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We report on differential evolution for analytic continuation: a parameter-free evolutionary algorithm to
generate the dynamic structure factor from imaginary time correlation functions. Our approach to this long-
standing problem in quantum many-body physics achieves enhanced spectral fidelity while using fewer compute
(CPU) hours. The need for fine-tuning of algorithmic control parameters is eliminated by embedding them within
the genome to be optimized for this evolutionary computation-based algorithm. Benchmarks are presented for
models where the dynamic structure factor is known exactly and experimentally relevant results are included for
quantum Monte Carlo simulations of bulk 4He below the superfluid transition temperature.
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I. INTRODUCTION

Imaginary time correlation functions can be extended to the
real time domain via analytic continuation [1]. However, the
process to achieve accurate spectral functions from quantum
Monte Carlo (QMC) data is a notoriously ill-posed inverse
problem as a result of the stochastic uncertainty that ensures
the equivalent likelihood of many different possible recon-
structions through direct inverse Laplace transformations.

Current approaches to the inverse problem are labeled by
a collection of acronyms and include the average spectrum
method (ASM) [2], stochastic optimization with consistent
constraints (SOCC) [3], genetic inversion via falsification of
theories (GIFT) [4,5], the famous maximum entropy method
(MEM) [6], and the fast and efficient stochastic optimiza-
tion method (FESOM) [7]. The ASM performs a functional
average over all admissible spectral functions, while SOCC
uses random updates to the spectrum consistent with error
bars on the input data. The GIFT method uses a genetic
algorithm with many algorithmic control parameters. The
traditionally used MEM utilizes Bayesian inference and is
further described in Sec. III A. Finally, a state-of-the-art FE-
SOM adds random noise to proposed spectra at each iteration,
averaging the spectra when a level of fitness is reached,
and is further described in Sec. III B. More recent work
has focused on applying machine learning techniques [8–10]
with limited success for particular types of imaginary time
correlations.

In this paper we introduce a different method, the differen-
tial evolution for analytic continuation (DEAC) algorithm, to
achieve reconstructed dynamic structure factors S(q, ω) from
the imaginary time intermediate scattering function. Similar to
the GIFT method [4], a population of candidate spectral func-
tions is maintained whose average fitness is improved through

recombination over several generations. Control parameters
are adjusted using self-adaptive techniques. This method is
validated against nine multipeak spectra at finite temperature
and compared with two other robust and commonly used
methods, the MEM and FESOM. Our algorithm performs
well in terms of speed, accuracy, and ease of use. These
three strengths provide opportunities for scientific discovery
through greater utilization of computational resources and
better fidelity of the reconstructed spectra.

The remainder of this paper is organized as follows. We
begin with a comprehensive description of the inverse prob-
lem, the construction of simulated quantum Monte Carlo data,
and the method used to generate imaginary time intermediate
scattering data for superfluid 4He. Details are then given for
our implementation of the two competing approaches, before
proceeding to a detailed discussion of our evolutionary algo-
rithm. A careful comparison of the results and performance
of the DEAC algorithm with both the maximum entropy
and stochastic optimization methods is provided for simu-
lated data sets containing ubiquitous spectral features. Moving
beyond simulated data, results are shown for the bulk 4He
spectrum below the superfluid transition temperature. We con-
clude with an analysis of the resulting spectral functions and
discussion of the advantages of each method. Scripts and data
used in analysis and plotting as well as details to download
the source code for the three analytic continuation methods
explored are available online [11].

II. MODEL AND DATA

A. Inverse problem

The dynamic structure factor is a measure of particle cor-
relations in space and time [1]. It is defined as the temporal
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Fourier transform

S(q, ω) = 1

2π

∫ ∞

−∞
F (q, t ) exp(iωt )dt (1)

for wave vector q and frequency ω, where F (q, t ) =
1
N 〈ρq(t )ρq̄(0)〉 is the intermediate scattering function, which
can be written more explicitly as

F (q, t ) = 1

N

〈∑
j,l

e−iq·r j (t )eiq·rl (0)

〉
(2)

in units with Planck’s constant h̄ = 1 and the Boltzmann con-
stant kB = 1 for time-dependent particle positions r(t ).

A determination of the intermediate scattering function in
imaginary time is found by using the detailed balance condi-
tion of the dynamic structure factor S(q, ω) = S(q,−ω)eβω, a
Wick rotation of F (t ) to F (−iτ ), and a Fourier transform of
Eq. (1) giving

F (q, τ ) =
∫ ∞

0
S(q, ω)[e−τω + e−(β−τ )ω]dω (3)

for imaginary time τ and β = 1
T . Exact results within sta-

tistical uncertainties for F (q, τ ) can be produced via QMC
simulations [12–20].

Accurate reconstruction of S(q, ω) through an inverse
Laplace transform of Eq. (3) is problematic. A brute
force approach quickly reveals the ill-conditioned nature of
the transformation and unique solutions are not guaranteed
due to the finite uncertainty in the measured F (q, τ ). Further-
more, the use of periodic boundary conditions in simulations
to reduce finite-size effects further restricts measurements to
specific momenta

q =
D∑

α=1

2πnα

Lα

êα, (4)

which are commensurate with the periodicity of the D-
dimensional hypercubic system with volume

∏D
α=1 Lα , where

nα ∈ Z and êα denote unit vectors. The use of incommensu-
rate q vectors results in large deviations from expected results,
especially at low momenta [21]. In order to make a com-
parison with experimental measurements that depend only
on the magnitude of the momentum vector q (such as with
neutron scattering experiments on powder or liquid samples),
we separate results for S(q, ω) into bins of [q, q + �q], where
�q is an arbitrarily chosen spectral resolution. Some finite
error is introduced with this approach due to the nonuniform
distribution of the magnitudes of q vectors in each bin, but is
mitigated with increasing box size approaching the thermo-
dynamic limit. Approaches to generating accurate S(q, ω) are
discussed in Sec. III.

Spectral moments of integration [22]

〈ωk〉 =
∫ ∞

0
ωkS(q, ω)[1 + (−1)ke−βω]dω (5)

can be used to reduce the search over the number of possible
spectral functions in some cases. The inverse first frequency
moment 〈ω−1〉 is proportional to the static linear density

response function [23] and is fixed by F (q, τ ),

〈ω−1〉 = 1

2

∫ β

0
dτ F (q, τ ), (6)

while the zeroth frequency moment

〈ω0〉 = S(q) ≡
∫ ∞

0
S(q, ω)(1 + e−βω )dω (7)

is the static structure factor S(q) by definition.
These moments of integration are useful when they are

exactly known, such as in the case of neutral quantum liquids
where the first frequency moment is equivalent to the free
particle dispersion [23,24]

〈ω1〉 = h̄|q|2
2m

(8)

shown here in dimensionful units or when they can be
accurately estimated, such as in the case of the uniform
electron gas or other hard-core gasses for the third fre-
quency moment [25–29]. To further highlight the general
utility and knowledge-free nature of the evolutionary algo-
rithm discussed here, we chose to not enforce the moments
of integration. However, their inclusion, when available, could
serve to further enhance the accuracy of the DEAC method.

While we are ultimately interested in the dynamic structure
factor S(q, ω), it can be useful to perform the analytic continu-
ation on a modified kernel by replacing S(q, ω) with S′(q, ω)
in Eqs. (3) and (5) and transforming back after performing
the analytic continuation. Three useful kernels of integration
were determined and are described below. The standard ker-
nel S′(q, ω) = S(q, ω) is simply the dynamic structure factor.
The normalization kernel S′(q, ω) = S(q, ω)(1 + e−βω ) sim-
plifies the static structure factor [15]. The hyperbolic kernel
S′(q, ω) = 2S(q, ω)e−βω/2 severely constrains the modified
intermediate scattering function while causing hyperbolic
terms to appear in Eqs. (3) and (5). These kernels exhibit dif-
ferent performance in terms of CPU hours, but give generally
similar resulting spectra. The hyperbolic kernel was used with
the simulated QMC data and the normalization kernel was
used to produce the bulk 4He spectrum.

B. Simulated quantum Monte Carlo data

Simulated quantum Monte Carlo data were generated to
determine how each of the methods described in the next
section perform at reconstructing S(q, ω) from F (q, τ ). A data
set of spectral functions

Sexact (q, ω) = pl s̃(ω,μl , σl , β ) + pr s̃(ω,μr, σr, β ) (9)

was created from a superposition of two Gaussian-like fea-
tures of the form

s̃(ω,μ, σ, β ) = 
(ω)s(ω,μ, σ ) + 
(−ω)s(−ω,μ, σ )e−βω

(10)
scaled by a factor pl|r , where

s(x, μ, σ ) = 1

σ
√

2π
e−(1/2)[(x−μ)/σ ]2

(11)

is a normalized Gaussian function centered at μ with width
determined by σ . The spectra were normalized by their re-
spective static structure factors S(q). The exact intermediate
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TABLE I. Parameters to generate the dynamic structure factor and intermediate scattering function from Eqs. (9) and (12), respectively.
The subscripts l and r correspond to the leftmost peak and rightmost peak of the spectral function in the positive-frequency space.

Alias pl μl (K) σl (K) pr μr (K) σr (K)

same height close (shc) 0.50 15.0 3.0 0.50 35.0 3.0
same height far (shf) 0.50 15.0 3.0 0.50 45.0 3.0
same height overlapping (sho) 0.50 15.0 3.0 0.50 25.0 3.0
short tall close (stc) 0.25 15.0 3.0 0.75 35.0 3.0
short tall far (stf) 0.25 15.0 3.0 0.75 45.0 3.0
short tall overlapping (sto) 0.25 15.0 3.0 0.75 25.0 3.0
tall short close (tsc) 0.75 15.0 3.0 0.25 35.0 3.0
tall short far (tsf) 0.75 15.0 3.0 0.25 45.0 3.0
tall short overlapping (tso) 0.75 15.0 3.0 0.25 25.0 3.0

scattering function for such spectra can be calculated using
Eq. (3) as

F̃sim(q, τ ) = pl f̃ (τ, μl , σl , β ) + pr f̃ (τ, μr, σr, β ), (12)

where

f̃ (τ, μ, σ, β ) = 1
2 e−μ2/2σ 2

[ f (τ, μ, σ ) + f (β − τ, μ, σ )]
(13)

and

f (x, μ, σ ) = e(μ−xσ 2 )2/2σ 2

{
1 + erf

[
1

σ
√

2
(μ − xσ 2)

]}
.

(14)
The first frequency moment for a single Gaussian-like spectra
s̃(ω,μ, σ, β ) can be calculated via Eq. (5) as

〈
ω1

s̃

〉 = 1

2

{
eβ2σ 2/2−βμ(βσ 2 − μ)erfc

[
(βσ 2 − μ)

σ
√

2

]

+ μ

[
erf

(
μ

σ
√

2

)
+ 1

]}
. (15)

Simulated quantum Monte Carlo data Fsim(q, τ ) were gen-
erated by adding normally distributed noise to the exact
intermediate scattering function for Ns = 1000 samples and
averaging the results

Fsim(q, τ ) = 1

Ns

Ns∑
1

[1 + εN (0, 1)]F̃sim(q, τ ), (16)

where N is the standard normal distribution and ε is the noise
amplitude. Three separate noise amplitudes were explored
ε = 0.0001, 0.001, 0.01 and are referred to as small, medium,
and large errors. These labels are not intended as commentary
on the quality of the simulated data and are only used for easy
reference between the three error levels.

Nine simulated data sets at each error level were generated
with two Gaussian-like peaks in the positive-frequency space.
Parameters to Eqs. (9) and (12) used to generate the exact dy-
namic structure factors and intermediate scattering functions
along with aliases for each spectra are found in Table I. These
parameters were chosen to simulate experimentally relevant
spectra and explore the resolving power of spectral features
for each analytic continuation method explored. Each data
set was generated at temperature T = 1.2 K for M = 129
imaginary time steps from τ0 = 0 to τM = β

2 .

C. Bulk helium quantum Monte Carlo data

Liquid helium is the most accessible and best studied
strongly interacting quantum fluid [30–33]. A demonstration
of the ability of the DEAC algorithm to generate experi-
mentally relevant spectra will be presented in Sec. V B by
reproducing the phonon-roton spectrum of bulk 4He from
quantum Monte Carlo data. The results presented herein uti-
lize our open source path integral quantum Monte Carlo
code in the canonical ensemble (access details in Ref. [34]).
Simulations were performed with temperature T = 1.35 K,
chemical potential μ = −5.47 K, M = 100 imaginary time
slices, and N = 64 particles. The finite box size was de-
termined by setting the density corresponding to saturated
vapor pressure with Lx = Ly = Lz ≈ 14.311 58 Å [35]. For
the helium-helium interactions we adopted the Aziz in-
termolecular potential [36]. Data were collected for 1357
different q vectors constructed according to Eq. (4) cor-
responding to all allowable vectors with magnitudes q �
3.0 Å−1. Imaginary time symmetry around τ = β

2 was used
to combine measurements taken for F (q, β/2 + i�τ ) and
F (q, β/2 − i�τ ). Results for each vector were jackknife av-
eraged over 100 separate seeds.

III. PREVIOUS METHODS

A. Maximum entropy method

The standard and most commonly used approach for de-
termining spectral functions from imaginary time correlation
functions is the maximum entropy method [6,37]. Bayesian
inference is used to optimize the likelihood function and prior
probability. Starting from Bayes’ theorem

P(S|F ) = P(F |S)P(S)

P(F )
, (17)

where P(S|F ) is the probability of obtaining spectrum S given
the intermediate scattering function function F , P(F |S) is the
probability of obtaining F given S and is the likelihood, P(S)
is the so-called prior probability of obtaining spectrum S, and
P(F ) is a marginal probability that can be ignored in this
treatment as it is constant. Through the central limit theorem,
a proportionality can be determined for the likelihood

P(F |S) ∝ e−(1/2)χ2
, (18)
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where

χ2 =
M∑

i=0

1

M

(Fi − F̄i )2

σ 2
i

. (19)

The expected value F̄i is the averaged simulation data, while
σ 2

i is its variance at imaginary time slice τi and M is the
number of imaginary time slices.

A form for the prior probability that obeys the properties of
the spectral function can be introduced to constrain the search
space for possible solutions

P(S) ∝ eαŜ, (20)

where α is the regularization constant and the information
gain (or relative entropy term)

Ŝ = −
∑

i

�ωi

2π
S(ωi ) ln

S(ωi )

D(ωi )
(21)

is the Kullback-Leibler divergence of a spectral function A(ω)
from some default model D(ω) that captures prior information
of the spectrum after discretization of the frequency space.

The posterior probability can then be described by

P(S|F ) ∝ eαŜ−(1/2)χ2
. (22)

Maximizing this quantity amounts to the minimization of

Q[S] = 1
2χ2 − αŜ. (23)

We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method as the algorithm of choice [38,39] to minimize
Eq. (23). A maximum of 20 000 BFGS iterations are per-
formed for each simulation.

There are several approaches to determining the appropri-
ate regularization constant α and we employ a recent method
developed by Bergeron and Tremblay [37]. A schematic
representation of their approach is shown in Fig. 1, where a
sweep over possible α is performed with the optimal value
chosen by computing the curvature of log10 χ2 as a function
of log10 α. Curvature is estimated as κ = 1

R , where R is the
radius of a circle fit to the data. Three distinct regions are
observed: noise-fitting, information-fitting, and default model
regions. The α value corresponding to the maximum curvature
close to the noise-fitting region is the value that recovers the
optimal spectral function.

The default model D(ω) was chosen to be a single
Gaussian-like peak in the positive frequency space using
Eq. (10) for an equally spaced frequency partition of size
N = 129 ranging from ω0 = 0.0 K to ωN = 64.0 K. For each
model per simulated spectra, the parameter μ was chosen to be
the first moment as calculated by Eq. (15) and the parameter

σ = min(〈ω1〉 − ω0, ωN − 〈ω1〉)

3
, (24)

where the denominator allows for sufficient damping of the
default model before reaching the edges of the frequency
search space. The initial guess for S(q, ω) for each MEM
simulation was set to the default model. The regularization
constant α was swept over for an equally spaced partition in
log10 space of size Nα = 1001 from 10−1 to 104. Optimal final
spectra at each error level for the data set described by Table I
were determined as described above.

FIG. 1. Schematic representation of the method to determine the
optimal regularization constant when using the maximum entropy
approach. The noise-fitting region is characterized by little to no
change in the recovered spectra with changes to α and is domi-
nated by fitting to the noise in the intermediate scattering function.
The information-fitting region corresponds to spectra with deviations
from the default model strongly affected by α. The default model
region consists of spectra with little or no deviation from the default
model. An example of a circle fit to the data is shown in red, where
an estimate of curvature can be made made from the radius.

B. Fast and efficient stochastic optimization method

The fast and efficient stochastic optimization method [7]
is a state-of-the-art technique to determine spectral functions
from imaginary time quantum Monte Carlo data. The ap-
proach uses minimal prior information by solely optimizing
the likelihood function. This is achieved by brute force mini-
mization of Eq. (19) through a numerical algorithm (described
below) to within an acceptable tolerance level η. Several
FESOM simulations are performed and the final spectrum is
determined by averaging the results. A confidence band can
be constructed by taking the standard deviation. This treat-
ment of the final spectrum is statistically allowable since each
realization has the same posterior probability when χ2 = η.

In practice, a FESOM simulation is performed as fol-
lows. An initial spectrum is generated on a discretized
frequency space {ω0 � ω1 � · · · � ωi � · · · � ωN−1 � ωN }
obeying the normalization condition Eq. (7). The quality of
fit χ2 is calculated via Eq. (19). For each iteration, an update
to the spectrum is proposed by scaling each spectral weight
S(q, ωi ) by |1 + xi| where xi ∈ N (0, 1) and normalizing by
the static structure factor S(q). If the new spectrum has a χ2

value that is smaller than the previous iteration, the update is
accepted. Iterations are performed until acceptable tolerance
is achieved as described previously. In our simulations, the ini-
tial spectrum was generated using the same method described
for the default model above in Sec. III A with the exception
that the frequency space partition size was N = 513. For each
error level, NR = 1000 reconstructions of the spectral func-
tion were measured using FESOM to an acceptable tolerance
level of η = 5ε. A maximum of NI = 107 iterations were
performed for each simulation. The results were averaged to
generate a final spectrum at each error level for the data set
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described by Table I. The final spectra were smoothed by
averaging the spectral weight in adjacent frequency bins.

IV. DIFFERENTIAL EVOLUTION FOR ANALYTIC
CONTINUATION

Inspired by the genetic inversion via falsification of
theories algorithm [4,5], we developed an approach using evo-
lutionary computation, the differential evolution for analytic
continuation method that does not rely on hyperparameters.
A comparison of the GIFT method with the MEM at T =
0 K can be found in Ref. [40]. The approach developed
here expands to the finite-temperature regime and uses an
evolutionary computation method well suited for a genome
consisting of real valued numbers.

Differential evolution [41] is a class of evolutionary algo-
rithms which determines an optimal solution within a certain
tolerance based on fitness criteria. A population of candidate
solutions is maintained and updated through a simple vector
process described below. As the simulation progresses, each
candidate solution is rated and added to the population based
on some fitness criteria and the average fitness of the popu-
lation improves. Here the population is comprised of spectral
functions S(q, ω) discretized over a fixed frequency space and
the fitness of candidate solutions is calculated via Eq. (19).

Each iteration of the DEAC algorithm generates a new
candidate population by the following process. For each agent
S̃m(q, ω) in the population, three other agents S̃ j , S̃k , and S̃l are
randomly chosen such that S̃m �= S̃ j �= S̃k �= S̃l . A potential
new member S̃n is created by iterating over the frequency
space {ω0, . . . , ωN } and for each ωi,

S̃n(ωi ) =
{

S̃ j (ωi ) + γ [S̃k (ωi ) − S̃l (ωi )] for U (0, 1) � Pc

S̃m(ωi ) otherwise,
(25)

where U (0, 1) is a random number drawn from the standard
uniform distribution, Pc is the crossover probability, and γ

is the differential weight. The new agent S̃n replaces S̃m in
the next generation if fitness improves over S̃m; otherwise S̃m

is retained. Additionally, the new candidate solution S̃n may
be normalized to the static structure factor, such as in the
FESOM, before calculating the fitness in order to constrain
the solution search space, but is not strictly necessary. Infor-
mation about the static structure factor is contained within
the intermediate scattering function and the accepted candi-
date solutions S̃n will have static structure factors that trend
towards the measured value.

In a standard differential evolution simulation, the differ-
ential weight and the crossover probability would need to
be optimized, and while in principle they should not affect
the final outcome, in practice a poor choice can affect con-
vergence. Here we employ a self-adaptive approach [42,43]
by embedding γ and Pc within the genome of the candidate
solutions such that each S̃m has a corresponding Pc

m and γm.
Updates to the crossover probability are performed 10% of
the time by

Pc
n =

{
U (0, 1) for U (0, 1) � 0.1
Pc

m otherwise (26)

and updates to the differential weight are also performed 10%
of the time by

γn =
{
U (0, 2) for U (0, 1) � 0.1
γm otherwise. (27)

Note that the control parameters are updated before generating
a new candidate population and Pc

n and γn should be used in
Eq. (25). This ensures that beneficial changes to the crossover
probability or differential weight are preserved.

The population size NP can be as small as NP = 4 and as
large as the computing resource can manage. An optimal so-
lution can be reached for any NP � 4, although scaling of NP

can help determine a population size that conforms to system
constraints and an acceptable usage of CPU hours [44,45].
Here we use NP = 16 for the simulated data and NP = 8 for
the bulk helium data.

A maximum of NI = 107 iterations were performed, where
the average fitness of the candidate solution population im-
proved with each generation. Once an individual solution
S̃m(q, ω) reaches an acceptable tolerance level χ2 = η, the
simulation is terminated and the solution returned as the op-
timal spectra S(q, ω). The tolerance levels were chosen to be
the same as those used in the FESOM (Sec. III B) for the sim-
ulated data and η = 1.0 for superfluid helium. The frequency
space partition size was N = 513 and ranged from ω0 = 0.0 K
to ωN = 64.0 K for the simulated data, and N = 4096 rang-
ing from ω0 = 0.0 K to ωN = 512.0 K for helium. Candidate
solutions S̃n were normalized to the static structure factor. In
each case, NR = 1000 reconstructions of the spectral function
were measured. The results were averaged to generate a final
spectrum at each error level for the data set described by
Table I and for each wave vector examined for the helium.
The final spectra were smoothed by averaging the spectral
weight in adjacent frequency bins. Similar to the FESOM,
confidence bands can be generated by taking the standard
deviation. Additionally, a population size scaling study was
performed for the tsc case with large error using the same
criteria as above except with NR = 10 000 reconstructions and
population sizes NP = [8, 16, . . . , 1024].

V. RESULTS

A. Benchmarking on simulated data

Reconstructed spectra found using the DEAC algorithm,
the MEM, and the FESOM on simulated quantum Monte
Carlo data are shown in Fig. 2 for the small error level ε =
0.0001. The DEAC algorithm achieves improved spectral fea-
ture resolution over the other two methods in all cases. These
improvements can be seen in the goodness of fit calculated as
the lack-of-fit sum of squares

ϕlof = 1

N

N∑
i

[S(q, ωi ) − Sexact (q, ωi )]
2, (28)

where squared deviations of the spectral weight at each fre-
quency are averaged. Across the range of sample data, the
DEAC algorithm achieves the best score (where lower is
better) for all nine benchmarks except in the tso case for
medium error. The DEAC algorithm shows almost an order
of magnitude of improvement in the goodness of fit over the
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FIG. 2. Nine different spectral reconstructions using different analytic continuation methods on simulated quantum Monte Carlo data. The
black dashed line is the exact spectra. Results are shown for the smallest error level explored ε = 0.0001. The DEAC algorithm accurately
captures the spectral features in all cases explored.

other two methods at small error as shown in Table II and half
that at other error levels.

A closer look at the outlier as shown in Fig. 3 reveals that
although the MEM has a better goodness of fit, it lacks the
ability to resolve two distinct peaks. Both the FESOM and
DEAC algorithm indicate a shoulder of a smaller peak next
to the main spectral feature and encourage further QMC data
collection to reduce the error level and achieve better spectral

TABLE II. Logarithmically scaled goodness of fit for each spec-
tral function reconstruction at each error level. Values shown are
− log10(ϕlof ), where ϕlof is calculated by Eq. (28). More positive
values indicate better qualities of fit. Here we abbreviate the DEAC
algorithm, FESOM, and MEM as D, F, and M, respectively.

Small Medium Large

Alias D F M D F M D F M

shf 5.30 3.95 3.75 4.66 3.93 4.19 4.17 3.91 3.57
shc 5.09 3.99 3.89 4.47 4.00 3.76 4.23 3.97 3.78
sho 4.90 4.46 4.12 4.58 4.49 4.19 4.51 4.44 3.69
stf 4.86 3.66 3.74 5.17 3.65 3.23 4.94 3.64 3.19
stc 4.73 4.03 3.51 4.98 4.03 3.48 4.79 3.94 3.46
sto 4.67 4.53 4.02 4.57 4.48 4.23 4.83 4.51 4.03
tsf 4.89 3.44 3.92 4.76 3.45 4.04 3.93 3.44 3.27
tsc 5.12 3.63 4.09 4.31 3.63 4.13 4.06 3.62 3.48
tso 4.69 4.23 4.47 4.21 4.20 4.50 4.48 4.12 4.22

resolution. The perhaps more surprising result is the MEM not
winning across all the close cases as the method we employed
included prior knowledge by including the first moment as a
part of the default spectrum.

Another important factor is the computational efficiency
of algorithms, as often spectra must be generated for a large

FIG. 3. Analytic continuation results using the DEAC algorithm,
the FESOM, and the MEM for the tso case at medium error level.
In this case, the MEM achieves a better goodness of fit over the
FESOM and the DEAC algorithm. The striking lack or even hint
of two spectral peaks for the MEM results is reason to judge the
FESOM and DEAC results as qualitatively better.
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FIG. 4. CPU time required to generate the final spectra using
each analytic continuation technique. Timings displayed are for the
largest error level explored ε = 0.01. Lower is better, and significant
improvement in CPU time can be achieved using the DEAC algo-
rithm. Almost two orders of magnitude improvement can be seen
over the other methods.

number of q values. The total CPU time to achieve the fi-
nal spectra for the large error data set ε = 0.01 is shown in
Fig. 4. These timings include the full parameter sweep for the
MEM and the NR = 1000 reconstructions for the FESOM and
the DEAC method. They do not include the time needed to
generate the final spectra using the curvature technique for
the MEM or averaging the spectra for the DEAC algorithm
and FESOM (as these contributions were negligible). The
MEM results used up to 66× (14× on average across all
benchmarks) more CPU hours than the DEAC algorithm and
the FESOM results used up to 79× (13× on average across
all benchmarks) more CPU hours than the DEAC algorithm.

Population scaling was performed for the tsc case at large
error level using the DEAC algorithm. The quality of the
recovered spectrum shows low variation across the population
sizes explored in Fig. 5. The trend of decreasing quality with
increasing population size is nonuniversal and expected to

FIG. 5. Population size scaling for the DEAC algorithm per-
forming analytic continuation of the tsc case at large error level.
Logarithmically scaled goodness of fit − log10(ϕlof ) (circles) shows
little variation with slightly decreasing quality with increasing popu-
lation size. The results are comparable to the value found in Table II.
A minimum in the total CPU time (squares) is observed at NP = 16.

FIG. 6. Phonon-roton spectrum of 4He at (a) T = 1.56 K from
neutron scattering experiments on superfluid helium [49] and
(b) T = 1.35 K as generated by the DEAC algorithm from canonical
quantum Monte Carlo data. Peak locations for experimental mea-
surements of helium at temperatures below the superfluid transition
temperature Tλ and saturated vapor pressure are shown as the red
dashed line using splines from Donnelly and Barenghi [46]. Good
agreement is observed for the maxon and roton locations. Deviations
from the experimental spectra and gaps in data are due to finite-size
effects.

depend on the intermediate scattering function data quality
and spectral region of interest [44,45]. The time to achieve
the final spectrum signifigantly increases after reaching a min-
imum at NP = 16. The observed minimum is problem and
system configuration specific.

B. Bulk helium

To test the performance of our parameter-free algorithm
in an experimentally relevant setting, we consider the well
known phonon-roton spectrum of 4He at T = 1.35 K. The
imaginary time scattering function was generated from canon-
ical quantum Monte Carlo as described in Sec. II C. The
resulting spectrum in Fig. 6 is consistent with experimen-
tal results [30,46–49] and we note it involves no adjustable
parameters. Spectral peaks in the maxon and roton regions
are found at momenta q ≈ 1.1 and 2.0 Å−1 with energy
transfers of ω ≈ 1.2 and 0.8 meV, respectively. Parts of
the linear dispersing branch are observable, but obscured
due to vertical gaps in the spectral data from certain mo-
menta not being measured. This was either from being
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FIG. 7. Maximum peak locations for the 4He dispersion at T =
1.35 K as generated by analytic continuation of QMC data using
the DEAC algorithm. Experimental data for low-temperature helium
T < 2.17 K at saturated vapor pressure is shown [46]. Again, de-
viations from the experimental data are observed due to finite-size
effects.

incommensurate with periodic boundary conditions or finite-
size effects. Many attempts have been performed to resolve
this spectra where much of the focus has been on a few fixed
q values [5,15,40,50].

An advantage that the DEAC algorithm and FESOM have
over other methods is the ability to estimate confidence bands
on spectral features. For each NR reconstruction of the spec-
trum, we determined the location of the maxima in frequency
space and binned the results for each wave vector q investi-
gated. Then the average and standard error were calculated in
the usual way from the binned data. In Fig. 7 we show the
average maximum peak locations of the helium dispersion as
determined using standard techniques from the average data
including standard error, where the error bars indicate the full
width at half maximum.

VI. DISCUSSION

The maximum entropy approach is well supported in the
literature and performs well for resolving spectral features for
well separated peak locations. However, for closely spaced
peaks, it tends to average out the resulting spectra. This effect
can be seen in the overlapping cases in Fig. 2. Also, for the
other nonoverlapping cases, there appears to be some skew in
the first peak and large broadening of the second peak.

The fast and efficient stochastic optimization approach [7]
was able to resolve spectral features in all cases, but had
difficulty in determining the second peak location for the tall
short benchmark. This method was prone to becoming stuck
in local optima and not reaching the selected tolerance level
before the maximum number of iterations. For this reason and
for a fairer comparison between the three methods, the timing
results shown are for the large error cases where all runs
were able to achieve convergence within the set tolerance.
Broadening of the second peak was also an issue for this
method.

The differential evolution for analytic continuation algo-
rithm introduced here provided the best results in the shortest
amount of CPU time in all cases tested. Proof of principle for
the ability of this method to produce experimentally relevant
spectra is shown by the bulk 4He spectrum in Fig. 6. The ob-
served finite-size effects can be mitigated by larger simulation
size.

The benchmark spectra were generated using versions of
the DEAC algorithm, the FESOM, and the MEM that utilize
multithreading and were written in JULIA with source code
available online [51–53]. Additionally, the population scaling
results and bulk helium spectrum were generated by a C++
version of DEAC with optional GPU acceleration (both HIP

and CUDA supported) with source code also available online
[54]. The authors recommend the C++ version of the DEAC
algorithm over the JULIA version.

A note of caution is offered for using any of the three meth-
ods described above. We noticed while exploring the analytic
continuation problem that spectral weight will build up in the
final frequency bin if a large enough maximum frequency
is not explored. For the benchmark data, this resulted in the
second peak being pushed to lower energies. This problem is
solved by increasing the maximum frequency at the expense
of either CPU time or frequency resolution �ω.

In conclusion, a fast, accurate, and parameter-free method
to reconstruct the dynamic structure factor from imaginary
time pair correlation functions has been developed. The dif-
ferential evolution for analytic continuation algorithm uses
evolutionary computation with a self-adaptive approach to
tackle this long-standing problem in many-body physics.
Benchmarks on finite-temperature simulated quantum Monte
Carlo data against the traditional maximum entropy method
and the state-of-the-art fast and efficient stochastic optimiza-
tion method have shown several advantages. These are found
in massive speedups and the increased fidelity of resulting
spectra. The greater ability to resolve spectral features coupled
with reduced computational overhead offers further opportu-
nity to compare the stochastically exact results from quantum
Monte Carlo with experimental data obtained on the real fre-
quency axis.
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