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This study concerns the mean-clustering approach to modeling the evolution of lattice dynamics. Instead of
tracking the state of individual lattice sites, this approach describes the time evolution of the concentrations of
different cluster types. It leads to an infinite hierarchy of ordinary differential equations which must be closed by
truncation using a so-called closure condition. This condition approximates the concentrations of higher-order
clusters in terms of the concentrations of lower-order ones. The pair approximation is the most common form
of closure. Here, we consider its generalization, termed the “optimal approximation,” which we calibrate using
a robust data-driven strategy. To fix attention, we focus on a recently proposed structured lattice model for a
nickel-based oxide, similar to that used as cathode material in modern commercial Li-ion batteries. The form of
the obtained optimal approximation allows us to deduce a simple sparse closure model. In addition to being more
accurate than the classical pair approximation, this “sparse approximation” is also physically interpretable which
allows us to a posteriori refine the hypotheses underlying construction of this class of closure models. Moreover,
the mean-cluster model closed with this sparse approximation is linear and hence analytically solvable such that
its parametrization is straightforward, although it offers a good approximation of the actual time evolution of the
cluster concentrations on short timescales only. On the other hand, parametrization of the mean-cluster model
closed with the pair approximation is shown to lead to an ill-posed inverse problem.

DOI: 10.1103/PhysRevE.106.025313

I. INTRODUCTION

Evolution of particles on a structured lattice is typically
described by discrete lattice models rather than continuous
space models. These models are usually not solvable exactly
and have to be studied through computer simulations. One ap-
proach to describing the evolution of particles on a structured
lattice is to keep track of all interacting particles as is done
in various Monte Carlo techniques such as simulated anneal-
ing. However, these methods are costly as they determine the
lattice structure which is unnecessary in many applications.
What is often sufficient is knowledge of the type and the
number of different clusters in the lattice, which can then
be used for model fitting purposes along with experimen-
tal measurements such as, e.g., nuclear magnetic resonance
(NMR) data [1]. Hence, as an alternative to Monte Carlo
methods, one can develop a simplified description of parti-
cle interactions in terms of evolving probabilities of particle
clusters of different types in the form of a dynamical system
which is sufficient for many applications. These approaches
are referred to as “mean-field clustering methods” and find
applications in many areas of science and engineering. The
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Ising model, as a canonical application of mean-field methods,
is a model of ferromagnetism describing the evolution of
magnetic moments in a lattice. Both Monte Carlo methods [2]
and mean-field methods [3] have been employed to study this
problem. Another example of the application of such models
is the contact process which is a stochastic process describing
the growth of a population on a structured or unstructured
lattice. Cluster approximations are used to find mean-field
properties of such systems. Population dynamics in ecology
[4,5] is one example of such processes. Another example is the
disease spread in epidemiology that has been widely studied
on structured networks [6–12] and complex networks [13,14].
Failure propagation [15] and emergence of marriage networks
[16] are some other examples of contact processes.

The focus of the present study is on cluster-based modeling
of systems of interacting particles on 2D structured lattices.
The specific application which motivates the present study
is related to prediction of the structure of materials used in
lithium-ion (Li-ion) batteries [1]. Using a cluster approxi-
mation method, one can construct a hierarchical dynamical
system describing the evolution of concentrations of differ-
ent clusters in the lattice during a real annealing process.
In other words, the evolution of concentrations of clusters
of size n involves concentrations of clusters of size (n + 1).
To solve this system of equations one is required to close

2470-0045/2022/106(2)/025313(20) 025313-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3210-1178
https://orcid.org/0000-0002-6120-5734
https://orcid.org/0000-0003-3935-3148
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.025313&domain=pdf&date_stamp=2022-08-22
https://doi.org/10.1103/PhysRevE.106.025313


AHMADI, FOSTER, AND PROTAS PHYSICAL REVIEW E 106, 025313 (2022)

it by prescribing the evolution of concentrations of (n + 1)
clusters, which in turn will be determined by probabilities of
clusters of a still higher order. This process therefore gives
rise to an infinite hierarchy of equations which is exact but is
intractable both analytically and computationally. Thus, one
needs to truncate and close this infinite hierarchy of equations.
Various moment closure approximations have been used for
this purpose. Ben-Avraham et al. [17] proposed a class of
approximations for 1D lattices with extensions developed in
higher dimensions, namely, the mean-field and pair approxi-
mations. These techniques take into account local interactions
between neighboring elements only and completely neglect
interactions between non-nearest neighbors on a lattice. While
the pair approximations have been used to model many physi-
cal systems defined on triangular lattices, it is known that this
approach is not very effective when the lattice suffers from
“frustration” effects occurring when the interactions between
the degrees of freedom on the lattice are incompatible with
the lattice geometry [18]. Such effects usually arise in the
presence of magnetic interactions where minimization of the
classical lattice energy of the system is not possible. As a re-
sult, the energy of the system converges to degenerate ground
states with some pair interactions remaining at higher energy
levels. For simplicity, we will not consider such situations in
the present study.

Much research on cluster models has been carried out in
the field of equilibrium statistical mechanics focusing pri-
marily on improving the mean-field approximation models,
e.g., via the Bethe-Peierls approximation [19] or the cluster
variation method [20]. These models aim to find a mean-field
solution by making some additional assumptions about the
particular system under study. Applications of mean-field and
pair approximation methods to various problems in science
and engineering can also be found in [9,13,21,22] and in
[6,7,9,13,14,21–23], respectively. Some extensions of the pair
approximation technique are also introduced in [24] where
interactions between different elements are considered to be
generic functions of distance. In the present study our goal
is to develop and validate a general data-driven methodology
that will allow us to optimally close (in a mathematically pre-
cise sense) the infinite hierarchy of equations. We will refer to
this approach as the “optimal approximation.” This approach
leads to a general, simple, and mathematically interpretable
closure model.

As an emerging application of lattice dynamics, Harris
et al. [1] used a simulated annealing approach to investigate
the crystalline structure of cathode materials used in state-
of-the-art Li-ion batteries. More precisely, they focused on
layers of NMC (nickel-manganese-cobalt) used in most mod-
ern commercial Li-ion batteries. These cathodes are described
by the chemical formula Li(NMC)O2, where 2D layers of
lithium, oxygen, and NMC are stacked on top of each other.
The capacity enhancement observed in such materials is at-
tributed to changes in the local microscopic structure of the
cathode layers [25,26]; however, important aspects of this
structure are not yet completely understood. Hence, further
refinement of this battery technology requires more informa-
tion about the arrangement of elements inside these layers.
In [1] simulated annealing was used to generate statistical
information about arrangements of different species on the

lattice in the NMC layer of a cathode, which was very costly
and did not scale up to large lattice sizes. The model de-
veloped in the present study aims to address this limitation.
While the proposed approach is general and can be applied
to many lattice systems, to fix attention, we will develop it
here for the problem from [1] as an example. Other appli-
cations of approaches based on lattice dynamics in physics
and chemistry include organic synthesis reactions in the fields
of heterogeneous catalysis and materials engineering [27],
adsorption models of binary mixtures [28], and microstructure
mapping of perovskite materials [29].

In this work, we use the mean-clustering approach to build
a hierarchical system of equations for the evolution of concen-
trations of different clusters inside a structured lattice of the
NMC cathode layer. We assume a triangular lattice compatible
with the structure of the NMC layer [1]. This spatial structure
is important in detecting the rotational symmetries of the sys-
tem. A dynamical system is constructed to describe reactions
between different species which are limited to swaps between
nearest-neighbor elements. The underlying principle is that as
the “temperature” decreases the lattice converges to a certain
equilibrium state through a series of element swaps, controlled
by specific rate constants. Our approach consists of two dis-
tinct steps: first, the truncated hierarchical dynamical system
is closed using an optimal approximation whose parameters
are inferred from simulated annealing data; it is demonstrated
that such an optimal closure is in fact both simpler and more
accurate than the nearest-neighbor approximation proposed in
[17]. Additionally, robustness of the predictive performance of
the obtained model is demonstrated based on problems with
different stoichiometries. Second, the reaction rates parame-
terizing the dynamical system with the three types of closure,
i.e., pair approximation, optimal approximation, and sparse
approximation, are inferred from the simulated annealing data
using a Bayesian approach which also allows us to estimate
the uncertainty of these reconstructions; this will show that the
model with the optimal closure is also less prone to calibration
uncertainty than the model closed with the nearest-neighbor
approximation.

The paper is organized as follows: further details about
our model problem are presented in Sec. II; then in Sec. III
we introduce a dynamical system governing the evolution of
the concentrations of different clusters, and in Sec. IV we
describe and analyze the closure models we consider, which
are the pair approximation and the optimal closure, the latter
of which leads to the sparse approximation; reactions rates
in the resulting dynamical systems are then inferred using a
Bayesian approach in Sec. V; finally, a summary and conclu-
sions are deferred to Sec. VI, and some technical material is
collected in two Appendixes.

II. MODEL PROBLEM

In this section we provide some details about a lattice
evolution problem that will serve as our test case. Harris
et al. [1] used a simulated annealing method to identify an
evolving arrangement of particles on the lattice and keep track
of their interactions. One material similar to the materials
actually used in Li-ion batteries is Li[Li1/3Mn2/3]O2, where
2D sheets of an oxygen layer, transition metal layer, and
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FIG. 1. The Li[Li1/3Mn2/3]O2 lattice considered in [1] and shown here in (a) a 3D view and (b) a 2D view. The red, green, and blue
elements represent the oxygen, lithium, and transition metal (either lithium or manganese), respectively.

lithium layer are stacked on top of each other, as shown in
Fig. 1. The transition metal layer consists of manganese and
lithium.

In the simulated annealing method, the energy of the sys-
tem is calculated by considering the local charge neutrality
at oxygen sites. Each oxygen element is surrounded by six
nearest neighbors; cf. Fig. 1. The energy of each oxygen site is
then determined by considering the charge contributions of the
neighboring sites to its charge balance with the goal of achiev-
ing neutrality. The simulated annealing approach attempts to
find a 2D lattice configuration minimizing the total energy of
the system E = ∑

i Ei corresponding to a specific “tempera-
ture,” where Ei is the energy over each oxygen site. This is
a probabilistic approach to finding global optima in a discrete
space described by the Boltzmann distribution and mimics the
annealing process applied to actual materials. These materials
are annealed at a high temperature, followed by quenching to
the desired temperature. The choice of how the temperature
is decreased is in principle arbitrary; however, the equilibrium
state must be reached at the end of the annealing process for
every arbitrarily chosen temperature profile (we note that here
“temperature” does not refer to the thermodynamic tempera-
ture of the system). The details of this approach we consider
can be found in [1].

In the crystal structure of the annealed metal layer of
Li[Li1/3Mn2/3]O2 each triangle consists of two Mn elements
and one Li element. In this structure, the energy Ei over
each oxygen site becomes zero, and the total energy of the

system will be zero accordingly, as shown in Fig. 2(b). In
the simulated annealing study of this structure the temper-
ature was reduced in a stepwise manner, and enough time
was allowed for the structure to stabilize at an equilibrium
at each intermediate temperature. The results obtained for
the system with Li1/3Mn2/3 are shown in the form of the
final lattice structure in Fig. 2. Annealing experiments with
the same protocol were also performed for systems with dif-
ferent ratios of Li and Mn in LixMn1−x where x ∈ {0.25,

0.30, 0.33, 0.36, 0.42, 0.50, 0.58, 0.64, 0.70, 0.75}, but these
results are not shown here for brevity. Our goal is to build
a model that will accurately predict the evolution of con-
centrations of different particle clusters present in the lattice
without having to solve the entire annealing problem. We note
that the elements Mn and Li have charges, respectively, of
(+4) and (+1). However, the cluster approximation model
(cf. Sec. III) makes no assumptions about the charges of the
elements and hence for simplicity the symbols (+) and (−)
will hereafter represent the elements Mn and Li, respectively.
The concentrations C̃i, i ∈ {(++), (+−), (−−)} of 2-clusters
as functions of time (or temperature) will be used as data
to construct the optimal closure approximation and to infer
the reaction rates in the model. The lattice evolution in this
method does not have a natural timescale and for concreteness
we will assume that the unit of time is set by an individual
iteration of the simulated annealing experiment. Notably, in
this model all concentrations are independent of location on
the lattice due to spatial homogeneity.

FIG. 2. (a) Initial random state and (b) the final ordered state of the lattice for the Li1/3Mn2/3 system obtained via simulated annealing [1].
Black and green dots represent Li ions (more generally, negative elements) and Mn ions (more generally, positive elements), respectively.
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FIG. 3. An example of a linear chain 3-cluster on a 2D lattice.

III. CLUSTER APPROXIMATION

In this section we develop a system of evolution equa-
tions for concentrations of clusters in a two-element system
with elements denoted (+) (or ⊕) and (−) (or �). In this
study, a cluster of size n is referred to as a n-cluster and
elements inside the cluster form a closed or an open chain.
The concentration of a cluster is defined as the probability of
finding that particular cluster among all clusters of the same
shape but with different compositions. As an example, the
concentration of the 3-cluster shown in Fig. 3 is denoted Ci jk ,
where i, j, k ∈ {+,−}.

Remark 1. The normalization condition requires that the
sum of the concentrations of all possible n-clusters with the
same geometry must be equal to one [17]:∑

S1,S2,...,Sn

CS1S2···Sn = 1, (1)

where the indices 1, 2, 3, . . . , n enumerate different sites
within a cluster with two consecutive ones corresponding to
nearest neighbors and Si ∈ {+,−} denotes the state of that
specific site. Applying this to 1-clusters and 2-clusters in our
model, the following equations are derived from the normal-
ization condition:

C+ + C− = 1, (2a)

C++ + C−− + C+− + C−+ = 1. (2b)

The concentrations of the (+−) and (−+) clusters are the
same due to the rotational symmetry of the system, as stated in
Theorem A.1 in the Appendix, such that C+− = C−+. Hence,
the normalization condition becomes

C++ + C−− + 2C+− = 1. (3)

The aim is to deduce a dynamical system describing the
evolution of the probabilities of 2-clusters. There are three
different types of 2-clusters found on the lattice, namely, ⊕⊕,
��, and ⊕�.

A. Production and destruction of 2-clusters

The rate of change of the concentration of specific clus-
ters is determined by the rate at which they are produced
and destroyed. Production or destruction of a certain cluster
occurs through swaps among nearest-neighbor elements on
the lattice. Each swap of nearest-neighbor elements is called
here a reaction. The rate equations can then be derived using
the window method [17]. In this approach we consider all
possible reactions that change the composition of a particular
2-cluster in a certain window containing this cluster, via a

FIG. 4. All unique (up to rotational and translational symmetries)
reversible reactions to destroy or produce clusters ( +© +©) and ( +© –©).

swap between one of the elements inside the window and
one of its nearest-neighbor elements outside the window. For
example, in order to derive the rate equation for the (⊕⊕)
cluster, in Fig. 4 we show all possible reactions that will
produce or destroy this cluster via nearest-neighbor element
swaps. We note that all of these reactions occur in a 2D sheet
rather than on a 3D lattice, which is compatible with our
model problem introduced in Sec. II. In each of the reactions,
the neighbor element (highlighted in red) will swap with one
of the elements of the window (highlighted in blue) to produce
a (⊕⊕) cluster in the forward reaction. Conversely, reverse
reactions destroy the (⊕⊕) cluster and produce a (⊕�) clus-
ter. The rotational symmetry of the lattice allows us to reduce
the number of possible reactions to those shown in Fig. 4.
Moreover, reactions taking place inside a triangular-shaped
3-cluster do not change the total count of 2-clusters inside the
triangle and are therefore disregarded. This observation elim-
inates the number of possible reactions and hence simplifies
the model. Each reaction has a unique rate constant denoted
k1, k2, . . . , k8. Note that these rate constants are required to be
nonnegative.

As can be observed in Fig. 4, 3-clusters with three types of
bonds are involved in the derivation of rate equations. The first
type is the linear 3-cluster in which the two bonds are colinear.
The second type is the cluster in which there is an obtuse
angle of 120◦ between the bonds due to the triangular shape
of the lattice. The third type is the triangular cluster in which
the elements form a triangle with 60◦ between the bonds. We
will refer to these as the linear, angled, and triangular clusters,
respectively. For simplicity, linear clusters will be represented
as a combination of elements with a straight line [(• • •)],
angled clusters as a combination of elements with a hat sign
[ ̂(• • •)], and triangular clusters as a combination of elements

with a triangle , where • is either + or −. The set of

all 3-cluster types will be denoted

(4)
The rate equations for the (��) and (⊕�) clusters can be
derived in a similar way, by considering all possible reactions
that produce or destroy these two clusters as shown in Fig. 5.

FIG. 5. All unique (up to rotational and translational symmetries)
reversible reactions to destroy or produce clusters ( –© –©) and ( +© –©).
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We thus obtain the following system of rate equations for the
concentrations C++, C−−, and C+−:

d

dt
C++ = 4k1C+̂−+ + 2k2C+−+ − 4k3C+̂+− − 2k4C++−,

(5a)

d

dt
C−− = 4k5C−̂+− + 2k6C−+− − 4k7C−̂−+ − 2k8C−−+,

(5b)

d

dt
C+− = 2k3C+̂+− + 2k7C−̂−+ + k4C++− + k8C−−+

− 2k1C+̂−+ − 2k5C−̂+− − k2C+−+ − k6C−+−.

(5c)

We note that in deriving the rate equations for the (++) and
(−−) clusters [cf. (5a)–(5b)] each reaction is accounted for in
proportion to the number of its rotational symmetries on the
lattice. For example, destruction of the (+̂ − +) cluster shown
in Fig. 4 can also occur in three other configurations of the
cluster obtained by rotating the original cluster. Hence, a coef-
ficient of 4 appears in equations (5a)–(5b) to account for these
symmetries. We note that, on the other hand, the linear clusters
have only two possible symmetries, hence a coefficient of 2
appears in front of the relevant terms. Moreover, in regard to
the rate equation for the (+−) cluster, the number of rotational
symmetries for each 3-cluster is half of those considered for
the other two cases such that in Eq. (5c) the corresponding
coefficients are 2 and 1. The reason is that the (+−) and
(−+) clusters are distinguished in the model, and to clarify
this, consider a (++) cluster inside a (+ + −) cluster. A swap
between elements (+) and (−) will result in the production of
a (+−) cluster. However, if we rotate this 3-cluster, we get
a (− + +) cluster and a swap between the elements (+) and
(−) will result in the production of a (−+) cluster. Hence,
the rate equations for the evolution of the (+−) and (−+)
clusters have to be derived individually. In system (5), the rate
equation for the (−+) cluster is not included, as it will be
accounted for via the normalization condition (2b). Again, due
to the rotational symmetry, the concentrations of the (+−) and
(−+) clusters are equal, hence the normalization condition
simplifies to (3).

An important aspect of system (5) is its hierarchical struc-
ture in the sense that the rates of change of concentrations
of 2-clusters are given in terms of the concentrations of 3-
clusters, and if one were to write equations for their rates
of change they would involve concentrations of 4-clusters
and so on. Thus, system (5) is not closed and needs to be
truncated which we will do so here at the level of 2-clusters.
Two strategies for closing the truncated system are discussed
in Sec. IV.

In addition, the normalization condition (3) can be modi-
fied to a dynamic form by taking the derivative with respect to
time

d

dt
C++ + d

dt
C−− + 2

d

dt
C+− = 0. (6)

As can be verified, this equation is satisfied automatically by
system (5a)–(5c). Moreover, the rate of the forward reaction
will be equal to the rate of corresponding reverse reaction in

the chemical equilibrium. As we are interested in the equilib-
rium state of reactions, the following relations can be written
for each pair of forward and reverse reactions in equilibrium:

k1C+̂−+ = k3C+̂+− �⇒ Q1 = k1

k3
= C+̂+−

C+̂−+
, (7a)

k2C+−+ = k4C++− �⇒ Q2 = k2

k4
= C++−

C+−+
, (7b)

k5C−̂+− = k7C−̂−+ �⇒ Q3 = k5

k7
= C−̂−+

C−̂+−
, (7c)

k6C−+− = k8C−−+ �⇒ Q4 = k6

k8
= C−−+

C−+−
, (7d)

where Qi, i = 1, . . . , 4, denote the equilibrium constants for
each reversible reaction.

IV. CLOSURE APPROXIMATIONS

In this section we discuss two strategies for closing system
(5), by which we mean expressing the concentration of 3-
clusters on the right-hand side (r.h.s.) of this system in terms
of a suitable function of the concentrations of 2-clusters. In
other words, the goal is to replace each of the triplet concen-
trations Ci, i ∈ �, in (5) with suitably chosen functions gi(c),
where c = [C+,C−,C++,C−−,C+−], such that the closed sys-
tem will have the form

d

dt
C++ = 4k1g+̂−+(c) + 2k2g+−+(c) − 4k3g+̂+−(c)

− 2k4g++−(c), (8a)

d

dt
C−− = 4k5g−̂+−(c) + 2k6g−+−(c) − 4k7g−̂−+(c)

− 2k8g−−+(c), (8b)

d

dt
C+− = 2k3g+̂+−(c) + 2k7g−̂−+(c) + k4g++−(c)

+ k8g−−+(c) − 2k1g+̂−+(c) − 2k5g−̂+−(c)

− k2g+−+(c) − k6g−+−(c). (8c)

The first approach to finding these functions is the pair ap-
proximation based on the classical method introduced in [17],
and the second is our own optimal closure approximation. The
problem of finding the rate constants k1, . . . , k8 in (5) will be
addressed in Sec. V.

A. Pair approximation

The pair approximation is a classical approach to closing
truncated hierarchical dynamical systems. It was first used
by Dickman [30] in a surface-reaction model and later by
Matsuda et al. [4] for a structured lattice appearing in a
population dynamics problem. In our model, we use the pair
approximation approach in order to close the dynamical sys-
tem (5) at the level of 2-clusters. The state of a site is denoted
i, j, k ∈ {+,−} for a two-element system. Global concentra-
tions are denoted Ci giving the probability that a randomly
chosen site in the lattice is in state i ∈ {+,−}. Similarly, Ci j is
the global concentration of 2-clusters in state i j. In addition,
local concentrations are denoted Pj|i and give the conditional
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probability that a randomly chosen nearest neighbor of a site
in state i is in state j. These local concentrations can be
expressed in terms of global concentrations using the rules
governing conditional probabilities as [4,31]

Ci j = Cji = CiPj|i = CjPi| j, (9a)∑
i∈{+,−}

Ci = 1, (9b)

∑
i∈{+,−}

Pi| j = 1 for any j ∈ {+,−}. (9c)

Equation (9a) is invariant with respect to the rotational
symmetries of the lattice; cf. Appendix A. Also, the global
concentration of a triplet in state (i jk) can be derived in a
similar approach as Eq. (9a),

Ci jk = CiPj|iPk|i j = Ci jPk|i j . (10)

The Pk|i j term in this equation involves three elements in a
triplet. In order to break down the triplet concentration in
terms of pair and singlet concentrations, one is required to
find an equivalent expression for the Pk|i j term. The underlying
assumption of the pair approximation method is to neglect the
interaction between the non-nearest-neighbor elements, i and
k in this case, according to Fig. 3 [4,5,31]. This results in an
approximation at the level of 3-clusters expressed in terms of
quantities defined at the level of 2-clusters as

Pk|i j ≈ Pk| j . (11)

A different approach could also be adopted to derive the
pair approximation formulation resulting in the same closure
model. In this approach, assuming a triplet in state (i jk) on
a random lattice (in which all non-nearest-neighbor elements
are decoupled), the global concentration of this triplet can be
written as

Ci jk = CiCjCkQi jQjkTi jk, (12a)

Qi j = Ci j

CiCj
, (12b)

where Ci, Cj , and Ck denote the global concentrations of
singlets, Qi j and Qik are the pair correlations of nearest neigh-
bors and Ti jk is the triple correlation of the chain. Note that
element i and element k on a random lattice are considered
not to be nearest neighbors. Also, there is no factor Qik in
Eq. (12a) as the correlation of non-nearest-neighbors is repre-
sented by Ti jk . According to the underlying assumption of pair
approximation, the non-nearest-neighbor elements are decou-
pled. There is no deterministic way of calculating correlations
of non-nearest-neighbor elements [32] and some additional
assumptions have to be made in order to close (5). The stan-
dard pair approximation method neglects all triple correlations
such that Ti jk = 1. This is an equivalent approximation to
Eq. (11).

Each regular lattice can be described by two parameters:
the number of neighbors per site (m) and the proportion of tri-
angles to triplets (θ ), which determines the clumping intensity
of the lattice. A triangular lattice has m = 6 neighbors per site
and θ = 2

5 , as shown in Fig. 6. Similarly, chainlike triplets in
a triangular lattice can be categorized into two groups: linear

FIG. 6. Schematic of a 2D triangular lattice with chains of 3-
clusters, namely, linear, angled, and triangular clusters. The clumping
intensity of this lattice is equal to the proportion of the triangles over
all triplets types, which is equal to 2

5 .

triplets with 180◦ bonds, and angled triplets with 120◦ bonds.
As is evident from Fig. 6, the probability of finding a triplet
in a closed form, angled form and linear form is equal to
2
5 , 2

5 , and 1
5 , respectively. As the shape of triplets is impor-

tant in our model, these probabilities have to be taken into
account as coefficients when calculating the corresponding
concentrations. Morris [33] and Keeling [11] have proposed
formulas for approximating the fraction of closed and open
chains in a certain state (i jk) on a regular lattice by taking
into account the clumping effect of triangles in the lattice.
Following these studies, the concentrations of each type of
triplet are approximated as

(13a)

(13b)

(13c)

where i jk, î jk, and denote a linear, angled, and triangular

triplet, respectively. The specific forms taken by expressions
(13a)–(13b) for different i, j, k ∈ {+,−} are collected in Ta-
ble I. Using this model in relations (8a)–(8c) produces a closed
system of equations providing an approximate description of
the problem.

B. Optimal approximation

As will be shown in Sec. IV C, the closure based on the pair
approximation introduced above is not very accurate. In order
to improve the accuracy of the closure, here we propose an
approach based on nonlinear regression analysis of simulated
annealing data. This is a data-driven strategy where an optimal
form of the closure is obtained by fitting an expression in
an assumed well-justified form to the data. The pair approx-
imation scheme attempts to predict the concentrations of the
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TABLE I. Functional forms of the closures based on the pair approximation and proposed optimal closures for each triplet type. Unknown
parameters (exponents) are indicated in the last column.

higher-order clusters in terms of concentrations of lower-order
ones using expressions with the functional forms given in
(13). In our approach, we close system (5) using relations
generalizing the expressions in (13), which depend on a num-
ber of adjustable parameters. These parameters, representing
the exponents of different concentrations, are then calibrated
against the simulated annealing data by solving a suitable con-
strained optimization problem. Information about the more
general closure relations and how they compare to the pair
approximation for different 3-clusters is collected in Table I

where we also group the parameters to be determined in the
vector Vi, with i ∈ � representing different cluster types.

Notably, our functional forms are generalizations of the ex-
pressions used in the pair approximation obtained by allowing
for more freedom in how the expressions for closures depend
on the cluster concentrations. The numerators of our expres-
sions involve concentrations of all nearest-neighbor 2-clusters
such that the effect of non-nearest-neighbor clusters is still
neglected. The denominators, on the other hand, involve the
concentrations of singlets present in the triplet which makes
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the functional form of our closure different from the pair
approximation in some cases. The parameters (exponents)
defining the proposed optimal closures in Table I are subject
to the following constraints ensuring well-posedness of the
resulting system (8):

(1) The difference of the sums of the exponents in the
numerators and in the denominators is equal to one, i.e.,∑

j γ j − ∑
j ξ j = 1, ensuring that the terms representing the

closure have the units of concentration.
(2) The exponents in the numerators need to be nonneg-

ative, i.e., γ j � 0, since otherwise the corresponding terms
representing the closure model may become unbounded as the
concentration approaches zero, causing solutions of the ODE
system (8) to blow up.

(3) The exponents in the numerators need to be bounded
γ1, γ2 � δ, where δ is the upper bound on the exponent which
needs to be specified, as otherwise the corresponding terms
representing the closure model may also become large causing
solutions of the ODE system (8) to blow up.

(4) While denominators involve concentrations of singlets
only, which are time independent, in some cases it is neces-
sary to restrict the corresponding exponents as otherwise the
terms representing the closure model will have large prefac-
tors which may also cause the solutions of the ODE system
(8) to blow up; hence, we impose β1 � ξ1, ξ2 � β2, where β1

and β2 are the lower and upper bounds on the exponents to be
specified.

Optimal parameters Vi of the closure model are ob-
tained separately for each cluster type i by minimizing the
mean-square error between the experimental concentration
data C̃i(t ) obtained from simulated annealing experiments,
and the predictions of the corresponding ansatz function
gi(C̃+, C̃−, C̃++(t ), C̃−−(t ), C̃+−(t ); Vi ) (cf. Table I), obtained
with the parameter vector Vi over the time window [0, T ],
where T corresponds to the end of the simulated annealing
process. Then, for each i ∈ �, error functional is defined as

Ji(Vi ) = 1

2

∫ T

0
[gi(C̃+, C̃−, C̃++(t ), C̃−−(t ), C̃+−(t ); Vi )

− C̃i(t )]2dt, (14)

which leads to the following family of constrained optimiza-
tion problems:

min
Vi

Ji(Vi ),

subject to

⎧⎪⎨
⎪⎩

0 � γ j � δ, 1 � j � �i

β1 � ξ j � β2, 1 � j � 	i∑
j γ j − ∑

j ξ j = 1

, (15)

for each i ∈ �, where �i, 	i ∈ {1, 2} are the numbers of the
exponents appearing in the numerator and the denominator for
a given cluster type; cf. Table I.

We note that choosing different values of the adjustable
parameters δ, β1 and β2, which determine how stringent the
constraints in the optimization problem (15) are, has the effect
of regularizing the solutions of this problem. We will consider
the following two cases (when the lower or upper bound is
equal to −∞ or ∞, this means that effectively there is no
bound):

(1) “Soft” regularization with β1 = −∞, β2 = ∞, δ = 6
and

(2) “Hard” regularization with β1 = 0 and β2 = δ = 2.
In each case optimization problem (15) is solved numeri-

cally in MATLAB using the nonlinear programming routine
fmincon. The optimal closures determined in these two ways
are compared to the pair approximation in Sec. IV C.

C. Results for optimal approximation

In this section we determine the optimal structure of the
closure models given in Table I by solving optimization prob-
lem (15) for each type of 3-cluster in the set � [cf. (4)], as
described in Sec. IV B. Parameters of the closure relations
given in Table I are determined separately for each cluster type
by solving problem (15), and the obtained results are collected
in the form of the values of the exponents in Table II, where
for comparison we also show the exponents corresponding
to the pair approximation; cf. Sec. IV A. We recall that for
each 3-cluster-type problem (15) is solved with both soft and
hard regularization. In Table II the optimal results are pre-
sented for solving problem (15) subject to hard regularization
(β1 = 0, δ = β2 = 2) by separately fitting the closure models
to the data obtained for two systems with Li1/2Mn1/2 and
Li1/3Mn2/3. The first system is interesting since, as we shall
see below, due to the symmetry in the concentrations of Li
and Mn, closure models calibrated based on the data from
this system are particularly robust with respect to different
stoichiometries. The second system is considered in our anal-
ysis due to its interesting behavior at low temperatures where
physically relevant crystalline microstructures are obtained, as
discussed in Sec. II. This system is also used as a benchmark
in [1]. In Table II we note that most of the exponents in
the optimal closure approximation tend to be different from
the corresponding exponents in the pair approximation. In-
terestingly, we observe that many exponents obtained for the
optimal closure by fitting to the data for the system Li1/2Mn1/2

are equal to zero or one, opening the possibility of finding a
simpler closure model to be investigated in Sec. IV D.

The mean-square error (14) for each 3-cluster type for
the pair approximation and the optimal closure fitted to
Li1/2Mn1/2 and Li1/3Mn2/3 systems is shown in Fig. 7. For
both systems and for almost all 3-cluster types the optimal
closure leads to a more accurate description with errors (14)
smaller by a few orders of magnitude than when the pair
approximation is used. In the next section we will simplify the
obtained optimal closure and will propose an interpretation of
the resulting structure.

D. Sparse approximation and its interpretation

In this section we investigate the exponents characterizing
the optimal closure presented in Table II. As can be observed,
many exponents in the optimal closure relations are equal
or close to zero, and this trend is more pronounced in the
optimal closure obtained by fitting the data for the symmetric
system Li1/2Mn1/2 (when an exponent is zero, then the closure
relation does not depend on the corresponding 2-cluster con-
centration). Thus, as is evident from Table III, the resulting
structure of the closure is much simpler (“sparser”) for the

025313-8



DATA-DRIVEN OPTIMAL CLOSURES FOR MEAN-CLUSTER … PHYSICAL REVIEW E 106, 025313 (2022)

TABLE II. Exponents defining the optimal closure models (cf. Table I) found by solving problem (15) with hard regularization (β1 = 0,
β2 = δ = 2) based on the data for the system Li1/3Mn2/3 (OA-1/3) and the system Li1/2Mn1/2 (OA-1/2) for each 3-cluster type indicated in
the first column. For comparison, the exponents characterizing the pair approximation (PA) are also shown. The results are rounded to two
decimal places.

optimal approximation than for the closure obtained based on
the pair approximation. More specifically, note that for all

triplet types, except for (+̂ + −), (−̂ − +), , and

, the optimal closure depends on the concentration

of one 2-cluster only. In order to make the structure of the
closure model more uniform which will facilitate its inter-
pretation, we adjust the expressions which do not follow the
pattern. More specifically, in the optimal closure relations for

the clusters (−̂ − +) and the exponents are rounded

up and down to the nearest integer, whereas for (+̂ + −)

and the change is more significant and involves

adjusting the structure of the closure relation. We refer to this
simplified closure model as the sparse approximation (SA),
and its functional form is presented in Table III.

We now comment on how to interpret the structure of
the sparse approximation. As discussed in Sec. IV A, the
pair approximation model neglects the correlation between
non-nearest-neighbor elements. This is due to the lack of
information about the triple correlation term Ti jk in (12a).
Considering relations (12) for the sparse approximation, the
triplet correlation term is Ti jk = Cj

Ci j
for the linear and angled
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FIG. 7. The mean-square errors (14) for the pair approximation (PA) and optimal approximation subject to hard regularization for (a) the
system Li1/2Mn1/2 (OA-1/2) and (b) for the system Li1/3Mn2/3 (OA-1/3).

triplets and Ti jk = CiCjCk

Ci jCjk
for the triangular triplets. This is

contrary to the assumption that Ti jk = 1 which is central to
the pair approximation. With the data in Table III we are
now in the position to refine the assumptions underlying these
approximations. Referring to relations (12), the concentration
of the triplet (Ci jk) can be written as the global pair con-
centration (Ci j) times the conditional probability of finding a
nearest-neighbor element to the pair in a certain state (Pk|i j).
Considering the linear and angled triplets in the sparse ap-
proximation formulation, we obtain

Ci jk = CiCjCkQi jQjkTi jk = CiCjCk
Ci j

CiCj

Cjk

CjCk

Cj

Ci j

= Ci j
Cjk/Cj

Ci j/Cj
= Ci j

Pk| j

Pi| j
. (16)

In a similar way one can consider the triangular triplets where

Ci jk = CiCjCkQi jQjkQikTi jk = Ci j
Cik/Ci

Ci j/Ci
= Ci j

Pk|i
Pj|i

. (17)

We thus deduce

Pk|i j = Pk| j

Pi| j
, for linear and angled clusters, (18a)

Pk|i j = Pk|i
Pj|i

, for triangular clusters. (18b)

These relations break down the probability of a 3-cluster in
terms of probabilities of two 2-clusters. They can be regarded
as generalizations of the pair approximation model [cf. rela-
tion (11)] with the inclusion of a term in the denominator.
To understand the meaning of this extension of the pair ap-
proximation, we refer to relation (11). It is clear that closure
is achieved using the pair approximation by assuming that
the conditional probability of an element k being a nearest
neighbor of j is equal to the conditional probability of k being
a nearest neighbor of an i j pair. In other words, the pair
approximation model assumes that an element j is always a

nearest neighbor of i, and we cannot find an element j which
is not a nearest neighbor of i. However, we know that this
simplifying assumption is not correct in general, and there is
always a possibility of finding an element j which is not a
nearest neighbor of i. By rearranging relation (18a) in the form
Pk| j = Pi| jPk|i j , it is evident that the SA model assumes that j
might not always be a nearest neighbor of i and accounts for
this possibility through the term Pi| j . A similar interpretation
can be adopted for triangular clusters.

The accuracy of the optimal approximation is certainly
affected when the exponents in the closure relations for the
four triplet types are adjusted as discussed above; cf. Ta-
ble III. Figure 8 shows the reconstruction errors for triplet
concentrations obtained using different closure models for
the system Li1/2Mn1/2. As can be expected, the SA model is
less accurate in comparison to the OA model for the triplets

(+̂ + −), (−̂ − +), , and . However, the

performance of SA model is still better than that of the pair
approximation model for the triplets (+̂ + −), (−̂ − +) and

. To conclude, the adjustments to the OA model

sacrifice a degree of the accuracy in reconstructing the triplet

concentration for while achieving a simpler and

interpretable model.
As a result of the simple structure of the SA closure (cf.

Table III), system (8) closed with this model becomes linear
and hence analytically solvable. It takes the form

d

dt
C++ = 2α1C+−, (19a)

d

dt
C−− = 2α2C+−, (19b)

d

dt
C+− = (−α1 − α2)C+−, (19c)

where the parameters α1 = 4
5 k1 + 1

5 k2 − 4
5 k3 − 1

5 k4 and
α2 = 4

5 k5 + 1
5 k6 − 4

5 k7 − 1
5 k8 are linear combinations of the

025313-10



DATA-DRIVEN OPTIMAL CLOSURES FOR MEAN-CLUSTER … PHYSICAL REVIEW E 106, 025313 (2022)

TABLE III. Closure relations for 3-clusters of different types derived based on the pair approximation, the optimal approximation using
the data for the system Li1/2Mn1/2 (cf. Table II), and the sparse approximation discussed in Sec. IV D.

reaction rates. The solution then is

C+−(t ) = μ1e(−α1−α2 )t , μ1 = C+−0 , (20a)

C++(t ) = 2α1μ1

−α1 − α2
e(−α1−α2 )t + μ2,

μ2 = C++0 − 2α1μ1

−α1 − α2
, (20b)

C−−(t ) = 2α2μ1

−α1 − α2
e(−α1−α2 )t + μ3,

μ3 = C−−0 − 2α2μ1

−α1 − α2
, (20c)

where C+−0 , C++0 and C−−0 are the initial concentrations of
the corresponding 2-clusters. The two parameters α1 and α2

instead of eight reaction rates k1 to k8 are sufficient to describe
the evolution of concentrations of different clusters in time.
If the growth rates α1 and α2 are negative, which will be
shown to be indeed the case in Sec. V A, then as is evident
from (20a), the concentration C+− grows exponentially with

the growth rate −(α1 + α2). On the other hand, the concen-
trations C++ and C−− decay exponentially in time. As will
be shown in Sec. V A, the growth of the concentration C+−
and the decay of the concentrations C++ and C−− is in fact
qualitatively consistent with the early-time evolution, but not
with the late-time evolution, of the 2-cluster concentrations
obtained from the simulated annealing experiment. In addition
to producing an analytically solvable model, an advantage of
the SA closure is that the inverse problem (23) also simplifies
and needs to be solved with respect to α1 and α2 only, which
does not require Bayesian inference.

E. Prediction capability of the closure models

In order to assess the predictive capability of the trun-
cated model closed with the optimal approximation or the
sparse approximation, the 3-cluster concentrations are recon-
structed as functions of time from 2-cluster concentrations.
We are interested in evaluating the prediction accuracy of
these models in comparison to the model equipped with the
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FIG. 8. The mean-square reconstructions errors (14) for the pair approximation and the optimal approximation constructed subject to hard
regularization based on the data for the system Li1/2Mn1/2 and for the corresponding sparse approximation for different cluster types; cf.
Table III. Note that the results for the last two closures differ only for the clusters marked with (∗∗).

pair approximation. In order to assess the robustness of these
predictions, we will do this for stoichiometries other than
the one for which the models were calibrated; cf. Secs. IV C
and IV D. More specifically, while the simulated annealing
data for the system with the composition Li1/3Mn2/3 was
used for calibration, accuracy of the models will be ana-
lyzed here for 10 different stoichiometries LixMn1−x, x ∈
{0.25, 0.30, 0.33, 0.36, 0.42, 0.50, 0.58, 0.64, 0.70, 0.75}. In
particular, we are interested in the effect of regularization—
soft versus hard with different parameters δ, β1, and β2—in
the solution of problem (15).

Robustness of the model performance will be assessed in
terms of the mean-square error (14) averaged over all types of
3-clusters, i.e.,

E = 1

|�|
∑
i∈�

Ji, (21)

where |�| = 16 is the total number of 3-clusters [cf. (4)], and
the true 3-cluster concentrations C̃i(t ) are obtained from sim-
ulated annealing experiments performed for each considered
stoichiometry. This diagnostic is designed to asses only the
accuracy of the closure relations given in Table III, rather than
of the entire truncated model (8).

Error (21) is shown as function of the stoichiometry for the
optimal closure obtained for the system Li1/3Mn2/3 subject
to hard and soft regularization in Figs. 9(a) and 9(b), respec-
tively. In addition, in these figures we also show the errors

obtained with the model based on the pair approximation.
As can be observed, harder regularization results in larger
prediction errors for stoichiometries close to Li1/3Mn2/3 in
comparison to softer regularization strategies. On the other
hand, harder regularization reveals better predictive per-
formance for stoichiometries different from Li1/3Mn2/3. In
other words, less aggressive regularization performs better
on stoichiometries close to the stoichiometry for which the
calibration of the closure relations from Table I was performed
in Sec. IV C, and the performance gradually degrades as the
stoichiometries become more different from Li1/3Mn2/3. We
thus conclude that there is a trade-off between robustness
and accuracy of the closure models, in the sense that models
optimized for a particular stoichiometry tend to be less robust
when used to describe other stoichiometries.

Finally, robustness of the closures based on the pair
approximation, the optimal approximation subject to hard reg-
ularization for the system Li1/3Mn2/3 and the corresponding
sparse approximation is compared for a range of stoichiome-
tries in Fig. 9. Note that solving the minimization problem
(15) subject to hard regularization produces more versatile
closure models that can be applied to a range of stoichiome-
tries without significant loss of accuracy. Hence, the optimal
approximation models of interest are achieved by hard regu-
larization in (15). Figure 10 shows the mean error (21) for a
range of stoichiometries for the three aforementioned closure
models. A significant improvement with respect to the per-
formance of the pair approximation model is achieved by the
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(a) (b)

FIG. 9. Dependence of the mean error (21) characterizing the accuracy of the different closure relations on the stoichiometry for (a) hard
regularization and (b) soft regularization employed in the solution of optimization problem (15) with parameters indicated in the legend for
Li1/3Mn2/3 system. “PA” and “OA” refer to, respectively, the pair and the optimal approximation.

optimal closure models for all stoichiometries. As can be ob-
served, the SA model performs better than the OA-1/3 model
for most of the stoichiometries, except the ones that are close
to the system Li1/3Mn2/3. This is due to the fact that in the
OA-1/3 model the minimization problem (15) is solved for
the system Li1/3Mn2/3 and hence fits are more accurate in the
neighborhood of this stoichiometry. We conclude by noting
that when averaged over all stoichiometries, the performance
of the sparse approximation model is improved by 36.13%
over the performance of the pair approximation model.

V. DETERMINING REACTION RATES VIA BAYESIAN
INFERENCE

In order for the truncated model (8) closed with either the
pair or optimal approximation to predict the time evolution

FIG. 10. The mean error (21) characterizing the accuracy of the
different closure relations indicated in the legend for a range of
different stoichiometries.

of 2-cluster concentrations, it must be equipped with correct
values of the rate constants k1, . . . , k8; cf. Figs. 4 and 5. Here
we show how these constants can be determined by solving
an appropriate inverse problem. It will be demonstrated that
this problem is in fact ill-posed, and a suitable solution will
be obtained using Bayesian inference, which also provides
information about the uncertainty of this solution.

We define the error functional as

J (K) = 1

2

∫ T

0
‖C(t, K) − C̃(t )‖2

2 dt + α‖Q(K) − Q̃‖2
2,

(22)
where C̃(t ) = [C̃++(t ), C̃−−(t ), C̃+−(t )] is the vector of pair
concentrations obtained from the simulated annealing exper-
iment, K = [k1, k2, . . . , k8] is the vector of unknown rate
constants, and C(t, K) is the vector of pair concentrations
predicted by model (8) equipped with the rate constants K.
The second term in (22) is the mean-square error between the
equilibrium constants Q(K) = [Q1, Q2, Q3, Q4] [cf. relation
(7)], predicted by model (8) equipped with parameters K
and the equilibrium constant Q̃ = [Q̃1, Q̃2, Q̃3, Q̃4] obtained
experimentally via simulated annealing. We note that the
equilibrium constants in (7) are written in terms of 3-cluster
concentrations and one of the closure models (i.e., the pair or
the optimal approximation) is used to express the equilibrium
constants in terms of 2-cluster concentrations. The parameter
α weights the relative importance of matching the equilibrium
constants versus matching the time-dependent concentrations
in (22).

The optimal reaction rates are then obtained by solving the
problem

min J (K)
K∈R8; K�0

subject to system(8), (23)

where the notation K � 0 means that each component of
vector K is nonnegative, separately for the case of the pair
and the optimal approximations. We note that the minimiza-
tion problems (15) and (23) are in fact quite different: in
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FIG. 11. Posterior probability densities P (K|C̃) obtained using Algorithm 1 for problem (23) with system (8) closed using (a) the pair
approximation and (c) the optimal approximation with exponents determined subject to hard regularization (OA-1/2). The parameters k1, k2,
and k3 are represented in term of the Cartesian coordinates, whereas the remaining three nonzero rate constants are encoded in terms of the
color of the symbols via the color maps shown in panels (b) and (d). The size of the symbols in panels (a) and (c) is proportional to J (K)−1.

the former the mismatch between the evolution of 3-cluster
concentrations is minimized with respect to a suitably parame-
terized structure of the closure model, whereas in the latter one
seeks to minimize the mismatch between the evolution of 2-
clusters in order to find the optimal reaction rates in the closed
system (8).

Inverse problems such as (23) are often ill-posed, in the
sense that they usually do not admit a unique exact solution,
but rather many, typically infinitely many, approximate solu-
tions. This is a result of the presence of multiple local minima,
which is a consequence of the nonconvexity of the error func-
tional (22), and the fact that these minima are often “shallow”
reflecting weak dependence of the model predictions C on
the parameters K. As will be evident from the results pre-
sented below, it is thus not very useful to solve problem (23)
directly using standard methods of numerical optimization
[34]. Instead, we will adopt a probabilistic approach based
on Bayesian inference where the unknown parameters in the
vector K and the corresponding model predictions C will be
represented in terms of suitable conditional probability den-
sities. This will allow us to systematically assess the relative

uncertainty of the many approximate solutions admitted by
problem (23). In this framework, the distribution of the pa-
rameters in K is given by a posterior probability distribution
P (K|C̃) defined as the probability of obtaining parameters K
given the observed experimental data C̃. The inverse problem
(23) is nonlinear, in the sense that the map C = C(t, K) from
the model parameters to model predictions is not linear, and
therefore we cannot expect the posterior distribution to have a
simple form. A Markov chain Monte Carlo (MCMC) sam-
pling method is then used in order to sample the posterior
parameter space (we remark that a Monte Carlo sampling
technique is also independently used in the simulated an-
nealing approach to generate data describing the evolution
of the lattice as discussed in Sec. II). MCMC methods are
commonly used to sample arbitrary distributions known up to
a normalizing factor, in particular, for distributions defined in
high dimensions where exploration of the entire space with
classical methods is computationally intractable. They have
found applications in many different fields such as electro-
chemistry [35], medical imaging [36,37], environmental and
geophysical sciences [38,39], ecology [40], and statistical
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FIG. 12. Histograms of the error functional J (K) obtained along the Markov chains for problem (23) with system (8) closed using (a) the
pair approximation and (b) the optimal approximation with exponents determined subject to hard regularization (OA-1/2). The black vertical
lines represent the values of the error functional J (α∗

1 , α
∗
2 ) obtained when the model based on the SA closure is used.

mechanics [41]. The mathematical foundations of Bayesian
inference are reviewed in the monographs [42–45], whereas
details of our approach are provided in Appendix B.

A. Results of Bayesian analysis

The reaction rates k1, . . . , k8 in system (8) are determined
in probabilistic terms using Bayesian inference for the pair
approximation and the optimal closure models. On the other
hand, for the sparse approximation there are only two un-
known parameters (α1 and α2) so they can be inferred by
solving the problem min(α1,α2 )∈R2 J (α1, α2) where the con-
centrations in the error functional are evaluated using the
closed-form relations (20). Although this minimization prob-
lem is not convex, a global minimum can be found using
standard optimization methods.

In the problems involving the pair approximation and the
optimal closure models some of the reaction rates were found
to be essentially equal to zero (or vanishingly small), so
here the results are presented for the remaining rates only. In
Figs. 11(a) and 11(c) we visualize the Markov chains obtained
with Algorithm 1 (cf. Appendix B) for system (8) closed with,
respectively, the pair approximation, the optimal approxima-
tion with exponents determined subject to hard regularization
(OA-1/2); cf. Table II. The Cartesian coordinates of each
point in Figs. 11(a) and 11(c) represent three of the parameters
characterizing an individual Monte Carlo sample, whereas
information about the remaining parameters is encoded in the
color of the symbol via the red-green-blue (RGB) mapping, as
shown in the color maps in Figs. 11(b) and 11(d). The size of
the symbols is proportional to J (K)−1 such that parameter
values producing better fits stand out as they are represented
with larger symbols. Note that, for clarity, the entire Markov
chains are not presented in Fig. 11 as the data are filtered based
on the value of the cost function (i.e., data points are shown
only if J (K) is smaller than some threshold).

It is evident from Figs. 11(a) and 11(c) that in each case
parameter values producing good fits form a number of clus-
ters, which reflects the fact that problem (23) indeed admits
multiple local minima. The complicated form of the posterior
distributions shown in these figures is a consequence of the

nonlinearity of the inverse problem (23). It is also interesting
to see that good fits are obtained with some of the reaction
rates varying by 200% or more, which is a manifestation of the
ill-posedness of problem (23) when the outputs C(K) reveal
weak dependence on some of the parameters in K. In order to
compare the quality of fits obtained with the pair and optimal
approximations, in Figs. 12(a) and 12(b) we show the his-
tograms of the values of the error functional J (K) obtained
along the Markov chains. Overall, the quality of the fits is
comparable in both cases and exhibits significant uncertainty,
although poor fits appear more likely when the closure based
on the pair approximation is used. The optimal parameter
values for the closure based on the SA model are (α∗

1 , α
∗
2 ) =

(−0.083,−0.166), and, as we can see in Figs. 12(a) and 12(b),
while the accuracy of the fit is lower than in the previous two
cases, there is effectively no uncertainty in the determination
of the parameters.

Finally, the time evolution of pair concentrations is deter-
mined by solving system (8) closed with one of the closure
models discussed, i.e., the pair approximation (PA), optimal
approximation with exponents subject to hard regularization
(OA-1/2) or sparse approximation (SA). However, in order to
solve problem (8), one needs to find a point estimate of the
parameters of the model (the reaction rates) rather than their
probability distribution. This can be done in two ways. In the
first approach, one finds the a posteriori probability distribu-
tion of parameters K and then the mode of this distribution,
known as the maximum a posteriori (MAP) estimation, can
be used as a point estimate maximizing the posterior proba-
bility distribution. The second approach is to find a parameter
vector K by solving the optimization problem (23) using a
classical optimization technique. It is known that the MAP
point estimate obtained using a normally distributed prior is
in fact equivalent to solving a minimization problem with
the error functional subject to Tikhonov regularization, such
as our problem (23) [46]. Here the latter approach has been
adopted for determining the point estimates.

The point estimates obtained as described above are used to
solve the initial value problem (8), and the results are shown
in Fig. 13. As can be observed, system (8) closed with the
OA-1/2 and PA closure models is more accurate in terms of
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(a) (b)

(c)

FIG. 13. Time evolution of pair concentrations (a) C++, (b) C−−, and (c) C+− obtained by solving system (8) closed with the pair
approximation, the optimal approximation with exponents subject to hard regularization and the sparse approximation. The concentrations
obtained from the simulated annealing experiment are shown as well.

predicting the evolutions of the pair concentrations than when
it is closed with the SA model. The reason is that both the
OA-1/2 and the PA closures offer more flexibility in fitting
the experimental data as there are 8 parameters in K to be
tuned. On the other hand, the sparse approximation involves
two parameters, α1 and α2, only. Moreover, as explained in
Sec. IV D, the analytic solution (20) of system (8) closed with
the sparse approximation predicts exponential behavior of pair
concentrations such that for large times these concentrations
tend to ±∞. This is clearly inconsistent with the long-time
behavior of the pair concentrations in the experiment where
they converge to finite equilibrium values. However, predic-
tions of the SA closure are valid for short timescales which are
in fact long enough to cover at least half of the time window
of interest; cf. Fig. 13. We thus conclude that, as expected,
there is a trade-off between the simplicity (interpretability)
of the model and its accuracy and the sparse approximation
sacrifices accuracy in favor of simplicity and robustness.

VI. SUMMARY AND CONCLUSIONS

We have considered a mathematical model for the evo-
lution of different cluster types in a structured lattice. We
focused our attention on the structured lattice of a nickel-
based oxide similar to those used in Li-ion batteries. That
being said, the approach used here is much more broadly

applicable. As is usual, the mean-clustering approach gives
rise to an infinite hierarchy of ordinary differential equations,
where concentrations of clusters of a certain size are described
in terms of concentrations of clusters of higher order. This
infinite hierarchy must be truncated at an arbitrary level and
closed with a suitable closure model (or closure condition) in
order to be solvable. This closure requires an approximation
of the concentrations of the higher-order clusters in terms of
the concentrations of lower-order ones. As a point of depar-
ture, we consider the pair approximation, which is a classical
closure model, and then introduce its generalization referred
to as the optimal approximation, which is calibrated using a
data-driven approach.

The optimal approximation can be tuned for different lev-
els of accuracy and robustness by adjusting the degree of
regularization employed in the solution of the optimization
problem. Our analysis shows that the model subject to soft
regularization results in highly accurate approximations for
the local stoichiometry, but the accuracy deteriorates for other
stoichiometries. On the other hand, the model subject to hard
regularization has a lower accuracy at the local stoichiometry
but is more robust with respect to changes of stoichiometry.
The model subject to hard regularization produces more accu-
rate results than the pair approximation for a broad range of
stoichiometries. More importantly, the closure model found
in this way turns out to have a simple structure with many
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exponents having nearly integer values. Exploiting this struc-
ture, we arrive at the sparse approximation model which is
linear and therefore analytically solvable.

In addition to being simpler, the sparse approximation
model is also more accurate and robust than the pair ap-
proximation, in that it can be applied to a wide range of
stoichiometries without a significant loss of accuracy. This
model is interpretable as it makes it possible to refine some
of the simplifying assumptions at the heart of the pair approx-
imation. One of these assumptions states that the conditional
probability of k being a nearest neighbor of i j in a triplet (i jk)
is equal to that of k being a nearest neighbor of j. In other
words, it is assumed that every j element in the lattice has a
nearest neighbor in state i. The sparse approximation refines
this assumption by adding a term that takes into account
the conditional probability of j being a nearest neighbor of
i. This correction makes the model both simpler and more
accurate.

The reaction rates in system (8) closed using one of the clo-
sure models are determined by formulating a suitable inverse
problem. We solve these problems using a state-of-the-art
Bayesian inference approach which also allows us to esti-
mate the uncertainties of the reconstructed parameters. The
results obtained show that the inverse problem is in fact
ill-posed in the case of the closures based on the pair and
optimal approximation, in the sense that the corresponding
optimization problems admit multiple local minima. More-
over, these minima tend to be “shallow” reflecting the low
sensitivity of the models closed with the pair and optimal
approximations to the reaction rates. As a result, the in-
ferred values of these parameters suffer from uncertainties
on the order of 200%. In contrast, the model closed us-
ing the sparse approximation is well posed with respect to
α1 and α2, which are linear combinations of reaction rates.
This model is analytically solvable, which completely elimi-
nates the uncertainty in the reconstruction of its parameters.
However, we note that the simplicity and robustness are
achieved by sacrificing some accuracy of the model predic-
tions. Namely, while the sparse approximation predicts the
evolution of pair concentration at short timescales, it fails
to predict their convergence to equilibrium values for longer
times.

Notably, the mean-cluster modeling approach considered
in the present work can be used to describe the evolution
of clusters of arbitrary size and type defined on structured
lattices various types. The size and shape of the cluster and
the structure of the lattice determine the reactions between
elements. More complicated lattices and bigger cluster sizes
involve more possible nearest-neighbor element swaps, re-
sulting in a larger number of parameters in the model. The
sparse approximation methodology could be utilized in a
similar way to close the corresponding hierarchical models.
We add that the sparse approximation has been realized by
inferring the structure of the closure from the results obtained
using the optimal closure approximation. The optimal closure
approximation could in principle be generalized to other lat-
tice structures and cluster evolution types, and, although the
sparse approximation involves a heuristic aspect, it does lead
to refined probabilistic rules describing lattice evolution on
short timescales. It is therefore an interesting question if these

rules could be used to improve closure models for other, more
complicated, lattice configurations.
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APPENDIX A: ROTATIONAL SYMMETRY

Theorem A.1. In a 2D triangular lattice (where each el-
ement is surrounded by 6 nearest-neighbors), if the energy
function of the lattice is invariant with respect to the spatial
orientation of the bonds, 2-clusters with different spatial ori-
entations have the same concentrations in the ground state,
i.e., the probability of finding a particular 2-cluster in the
lattice is independent of its spatial orientation.

Proof. The energy function used in the simulated an-
nealing experiment in Sec. II is achieved by summing over
energies of single oxygen sites, i.e., E = ∑

i Ei. The energy
over each oxygen site is calculated by considering its neighbor
elements in six different positions. The energy over each oxy-
gen site is independent of the orientation of the neighboring
sites and depends only on the type and charge of the neigh-
boring elements. �

APPENDIX B: BAYESIAN INFERENCE

In the Bayesian framework the distribution of the model
parameters is given by the posterior probability distribution
P (K|C̃) defined as the probability of obtaining parameters K
given the observed experimental data C̃. According to Bayes’
rule, we then have

P (K|C̃) = P (C̃|K)P (K)

P (C̃)
, (B1)

where P (C̃|K) is the likelihood function describing the likeli-
hood of obtaining observations C̃ given the model parameters
K, and P (K) is the prior probability distribution reflecting
some a priori assumptions on the parameters K (based, e.g.,
on direct measurements or literature data), whereas P (C) can
be viewed as a normalizing factor.

One approach to choosing the prior distribution P (K) is to
use an uniform distribution, leading to the so-called uninfor-
mative prior. Another common approach useful when no prior
information is available is to employ a normal distribution
with zero mean, which allows one to explore parameter values
with bounded magnitudes, and this is the approach we adopt
here. In our problem the reaction rates in K are nonnegative,
hence a half-Gaussian distribution truncated at zero is used as
the prior.

With regard to the likelihood function, it is usually defined
as [44]

P (C̃|K) ∝ e−J (K). (B2)
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Algorithm 1 Random walk delayed rejection algorithm

This definition of the likelihood function arises from the fact
that parameter values are considered more likely if they pro-
duce model predictions C closer to the data C̃. Unlike the
linear case where the inference problem can be often solved

directly by exploiting connections with Tikhonov regulariza-
tion [46], this is not possible here due to the nonlinearity of
the inverse problem (23), and we can expect the posterior
distribution P (K|C̃) to have a complicated form.
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The main challenge is efficient sampling of the likelihood
function P (C̃|K), and this can be performed using a Markov
chain Monte Carlo (MCMC) approach. It is a form of a ran-
dom walk in the parameter space designed to preference the
sampling of high-likelihood regions of the space while also
exploring other regions. In the MCMC algorithm, a kernel
Q(K∗|K) is used to generate a proposal for a move in the
parameter space from the current point K to a new point
K∗. This new point is accepted with a probability given by
the Hastings ratio; otherwise, it is rejected (the “Metropolis
rejection”). In order to preserve the reversibility of the Markov
chain, the Hastings ratio for the acceptance probability is
defined as

α(K∗, K) = min

{
1,

P (K∗|C̃)Q(K|K∗)

P (K|C̃)Q(K∗|K)

}
. (B3)

Thus, the Markov chain is reversible with respect to the
posterior distribution, meaning that a transition in space
is equally probable during forward and backward evolu-
tion. This property makes the posterior distribution invariant
on the Markov chain. In other words, if given enough
iterations, the distribution converges to its equilibrium distri-
bution. The most common choice of the random walk is in
the form

K∗ = K + ξ (B4)

such that Q(K∗|K) = Q(K∗ − K) = Q(ξ), where ξ is an
eight-dimensional random variable drawn from a uniform
distribution with scale σ ∈ R8, i.e., ξ ∼ U [−σ, σ]. Note that
the components of the scale σ represent intervals defining
the uniform distribution. It has been suggested that uniform
kernels outperform Gaussian ones in terms of convergence
of the MCMC algorithm [47], hence, we adopt the uniform
kernel in our study. The choice of symmetric kernels simpli-
fies relation (B3) as the factors representing the density in the

numerator and denominator cancel. However, the choice of
scale for the proposal kernel is nontrivial. Small scales will re-
sult in slow convergence to the posterior distribution, whereas
large scales will prevent sampling of desirable regions in the
parameter space. Moreover, in our model there is no prior
information about an appropriate scale for the proposal kernel.
In order to tackle this issue, a two-step Delayed-Rejection
Metropolis-Hastings (DR-MH) algorithm is used [38,48,49].
In this algorithm, the rejection of the first proposed point at a
given iteration of the Markov chain is delayed by proposing
a step in the space based on a different scale. Normally, the
scale of the first kernel is chosen to be large in order to explore
a wider region of the high-dimensional parameter space, and
the scale of the second kernel is small to gather more sam-
ples from higher-likelihood regions. This approach combines
exploration of large regions in a high-dimensional space with
focus on high-likelihood neighborhoods. Here we adopt the
two scales to be equal to 1 and 0.1, respectively. The DR-MH
algorithm also ensures the reversibility of the Markov chain,
meaning that the direction of time in which the random walk
is taking place does not affect the dynamics of the Markov
chain. In other words, a random walk in the forward direction
of the chain from state n to state n + 1 is equally probable as
the reverse walk from state n + 1 to state n. This ensures that
the chain remains in an equilibrium state as it evolves. This is
an important property as the Markov chain is essentially a ran-
dom walk in the posterior space and reversibility is required to
ensure it remains in the same posterior space. The acceptance
probability of the delayed proposed point is calculated using
relation (B6). To initialize the DR-MH algorithm, we require
an initial set of model parameters which is drawn from a
half-Gaussian prior distribution with zero mean and unit stan-
dard deviation. The total number of samples in the Markov
chain is M = 104. Algorithm 1 outlines the entire procedure
needed to approximate the posterior probability distribution
P (K|C̃). Additional details concerning MCMC approaches
can be found in monographs [50,51].
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