v∞)2]/2 is computed
for each time step. Figure 15 shows time evolution of average

PKE normalized by initial average PKE. It is evident from
Figs. 14 and 15 that the spurious reflections from outflow
boundary are minimal.

D. Regular shock reflection

Here, a regular shock reflection off a flat boundary (or
plate) is detailed. This problem statement is commonly used
for validating the numerical scheme. The high-speed flow en-
counters a wedge, and depending on the wedge angle various
reflection phenomena are observed. The regular shock reflec-
tion occurs when the wedge angle is less than the maximum
possible wedge angle in order to obtain an oblique shock
solution. In the present work, the regular shock reflection
is simulated inside a two-dimensional computational domain
with the similar boundary conditions for two representative
inlet Mach numbers. The first case deals with a inlet Mach
of 2.9, for which quantitative results available in the literature
are used to compare the density variation. The second problem
is associated with the 10.0 Mach at the inlet. The simulation
results are compared with the analytical solution for which the
procedure is shown in the Appendix. The boundary conditions

0 1 2 3 4
X

0.5

1

1.5

2

2.5

3

p

Yang et al.

1000 4000
800 3200
600 2400
400 1600

[61]

ρ

(a)

(b)

FIG. 17. Regular shock reflection: (a) contour plot of density and (b) pressure variation profile along the x at y = 0.5 for varying grid sizes
at 2.9 Ma number.
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(a) (b)

(c) (d)

(e)
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FIG. 18. Regular shock reflection flow properties for Ma = 2.9, �x = �y = 1.0/1000, �t = 5.172 × 10−5, and t = 3.5, with contour
plots of (a) density, ρ, (b) x-direction velocity, u, (c) y-direction velocity, v, (d) temperature, T , (e) pressure, p, and (f) streamlines plot.

used for solving the regular shock reflection are composed
of a reflective surface along the bottom boundary, supersonic
outflow along the right boundary, and Dirichlet conditions are
applied at the inlet and the top boundary (i.e., postoblique
shock state) of the domain. At the beginning, the solution of
the entire domain is set to be that at the left boundary. The
computational domain with a length L = 4 units and height,
H = 1 units along with the boundary conditions is shown as
schematic in Fig. 16.

1. Regular shock reflection with inlet Mach 2.9

A shock with a shock wave angle of 29◦ and a preshock
Mach 2.9 reflects off a flat plate. The left boundary is set at
an inflow with u = Ma = 2.9, in the positive x direction. The
Dirichlet boundary conditions on the left-hand and top sides

ρ

FIG. 19. Regular shock reflection: density contours for Ma =
10.0 at time t = 0.6.

of the domain as in Ref. [72] are given below,

(ρ, u, v, p)|left = (1.0, 2.9, 0.0, 5.0/7.0);

(ρ, u, v, p)|top = (1.69997, 2.6934,−0.50633, 1.52819).
(56)

In order to simulate the regular shock reflection correspond-
ing to the inflow Ma = 2.9 the following parameters are
utilized, namely, v1 = 2.9, v2 = 5.8, η0 = 4.35, βd = 0.25,
λ0 = v1dx, λ1−4 = 0.1v1dx, and λ5−8 = 0. The contour plot
with 30 equally spaced density contours in the range 1.1 <

ρ < 2.6, at time t = 3.5 using a uniform grid size of 1000 ×
4000 is shown in Fig. 17(a). The quantitative comparisons
with the result given in Ref. [61] are shown in Fig. 17(b)
considering various grid sizes. The increase in the grid sizes
allows for a sharp changes in the flow properties without
numerical oscillations. It is observed that the lower grid sizes
would generate the hyperbolic tangent profile as given in
Ref. [61]; however, in this article fine resolution is followed
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FIG. 20. Schematic of double Mach reflection (DMR) benchmark.
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FIG. 21. Double Mach reflection: (a) contour plot of density and (b) pressure variation profile along the x direction at y = 0.3 by using
various grid sizes at Ma = 10.0.

for all the benchmark simulation studies. Further, the dis-
sipation error near to the discontinuity is reduced with an
increase in the grid size. The physical properties such as
density, x-direction velocity, y-direction velocity, tempera-
ture, and pressure all with equally spaced contours as well
as the streamline patterns at t = 3.5 are shown in Fig. 18.
The simulation results are also compared with an analytical
solution discussed in the Appendix. The region 1© represents
the portion before the incident shock, region 2© is a space
between the incident and the reflected shock, and region 3© is a

portion after the reflected shock. The supersonic inviscid flow
properties, namely, ρ, x-direction velocity (u), y-direction
velocity, pressure (p), and temperature (T ), are measured in
each region and a comparison with the analytical solution is
presented subsequently. The flow parameters are measured at
a point (0.5, 0.5) in region 1©, (1.75,0.5) in region 2©, and
(3.5, 0.5) in region 3©, respectively. The simulation results in
the region 1© measure ρ = 1.0, u = 2.9, v = 0.0, p = 0.7143
and T = 0.7143. Similarly, in the region 2©, ρ = 1.699, u =
2.62, v = −0.506, p = 1.528, and T = 0.899 and in region

(a)

(c)

(e)

(b)

(d)

ρ u

v T

p

(f)

FIG. 22. Double Mach reflection flow properties: Ma = 10.0, �x = �y = 1.0/1000, �t = 3.5 × 10−6, and for t = 0.25, contour plots of
(a) density, ρ, (b) x-direction velocity, u, (c) y-direction velocity, v, (d) temperature, T , (e) pressure, p, and (f) streamlines plot.
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3©, ρ = 2.684, u = 2.40, v = 0.0, p = 2.934, and T = 1.093.
The analytical results closely match with the simulation re-
sults with less that 0.1% error.

2. Regular shock reflection with inlet Mach 10.0

The computational domain considered is of length 3 units
and height 1 unit with the boundary conditions as shown in
Fig. 16. An oblique shock with a shock wave angle of 30◦,
preshock Mach number of 10 reflects off a flat plate. The left
boundary is kept as inflow with u = Ma = 10.0 in the positive
x direction, ρ = 1.0, p = 7.0/5.0. The boundary conditions
on the left-hand and top sides are as per Ref. [26],

(ρ, u, v, p)|left = (1.0, 10.0, 0.0, 5.0/7.0);

(ρ, u, v, p)|top = (5.0, 8.0,−3.4641, 20.7143). (57)

Further, the model parameters for the regular shock reflec-
tion with an inflow of Ma = 10.0 are given as v1 = 10.0, v2 =
20.0, η0 = 15.0, βd = 0.25, λ0−4 = 0.6v1dx, and λ5−8 = 0.
The contour plot with 30 equally spaced density contours in
the range 2.0 < ρ < 15.0 using 1000 × 3000 grids at time
t = 0.6 is shown in Fig. 19. The analytical solution as dis-
cussed in Appendix is used for the comparison with the
simulation results. The flow properties are measured in each
region and values are compared with the analytical solution.
The measurements are performed at points (1.0, 0.2) in region
1©, (1.7, 0.2) in region 2©, and (2.8, 0.2) in region 3©, respec-

tively. The simulation results in region 1© measures ρ = 1.0,
u = 10.0, v = 0.0, p = 0.7143, and T = 0.7143. Similarly,
in region 2©, values of ρ = 4.95, u = 7.99, v = −3.46, p =
20.716, and T = 4.186 are attained. In region 3©, ρ = 14.9,
u = 7.11, v = 0.0, p = 116.14, and T = 7.79 are estimated.
The simulation results closely matches with the analytical
solution with less that 1% error.

E. Double Mach reflection (DMR)

The double Mach reflection (DMR) is inspired by experi-
mental and numerical studies on reflections of planar shocks
in the air from the wedge [60]. The problem is set up ex-
perimentally by driving a shock down a tube containing a
wedge. In the beginning, a simple planar shock meets the
wall of the tube at right angles; however, as the wall begins
to slope, complicated shock reflection structures are seen. A
self-similar flow develops at this point which can be parame-
terized for a given ideal gas and the inflow Mach number over
the wedge. The problem is initially compared with a line plot
with the inflow Mach number of 10.0 and the wedge angle as
30◦. Later, in order to understand the difference between the
attached and detached shock patterns, a 40◦ wedge angle is
chosen from the possible DMR solution for diatomic gas [73].
The extension is carried out for an inflow Mach number of 6
with two wedge angles (30◦ and 40◦) in order to determine the
effect of change in the Mach number and the wedge angle on
the flow or shock structures.

The computational domain considered for the DMR bench-
mark is as shown in Fig. 20. The reflecting wall lies along the
bottom of the computational domain, beginning at x0 = 1/6.
The angle of the corner is represented as θ and to avoid the
complications of simulation for the inclination of the geom-

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(a)

FIG. 23. Growth of self-similar solution between t = 0 and t =
0.224; plots (a) through (i) represent isopycnics with equal time
interval of t = 8000�t (where, �t = 3.5 × 10−6) between t = 0 to
t = 0.224. The lines follow the trajectory of the two triple points.

etry, an inclined wall is taken as horizontal (coinciding with
x direction) and the incident shock is turned by an angle, θ .
A shock with angle θ1 = π/2 − θ and inflow Mach number
(Ma) moves through a still air mass with γ = 7/5, ρ = 7/5,
and p = 1.0. The shock reaches an apex (x0, 0) of the wedge
at t = 0 and the postshock state is determined by using the
Rankine-Hugoniot jump conditions. The left-hand boundary
is set at an inflow condition. A supersonic outflow condition
is applied for the bottom boundary portion corresponding to
x < x0 and the right-hand side boundary. Further, the upper
boundary condition is set to follow the shock as the shock
moves to the right of the domain. The interaction point be-
tween the shock and the upper boundary moves at a speed of
|us|/ cos θ and is located at xs(t ) = x0 + y tan θ + t |us|/ cos θ .
Next, the flow structures for two different Mach numbers with
wedge angle variation are discussed.
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FIG. 24. Plot of density with equally spaced contours: (a) Ma = 10, θ = 30◦, (b) Ma = 10, θ = 40◦, (c) Ma = 6, θ = 30◦, and (d) Ma = 6,
θ = 40◦; with enlarged portions near the (x0, 0) location and the triple-point shock systems.

1. DMR with inflow Ma = 10, wedge angle of θ = 30◦

In this section, the conventional benchmark followed in the
literature involving inflow of 10 Mach with a wedge angle of
θ = 30◦ is detailed. The initial conditions are given by

x > x0 + y tan θ, x < x0 + y tan θ ;

u = 0.0, u = 8.25 cos θ ;

v = 0.0, v = −8.25 sin θ ;

ρ = 7/5, ρ = 8.0;

p = 1.0, p = 116.5. (58)

The inflow condition at the left-hand boundary, the bot-
tom boundary portion (x < x0), and the top boundary portion
(x < xs(t ); for y = 1.0) corresponds to the flow properties
given in Eq. (58) for x < x0 + y tan θ . Next, the simula-
tion parameters for DMR with an inflow of Ma=10.0 and
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wedge angles (30◦ and 40◦) are selected as v1 = 10.0, v2 =
20.0, η0 = 15.0, βd = 0.25, λ0 = v1dx, λ1−4 = 0.2v1dx, and
λ5−8 = 0. The plot with 33 equally spaced density con-
tours in the range 7/5 < ρ < 22.0 with an uniform grid size
of 1000 × 4000 at time t = 0.20 is shown in Fig. 21(a).
The simulation results are compared with results from the
literature [61] for pressure variation profile along the x direc-
tion at y = 0.3 by using various grid sizes at time t = 0.20,
as shown in Fig. 21(b). It is observed that near to the sudden
discontinuity with an increase in the grid size the dissipation
error is reduced. The benchmark flow or shock structure for
the DMR case is briefly discussed. The first triple point (t p)
system consists of the incident shock wave (i), the reflected
shock wave (r), and the Mach stem (m). In the literature,
these features are observed to be sharp (or thin), whereas
the contact discontinuity or the first slip-stream (s) features
diffusion effects as seen in Fig. 21(a). Further, in the case of
the second triple point (t p′) system, the incident shock wave
(i′ = r) and the second Mach stem (m′) are sharp. However,
diffusional effects are observed at the reflected shock (r′). The
latter features a minute deviation from a continuous curvature
when it reaches the first slip stream (s). The instability at the
first slip stream between regions of the primary Mach-stem
and the reflected shock wave from the first triple point has
not been reproduced in this work. The growth of instability
at the first slip stream may be due to secondary turbulent
mixing [74]. The second slip stream (s′) is not noticeable in
the current simulation results. The difficulty in the resolution
of these features numerically and experimentally are well
known [46,58].

Further, the physical properties such as density, x-direction
velocity, y-direction velocity, temperature, and pressure with
equally spaced contours, along with the streamline patterns at
t = 0.2 are shown in Fig. 22. Furthermore, the constant den-
sity contours (isopycnics) from t = 0 to t = 0.224 are shown
in Fig. 23 wherein the growth of self-similar solution has been
depicted through the plots [see Figs. 23(a) through 23(i)]. The
locations of primary and secondary triple-point systems with
respect to time are joined with lines and it is observed that
these triple-point locations pass through two dotted lines at
each time interval and the dotted lines should intersects at the
point (x0, 0) as shown in Fig. 23, suggesting the accuracy in
the time evolution of the shock structure [75].

2. DMR problem with Ma = 6, wedge angles
of θ = 30◦ and 40◦

In this section, the new results for double Mach reflection
with inlet Mach 6.0 and wedge angles of 30◦ and 40◦ are
detailed. The initial conditions for both the problems are the
same except for the wedge angle, represented as θ . The initial
conditions are defined as

x > x0 + y tan θ, x < x0 + y tan θ ;

u = 0.0, u = 4.86 cos(θ );

v = 0.0, v = −4.86 sin(θ );

ρ = 7/5, ρ = 7.3759;

p = 1.0, p = 41.833. (59)
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FIG. 25. Comparison of pressure variation profile along the x di-
rection at y = 0.2, time, t = 0.25 for various inflow Mach numbers,
and wedge angles of DMR problem.

Further, the following parameters are selected, namely, v1 =
6.0, v2 = 12.0, η0 = 9.0, βd = 0.25, λ0 = v1dx, λ1−4 =
0.2v1dx, and λ5−8 = 0. The plots of density with 30 equally
spaced contours in the range of 7/5 < ρ < 20.0 obtained us-
ing uniform grids of 1000 × 4000 at time t = 0.25 for differ-
ent wedge angles and two Mach numbers are shown in Fig. 24.
Here, the plots in Figs. 24(a) and 24(b) represent results for
Ma 10.0 with θ = 30◦ and θ = 40◦, respectively, while those
in Figs. 24(c) and 24(d) depict the density contours for Ma
6.0 with θ = 30◦ and θ = 40◦, respectively. The enlarged
portions near the (x0, 0) location and the triple-point shock
systems are also plotted. It is observed that with the increase
in the wedge angle the contour lines shift toward the left of
the domain near the (x0, 0) location. Further, from the shock
diffraction domain [75], it can be inferred that the detached
shock pattern is observed in all the presently studied cases
except in the case of Ma = 10 with θ = 30◦. The comparison
between the contour plots of density for different inlet Mach
number and wedge angle can be easily made from Fig. 24.
It is inferred that the pressure and density value increases
with the increase in the wedge angle. The changes can be
observed in the Mach stems location and height, triple-point
location, and distance traveled by the shock and the other
flow or shock structures. From the enlarged portion, one can
conclude regarding attached and detached shock (especially

1.0

3.0

h

reflecting

reflecting

i
n
f
l
o
w

w
o
l

f
t
u
o

0.6

FIG. 26. Schematic of supersonic inviscid flow over a forward-
facing step: computational domain and boundary conditions.
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FIG. 27. Flow structure with shock for supersonic inviscid flow over a forward-facing step: transient flow solutions at various times,
t ; Ma = 3.0, step-height = 0.2, �x = 1.0/1000, �t = 5 × 10−5, and 33 density contours in the range of 0.5 < ρ < 6.5, for (a) t = 0.4;
(b) t = 0.8; (c) t = 1.2; (d) t = 1.6; (e) t = 2.0; (f) t = 2.4; (g) t = 2.8; (h) t = 3.2; (i) t = 3.6; and (j) t = 4.0.

for inlet Mach number 10.0). The detached shock is formed
at the beginning of the reflecting wall at x = x0 for the wedge
angle of 40◦; see Fig. 24(b). The initial conditions for realizing
Fig. 24(b) are given in Eq. (58). Further, the comparison of
pressure variation profile along the x direction at y = 0.2,
time, t = 0.25 for various inflow Mach numbers and wedge
angles of DMR problem is shown in Fig. 25. Finally, the DMR
can be classified into three different subtypes such as posi-
tive double Mach reflection (DMR+), negative double Mach
reflection (DMR−), and transitional DMR, depending on the
trajectory angle of the primary and the secondary triple point
with respect to the wedge [58]. In the present study, it is found

that the trajectory angle of the secondary triple point is greater
than the primary triple point, also known as the DMR+.

F. Forward-facing step problem

In this section, widely studied two-dimensional benchmark
problem of a supersonic inviscid flow over forward-facing
step [60] has been detailed. The problem statement encom-
passes an uniform flow of a constant Mach at the inlet of a
channel (also referred as “wind tunnel” in the literature) with
a step of particular height and at a particular distance from
the inlet. Initially, for the validation purpose, the inlet Mach

025314-18



SIMULATION OF HIGH-MACH-NUMBER INVISCID FLOWS … PHYSICAL REVIEW E 106, 025314 (2022)

(a) (b)

ρ u

v T

p

)d()c(

(e) (f)

FIG. 28. Flow properties at steady-state for forward-facing step flow properties: Ma = 3.0, step height = 0.2, �x = 1.0/1000, �t = 5 ×
10−5, and for t = 4.0, contour plots of (a) density, ρ, (b) x-direction velocity, u, (c) y-direction velocity, v, (d) temperature, T , (e) pressure, p,
and (f) streamlines plot.

number 3 with step height 0.2 is simulated. Later, the effect
of variation of the Mach number on the flow structure, shock
standoff distance, the Mach stem location, and Mach stem
height are examined. The description of the computational
geometry and boundary conditions are given in Fig. 26. The
wind tunnel considered is 1 unit in height and 3 units in length.
The step is 0.20 units high and is located at 0.6 length units
from the left-hand side end of the channel. The channel is
assumed to have an infinite width in the direction orthogonal
to the plane of the domain. At the left-hand side, the inlet (or
the inflow) boundary condition is applied, and the right-hand
side is kept at supersonic outlet. For the reported simulation
studies, it is assumed that the channel is filled with an ideal gas
(hence, the specific heat ratio is taken as γ = 7/5). Further,
the computational domain is initialized with ρ = 7/5, p =
1.0, and velocities u1 = u = Ma and u2 = v = 0. The tem-
perature-field T is computed from the ρ and p using the
nondimensional equation of state. Next, the evolution of the
flow structures from initial (t = 0.0) to t = 4.0 is depicted in
Fig. 27 for the flow over forward-facing step with a uniform
inlet Mach number of 3 and a step height of 0.2. It is observed
that a detached bow shock immediately develops ahead of the
step, initially curving strongly toward the upper surface of

the step [see Fig. 27(a)]. The curvature of the bow shock de-
creases rapidly and strikes the upper boundary of the domain
[see Figs. 27(b) and 27(c)]. The shock is reflected downward
and strikes the upper surface of the step [see Figs. 27(d) and
27(e)]. The bow shock continuous to flatten until the incident
angle to the upper boundary of the domain is so large that a
Mach reflection forms [see Fig. 27(f)]. The secondary Mach
stem forms at the upper surface of the step [see Fig. 27(g)].
At the point of intersection of the incident, the normal and re-
flected shock waves gradually move upstream and away from
the upper surface. Further, a slip surface separating regions of
different velocities emanates horizontally from the intersect-
ing shocks at the triple point system. A weak shock which is
observed where the overexpanded flow around the step corner
strikes the upper surface of the step [see Figs. 27(h)–27(j)].

The present simulation results for a step height of 0.2 are
compared with the standard benchmark results from Wood-
ward and Colella [60], Shu [76], Zhu and Shu [62], and Li
et al. [77]. The physical properties such as density, x-direction
velocity, y-direction velocity, temperature, and pressure with
equally spaced contours, along with the streamline patterns
at t = 4.0, are shown in Fig. 28. The contour plot of density
is shown in Fig. 29 and is used to extract the features of

025314-19



SHIRSAT, NAYAK, AND PATIL PHYSICAL REVIEW E 106, 025314 (2022)

ρ

FIG. 29. Colour plot of density with 33 equally spaced contours
for Ma = 3.

the flow structures. The shock standoff distance is a distance
between the beginning of the step at the bottom surface and
the bow shock generation point. The shock standoff distance
as measured from the work of Woodward and Colella [60] is
0.302, from Shu [76] it is 0.28, from Zhu and Shu [62] it is
0.274, and from Li et al. [77] it is 0.29. The shock standoff
distance is measured from the current simulation as 0.286.
The secondary Mach stem location from the origin along
the horizontal step as measured from the work of Li et al.
[77] is 1.19, and from that of Zhu and Shu [62] is 1.264,
whereas the secondary Mach stem is at a distance of 1.25
in the present work. The location of the triple-point system
present in the flow because of the bow shock, reflected shock,
and primary Mach stem is observed at (0.64, 0.83), whereas
in Refs. [60,62,76,77] the locations are reported at ≈(0.58,
0.75), (0.62, 0.79), (0.632, 0.81), and (0.6, 0.77), respectively.
Hence, it may be concluded that the present results are in a
close agreement with the literature.

The effect of change in Mach number on the location of
triple point and Mach stem along the step is easily recog-

nizable at time t = 4.0 as shown in Fig. 30. The primary
triple point near the top wall is noticeable only in the case
of inflow Mach number 3. It is observed that the secondary
Mach stem and the secondary triple-point system are present
in the considered cases except for the inflow Mach number of
2 [see Fig. 30(a)]. Further, the secondary Mach stem location
is observed to be shifting toward the right-hand side of the
computational domain along the step. The shock standoff dis-
tance is reduced with the increase in the inflow Mach number
from 3 to 5 [Figs. 30(b)–30(d)]. Finally, the maximum and
minimum values of the flow parameters keep on increasing
with an increase in the flow Mach number. Further, the ef-
fect of change in the step height for the same boundary and
initial conditions at Ma = 3 is detailed below. In order to
carry out this work, the steps with 0.15, 0.2, and 0.25 unit
height are considered at the equal distance from the inlet and
outlet boundaries. The results (33 equally spaced contours of
density in the computational domain) with a change in the
step height for the same inlet boundary conditions with an
uniform grid size of 1000 × 3000 at t = 4.0 are shown in
Fig. 31. It is observed that in the case of step height of 0.25
units as shown in Fig. 31(c), the first triple-point system as
well as first Mach stem are not realized as compared to those
shown in Figs. 31(a) and 31(b). The similar flow structures
are see for the inflow Mach number of 2 [see Fig. 30(a)].
The shock standoff distance (from the forward step toward
inlet) and secondary Mach stem location (along the step from
origin) for the step heights of (0.15), (0.2), and (0.25), respec-
tively are obtained as (0.216 and 1.838), (0.286 and 1.263),
and (0.360, and absent). Further, from the above-measured
distances it may be concluded that the shock standoff distance
increases and the Mach stem location along the horizontal step

FIG. 30. Contour plots of density for various inflow Mach numbers, (a) Ma = 2, (b) Ma = 3, (c) Ma = 4, and (d) Ma = 5.

025314-20



SIMULATION OF HIGH-MACH-NUMBER INVISCID FLOWS … PHYSICAL REVIEW E 106, 025314 (2022)

(a)

(b)

(c)

ρ

ρ

ρ

FIG. 31. Contour plots of density for various step heights:
(a) 0.15; (b) 0.2; and (c) 0.25 for inlet Mach number of 3.

shifts toward the left side along the step with an increase in the
step height.

Finally, the effect of change in specific heat ratios for a
given Mach number is studied. In order to carry out this
work, an inflow Mach number 3 is considered and the specific
heat ratios were varied as γ = 5/3, 7/5, and 9/7. The results
(33 equally spaced contours of density in the computational
domain) for the inflow Mach number 3 with various specific
heat ratios for the same inlet boundary conditions with a
uniform grid size of 1000 × 3000 at t = 4.0 are shown in
Fig. 32. The shock standoff distances (from the forward step
toward inlet) and secondary Mach stem locations (along the
step from origin) for the specific heat ratios of γ = 5/3, γ =
7/5, and γ = 9/7 are (0.527 and absent), (0.286 and 1.25),
and (0.240 and 1.62), respectively. Further, from the above
measured distances, it may be concluded that the shock stand-
off distance decreases and the Mach stem location along the
horizontal step shifts toward the right side along the step
with an increase in the specific-heat ratio. Also, it is impor-
tant to note that the variations in the shock standoff distance
and secondary Mach stem location follow similar trends as
observed in the case of increase in Mach number variation.
The secondary Mach stem is perpendicular to the step at the

bottom surface only in the case of γ = 9/7, whereas it is
curved with γ = 7/5.

G. Numerical stability assessment

Here, the numerical stability assessment for the two-
dimensional benchmark test cases are presented. The nu-
merical stability analysis was studied in Refs. [78,79]. The
additional parameters in the 2D, RK3 + WENO-based FD-
LB formulation are introduced, namely, artificial viscosity
and dissipation term. Hence, the objectives of the study are
to investigate the numerical stability region and to generate
guidelines for the values of the coefficients of the additional
terms in the formulation. These studies help to identify the nu-
merical stability when the additional terms are incorporated.
In all the benchmark cases, initially the values of βd and λ1−4

are varied in order to get the stable domain. Further, from the
stable domain the effect of λ1−4 and βd on keeping λ0 = v1dx
and λ5−8 = 0 is studied in order to get the solution closer to
the literature results for all the considered benchmarks. The
corresponding results are presented below.

Regular shock reflection. In the case of regular shock reflec-
tion, it is observed that the λ1−4/v1dx gives stable solutions
only for values greater or equal to 0.6. Moreover, the βd

values give a stable solution only if it is less than or equal
to 0.5. The λ1−4 variation by keeping βd = 0 is shown in
Fig. 33(a). It implies that the lower value of λ1−4 is able to
capture the shock accurately. Also, the variation of βd values
is studied by keeping λ1−4 constant as v1dx, and it suggests
that the βd value should be in between 0 to 0.5 as shown
in Fig. 33(b). Here, the first shock is captured accurately by
βd = 0.5, whereas the second shock is captured accurately by
βd = 0. Hence, it is suggested that the value of λ1−4 should
be small and the βd value should be between 0 to 0.5.

Double Mach reflection. In the case of double Mach reflec-
tion, it is observed that the λ1−4/v1dx gives a stable solution
except for 0, 0.1, and 1.0. Also, the βd value gives a stable so-
lution only if it is less than or equal to 0.4. The λ1−4 variation
by keeping βd = 0 is shown in Fig. 34(a). It indicates that the
lower value of λ1−4 is able to capture the shock accurately.
Also, the variation of βd values is studied by keeping λ1−4

constant as v1dx, which implies that the βd value should be
close to 0 as shown in Fig. 34(b), since the lower value of
βd reduces the dispersion error which helps to produce a
nonoscillatory solution. Hence, it is suggested that the value
of λ1−4 should be small and the βd value should be close to 0.

Forward-facing step. In the case of a forward-facing step,
it is observed that the λ1−4/v1dx gives stable solutions for
almost all the values. Moreover, the βd values give a stable
solution only if it is less than or equal to 0.5.

Further, λ1−4 is varied by keeping βd = 0 as shown in
Fig. 35(a). It indicates that the higher value of λ1−4 is able to
capture the shock accurately and reduce the dissipation error.
Also, Fig. 35(b) shows the variation of βd values by keeping
λ1−4 constant as v1dx, and it implies no significant changes in
the curvature of the density profile. Hence, it is suggested that
the value of λ1−4 should be high and the βd value should be
between 0 to 0.5.
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FIG. 32. Contour plots of density for various specific heat ratios for Ma = 3: (a) γ = 5/3, (b) γ = 7/5, and (c) γ = 9/7.

IV. CONCLUSION

In this paper, a numerical algorithm is detailed to simulate
the inviscid compressible flow using the kinetic-theory-based
lattice Boltzmann equation method. The LBE method com-
posed of the discrete velocity model given by Kataoka and
Tsutahara is utilized for solving the benchmark problems in
one and two dimensions. In order to achieve higher order
accuracy and to remove numerical oscillations, the fifth-order
WENO scheme in space and third-order RK3 for time integra-

tion are incorporated in the finite-difference LBE framework.
The dissipation and artificial viscosity terms may also be
added in order to improve the stability of the scheme at a high
Mach numbers and large density ratios. The article utilizes
definition of various benchmark problems in the literature
to verify and validate the proposed RK3 + WENO-based
finite-difference LBE method. The 1D Riemann problems for
various combinations of waves are detailed, which include
the shock-shock waves with Mach numbers 1, 10, and 30,
rarefaction-shock waves with density ratios 100 and 1000,
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FIG. 33. Parametric variation for regular shock reflection for inflow Ma = 10.0 at y = 0.2: (a) λ1−4 variation with βd = 0, λ0 = v1dx and
(b) βd variation with λ1−4 = 0.6v1dx, λ0 = v1dx.
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FIG. 34. Parametric variation for double Mach reflection for inflow Ma = 10.0 at y = 0.3: (a) λ1−4 variation with βd = 0, λ0 = v1dx and
(b) βd variation with λ1−4 = 0.5v1dx, λ0 = v1dx.

sudden contact shock discontinuity, and shock-rarefaction
waves. The described parameters give good accuracy with
very minimal deviation from the analytical solution. The isen-
tropic vortex test conducted showed minimal reflections from
the outflow boundary and negligible vortex distortion, proving
accurate implementation of the outflow boundary condition
and the presence of numerical viscosities in the acceptable
range. The regular shock reflection results compare well with
the analytical solution as well as well with the line plot data
from the literature. DMR with the change in Mach numbers
and wedge angles are studied. It is observed that the shock

wave along the top wall covers more distance and the height
of the primary Mach stem decreases as a result of an in-
crease in the wedge angle of an DMR problem. The effect
of change in wedge angle for same Mach number resulted in
attached or detached shock pattern is also highlighted. In the
case of the forward-facing step problem, the Mach stem at
the top is visible after the Mach number reaches 2.75. The
Mach stem location on the step shifts toward the right with
an increase in inflow Mach number. Further, for the same
inlet Mach number, the shock standoff distance is observed
to be increased with the increase in the step height. The study
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FIG. 35. Parametric variation for supersonic inviscid flow over a forward-facing step for inflow Ma = 3.0 at y = 0.2: (a) λ1−4 variation
with βd = 0, λ0 = v1dx and (b) βd variation with λ1−4 = v1dx, λ0 = v1dx.
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FIG. 36. Schematic of regular shock reflection problem depicting reflection.

of the variation in the specific heat ratio implies the shock
standoff distance decreases and the Mach stem location along
the horizontal step shifts toward the right side along the step.
From the simulations of various benchmark problems, it is
reported that the value of v1 may be kept near to the Mach
number, v2 may be equal to two times the value of v1, and
the value of η0 may be taken as an average of v1 and v2.
Further, in the case of rarefaction-shock wave problem, the
inflow Mach number is zero; however, for the consideration
of high-density ratio, v1 is kept as 3.0. The dissipation term
is decided by taking into account the dissipation error and
the stability criteria. The guidelines regarding the selection of
the free parameters in the formulation are given. The studies
regarding the local adaptation of the free parameters need
to be carried out for subsonic and transonic flows. Further
investigations regarding the secondary slip plane and Kelvin
Helmholtz instability in the case of the DMR problem are
needed.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX: ANALYTICAL SOLUTION OF REGULAR
SHOCK REFLECTION

Consider Ma1, Ma2, and Ma3 to be the Mach numbers in
regions 1©, 2©, and 3©, respectively, as shown in Fig. 36. θ1,
θ2 are the wedge angles for first and second waves and β1,
β2 are the shock wave angles. Figure 37 shows the velocity
component schematic between regions 1© and 2©, whereas
Fig. 38 shows the schematic for velocity resolution between
regions 2© and 3©. Assuming properties in the region 1© are
known, properties at region 1© can be calculated:

ρ2

ρ1
= (γ + 1)Ma2

1 sin2 β1

2 + (γ − 1)Ma2
1 sin2 β1

. (A1)

Now, to calculate the wedge angle,

tan θ = tan β1

[
Ma2

1 cos2 β1 − cot2 β1
]

[
1 + 1/2Ma2

1(γ + cos(2β1))
] . (A2)

Mach number calculation in the region 2© is

Ma2
2 sin2(β1 − θ ) =

[
γ + 1 + (γ − 1)

(
Ma2

1 sin2 β1 − 1
)]

[
γ + 1 + 2γ

(
Ma2

1 sin2 β1 − 1
)] ,

(A3)

and for calculating pressure,

p2

p1
=

[
2γ Ma2

1 sin2 β − (γ − 1)
]

(γ + 1)
. (A4)

From Fig. 37, it is observed that w1 = v1 sin(π/2 − β1)
and w2 = v2 cos(β1 − θ1). Since w1 = w2, the value of v2

is calculated. Next, using v2, the values of u2 and v2 are
then calculated. Moreover, the wedge angles are same in
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FIG. 38. Velocity components at regions 2© and 3©.
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both the regions, and hence the value of β2 is calculated
from Eq. (A2). Finally, on similar lines, properties in the

region 3© can be calculated by using properties in the
region 2©.
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