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Studying first passage problems using neural networks: A case study in the slit-well
microfluidic device

Andrew M. Nagel , Martin Magill, and Hendrick W. de Haan*

Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario, Canada L1H7K4

(Received 27 April 2022; accepted 28 July 2022; published 11 August 2022)

This study presents deep neural network solutions to a time-integrated Smoluchowski equation modeling the
mean first passage time of nanoparticles traversing the slit-well microfluidic device. This physical scenario is
representative of a broader class of parametrized first passage problems in which key output metrics are dictated
by a complicated interplay of problem parameters and system geometry. Specifically, whereas these types of
problems are commonly studied using particle simulations of stochastic differential equation models, here the
corresponding partial differential equation model is solved using a method based on deep neural networks.
The results illustrate that the neural network method is synergistic with the time-integrated Smoluchowski
model: together, these are used to construct continuous mappings from key physical inputs (applied voltage
and particle diameter) to key output metrics (mean first passage time and effective mobility). In particular, this
capability is a unique advantage of the time-integrated Smoluchowski model over the corresponding stochastic
differential equation models. Furthermore, the neural network method is demonstrated to easily and reliably
handle geometry-modifying parameters, which is generally difficult to accomplish using other methods.
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I. INTRODUCTION

Micro- and nanofluidic devices (MNFDs) are tools that can
be used to manipulate or detect molecules with high precision
[1–5]. For instance, the slit-well MNFD was proposed by
Han and Craighead [6] as a tool for sorting otherwise free-
draining polymers, such as DNA, according to chain length.
The same device has also been shown to induce separation
of free-draining nanoparticles by size [7,8]. The slit-well is
operated by electrophoretically forcing analytes across a pe-
riodic array of deeper regions (wells) and shallower regions
(slits) between two fixed planes (see Fig. 1). Its sorting effect
has been comprehensively studied through theoretical, numer-
ical, and experimental investigations, which have identified a
variety of distinct mechanisms that are relevant in different
operational regimes. At a high level, the sorting effect depends
nonlinearly on the size of the analytes and the magnitude of
the applied electric field, as well as the shape and size of the
device’s wells and slits [2,7–11]. In particular, depending on
the choice of these parameters, the mobility of analytes can be
made either increasing or decreasing with respect to molecule
size

The practical relevance of biotechnologies such as MNFDs
has been stressed in the last year; for instance, Berkenbrock
et al. [12] surveyed the potential of microfluidics as a means of
rapidly testing large numbers of people for COVID-19 infec-
tions. Shepherd et al. [13] studied a parallelized MNFD that
generated scalable lipid nanoparticle formulations needed for
applications in RNA therapeutics and vaccines. Nonetheless,
the design and optimization of MNFDs is often challenging
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because it entails simultaneously considering the influence
of many design parameters (e.g., operating voltage, solvent
composition, device geometry, etc.) on multiple nonlinearly
interdependent phenomena.

In many cases, important biological phenomena can fruit-
fully be modeled as first passage processes [14]. Moreover,
in the study of MNFDs, key transport phenomena are often
captured by only the first few moments of an appropriate first
passage time distribution. For example, the translocation of
a polymer through a nanopore is aptly described as a first
passage process, and the mean translocation time is a widely
studied metric [15–17]. Magill et al. [18] showed that, for
the special class of MNFDs with periodic geometries featur-
ing small bottlenecks, the long-term dynamics of molecules
driven through the system depend exclusively on the first
and second moments of their first passage times across one
subunit of the device. The ability to focus on a handful of first
passage time moments can greatly simplify the problem of
characterizing and designing MNFDs.

This emphasis on the first few moments of the first passage
time is of particular interest in light of a convenient mathemat-
ical property of the Smoluchowski equation1 that describes
the motion of analytes through MNFDs. For instance, the
dynamics of nanoparticles electrophoretically driven through
a MNFD can be modeled by the Smoluchowski equation as

ρt = ∇ · (D∇ρ − μ �Eρ), (1)

1Note that the Smoluchowski equation is also variously known as
the Kolmogorov forward equation, the Fokker-Planck equation, or
the convection-diffusion equation, with certain names more common
in certain areas of application.
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FIG. 1. A schematic of electrophoretic sorting of particles by
size in the slit-well device. (a) A weak field causes small particles
(red) to traverse the device more quickly on average. (b) A strong
field causes large particles (blue) to traverse the device more quickly
on average.

where ρ is the position distribution of the particles over space
and time, D and μ are the diffusion and free-solution mobility
coefficients of the particles, and �E is the applied electric field.
In first-passage problems where the domain geometry and
applied fields are time-invariant, Eq. (1) can be integrated
over time to obtain the time-integrated Smoluchowski equa-
tion [19]

−ρ0 = ∇ · (D∇g0 − μ �Eg0), (2)

where ρ0 is the initial condition for ρ. The new field g0 is
defined as

g0(x, y) :=
∫ ∞

0
ρ(x, y, t ) dt . (3)

The integral of g0 in any region is the average residence time
of particles in that region between initialization and absorp-
tion. In particular, it therefore has the property that∫

�

g0 dx = 〈τ 〉, (4)

when � is the entire spatial domain, τ is the stochastic
first passage time of the particles to the absorbing boundary
conditions, and 〈τ 〉 is the mean first passage time (MFPT).
Moreover, this formulation can be extended recursively to
all higher-order moments as well. For instance, the field g1

satisfying

−g0 = ∇ · (D∇g1 − μ �Eg1) (5)

has the property that it integrates over the spatial domain to
yield the second moment of the first passage time. A more
comprehensive discussion of these moment equations can be
found in standard references such as Redner [19].

Since the first few moments of first passage time distri-
butions are so important to MNFD phenomena, it is natural
to wonder whether solving the moment equations directly
might be a useful line of investigation. In practice, however, it
appears that this is rarely done. Redner [19] shows the power

of the moment equations for theoretical analysis of first pas-
sage problems, especially in the purely diffusive regime where
direct analogies with electrostatics can be made. In the context
of MNFDs, Magill et al. [18] showed that measuring g0 ap-
proximately via particle simulations can aid in understanding
the effect of design parameters on system dynamics. Similarly,
Wang et al. [8] analyzed plots of the time-integrated particle
position densities in a periodic model of the slit-well device;
however, these maps were constructed in a manner subtly
different from g0 and in particular do not have the property
of integrating to the MFPT. The authors are unaware of other
studies in which the moment equations are solved numerically
towards the goal of understanding the effect of MNFD design
parameters on first passage time behavior. Moreover, even
though the Smoluchowski equation is also an important math-
ematical model to study first passage time problems outside
biophysics [20–23], we have found no examples in which the
g0 equation (nor any of the higher moment equations) were
studied numerically in applied contexts.

A major barrier to the goal of solving the moments equa-
tions numerically in biophysics is the so-called curse of
dimensionality. That is, for most common numerical methods
for partial differential equations (PDEs), the computational
cost grows exponentially in the dimensionality of the under-
lying domain. Thus, whereas highly effective techniques like
the finite element method (FEM) can be used to solve PDEs
in simple biophysical scenarios, like that of noninteracting
nanoparticles, they fail when applied to the high-dimensional
PDEs describing the dynamics of many-body systems such as
polymers. Indeed, particle-based simulation methods do not
exhibit the curse of dimensionality, and this can be seen as a
major reason for the dominance of particle simulations over
PDE-based calculations in biophysics.

In this work, we investigate a numerical method for PDEs
that does not suffer from the curse of dimensionality. The
technique, which we refer to as the neural network method
(NNM), is inspired by the success of deep learning at solv-
ing high-dimensional problems in machine learning, such as
image processing and natural language processing [24–26]. A
growing body of theoretical and numerical evidence suggests
that it can robustly solve high-dimensional PDEs [27–41]. In
particular, the NNM has already been used to study high-
dimensional problems in biophysics [38].

The NNM has also been shown to solve parametrized prob-
lems directly across a continuous range of parameter values
[28,42]. As the number of parameters increases, the problem
of solving a highly parametrized PDE can exhibit yet another
curse of dimensionality. Because the neural network method
shares information across parameter space, it is also able to
overcome this computational challenge [43–45].

Note that parametrized solutions to PDEs typically can-
not be obtained using the FEM, particle simulations, or
similar methods. Rather, this goal is usually accomplished
using reduced order modeling (ROM) techniques [46,47].
ROM methods typically interpolate between a relatively small
number of high-fidelity solutions computed at a handful of
reference points in parameter space in order to approximate
solutions at new points in parameter space. Whereas most
classical ROM methods interpolate to new parameter choices
via a linear combination of the reference solutions, the NNM
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FIG. 2. Schematic of a single periodic subunit of the slit-well device to illustrate passage time models used in this study. (a) Particles are
initialized in the left slit (blue particles), confined in the device via a WCA potential on gray walls, undergo Brownian dynamics in the yellow
interior (trajectories denoted by black lines) until escaping device at the purple boundary. Dotted line denotes the region of the interior that
cannot be occupied by the center of mass of particles. (b) A PDE model of the escape process where the solution ρ satisfies the Smoluchowski
equation in the yellow interior. The initial Gaussian band source is located in the left slit, an absorbing boundary in the right slit (purple), and
no flux conditions applied on gray walls that move inward to the dotted line to model particle size. (c) A PDE model of the escape process
where the solution g0 satisfies the g0 equation (first moment) in the yellow interior region. An absorbing boundary is applied at the right slit
wall (purple), and no flux conditions are applied on gray boundaries which move inward to the dotted line to model particle size..

is intrinsically nonlinear. Other nonlinear ROMs based on
deep neural networks have been proposed in the literature
[48–52]. However, these methods require that a database of
FEM or other classical solutions be computed prior to train-
ing, whereas the NNM simultaneously solves the target PDE
and acts as a ROM method over parameter space. In addition,
dealing with parameters that modify the domain geometry
using classical reduced-order methods can be challenging
because these are typically constructed using mesh-based
approaches. Although special ROMs can be developed for
geometric parameters in some cases [53–55], the mesh-free
nature of the NNM is intrinsically advantageous for this ap-
plication [42,56].

II. PROBLEM DESCRIPTION

The primary goal of this paper is to study the effectiveness
of the NNM as a tool for solving the g0 equation in MNFDs by
focusing on a sufficiently complicated representative device,
as shown in Fig. 2. The specific problem under consideration
is as follows: for an ensemble of noninteracting thermal par-
ticles initially located in the left slit of one periodic subunit
of the slit-well device, compute the MFPT of these particles
to the right slit. Here, the particles are driven by an electric
field �E = λ �E0 for a field strength constant λ and a baseline
electric field �E0. The baseline electric field is a solution to
Laplace’s equation for a voltage drop of 2 V across the do-
main. It was obtained using the NNM in the manner described
in Magill et al. [57], and plots of �E0 are included here in
Appendix B. The particles represent nanoparticles with diam-
eters σ , diffusion coefficients D, and free-solution mobilities
μ. The nanoparticles are assumed to be free-draining, with μ

independent of σ , so that separation by size would not occur in
free solution. Conversely, the diffusion coefficient is assumed
to emerge from Stokes’ law and the fluctuation-dissipation

theorem, so that D ∝ σ−1. For simplicity, these behaviors are
implemented as μ = 1 and D = σ−1. The g0 equation is thus
reduced to

F [g0] ≡ ∇ ·
(

1

σ
∇g0 − λ �E0g0

)
+ ρ0 = 0, (6)

where the particle size σ and field strength λ are the two free
parameters, and �E0 is the reference electric field.

The problem geometry is shown in Fig. 2 along with
depictions of the particle-based, Smoluchowski, and g0 rep-
resentations of the problem. The domain is meant to represent
a single periodic subunit of the slit-well device illustrated in
Fig. 1. In the particle-based model of the problem [Fig. 2(a)],
an ensemble of noninteracting nanoparticles are initially lo-
cated in the left slit, and then these particles proceed to move
under a combination of thermal diffusion and electrophoretic
drift until reaching the far right purple wall in the right slit.
In the Smoluchowski model [Fig. 2(b)], individual particles
are eschewed, and the time evolution of the entire distri-
bution of particle positions is modeled instead. Here, the
initial position of particles is modeled by the initial condition
ρ0(x; σ ), located in the left slit. Finally, in the g0 equa-
tion [Fig. 2(c)], the time-dependence of the Smoluchowski is
accounted for implicitly by integration over all time. Here, the
initial condition ρ0(x; σ ) now appears as a source term in the
(time-independent) PDE.

In each schematic of Fig. 2, the gray regions represent
physical walls. These were modeled as short-range repulsive
boundaries (in the particle model; see Appendix A) or no-flux
boundary conditions in the continuum models [equations de-
fined in the legends of Figs. 2(b) and 2(c)]. As a result
of excluded volume interactions, the particle centers cannot
come closer than a distance of roughly σ/2 from the repulsive
boundaries. This exclusion zone is depicted by the dashed
black line in Fig. 2. To model this in the continuum models,
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the no-flux boundary conditions are applied at the boundary
of the exclusion zone (i.e., along the dotted black lines in
Fig. 2), rather than at the nominal boundaries (i.e., along the
gray walls in Fig. 2).

The nominal dimensions of the domain �0 are the same as
those described in Magill et al. [57]. In particular, the topmost
and bottommost walls are a distance 2Ly = 6.25 apart, the
leftmost and rightmost boundaries are 2Lx = 10 apart, and
the curvature of the re-entrant corners is set to R = 1 (see
below). The total horizontal lengths of the slits and the well
were set equal, to Lx, and the slits were given a height of
hslit = Lx/4 = 1.25.

As discussed in Magill et al. [57], the standard formu-
lation of the NNM struggles to solve problems exhibiting
singularities. For this reason, the re-entrant corners of the
slit-well device geometry have been rounded (i.e., represented
by circular arcs of finite curvature). Similarly, the NNM was
found to perform poorly when the initial distribution of par-
ticles was too sharp. Instead, particles were initialized in a
Gaussian band in the left slit, given by uniform distribution in
y multiplied by a Gaussian distribution in x:

ρ0 = 1√
2πrshslit

exp

(−(x − xs)2

2r2
s

)
. (7)

Here rs = 0.25 is the width of the Gaussian band in the x
direction, hslit = Ly − yslit − σ is the height of the band in
the y direction, and xs = −Lx + 1 is the center of the band.
Technically, ρ0 requires a correction factor to be properly
normalized over this bounded domain, as the Gaussian dis-
tribution in x is normalized over the entire real line, but the
discrepancy is numerically insignificant.

The first passage time of the particles is computed when
their centers cross the rightmost boundary of the domain for
the first time (purple in Fig. 2). In the continuum models,
this is represented by an absorbing boundary condition (i.e.,
a homogeneous Dirichlet condition). Physically, this bound-
ary corresponds to the interface between consecutive periodic
subunits of the slit-well, and not to a physical wall. As such, in
contrast to the no-flux boundary condition on the gray walls,
the placement of the absorbing boundary does not depend
on σ .

As a simplifying assumption, particles were prevented
from moving through the leftmost boundary of the domain.
Mathematically, this was imposed by a no-flux boundary con-
dition. Physically, this corresponds to the synthetic condition
that particles cannot move against the direction of the imposed
electric field into the previous periodic subunit of the slit-well;
we will refer to this as the no-backflow condition. The location
of this no-backflow boundary condition was fixed indepen-
dently of σ .

Of course, in the actual slit-well device there is always a
nonzero probability of particle backflow. The simplification
was made here because it allows the g0 equation to be posed
in a much simpler domain (i.e., a single periodic subunit).
However, as a result of this modeling choice, there will be
discrepancies between the MFPT results reported in this paper
and the results of previous studies of the slit-well device (such
as Cheng et al. [7] and Wang et al. [8]), especially at low
electric field strengths. Nevertheless, as the results in Sec. IV

will indicate, the major features of the slit-well system are
preserved despite the no-backflow condition. Furthermore, the
simplified model still contains several mathematical features
that are expected to be common to many MNFDs and par-
ticularly difficult for the NNM to resolve: re-entrant corners,
a nonuniform electric field, and nontrivial dependence on
physical and geometric problem parameters. As stated above,
the purpose of this paper is to study the performance of the
NNM when solving a problem with the characteristic features
of a typical MNFD problem. Certain features, such as the
highly skewed geometry of the fully periodic slit-well and the
singularities associated with the fully sharp re-entrant corners,
are more technically challenging and relegated to future work.

III. METHODOLOGY

A. Neural network method

The NNM implementation used for this work was similar
to that previously described by Magill et al. [57]. In the fixed
parameter experiments (Sec. IV B 1), the true solution g0(x)
of the g0 equation [Eq. (6)] was approximated by a deep neural
network g̃0(x) trained to minimize a composite loss functional

L = LPDE + LBC + Lnorm. (8)

The first loss term consisted of

LPDE[g̃0] =
∫

�

(F [g̃0])2dA, (9)

where F is the operator in the g0 equation [Eq. (6)]. Thus,
LPDE[g̃0] quantifies the extent to which g̃0 satisfied the g0

equation [Eq. (6)] throughout the domain �. Note that, as
discussed in Sec. II, � depends on σ . The second loss term
was defined as

LBC[g̃0] =
∫

∂�

(B[g̃0])2ds, (10)

where B[g̃0] defines no-flux or absorbing boundary conditions
(BCs), as appropriate, on each part of the boundary of the
domain [see Fig. 2(c)]. Thus, LBC[g̃0] quantifies the extent to
which g̃0 satisfied the BCs over the domain boundary ∂�.

The final term was given by

Lnorm[g̃0] =
[∫

�

(F [g̃0])dA

]2

. (11)

Similarly to LPDE, the last loss term Lnorm quantifies the extent
to which the approximate solution satisfies the PDE inside the
domain �. However, whereas LPDE is a local measure of the
residual of Eq. (6), Lnorm is a global measure. Specifically,
LPDE is the mean of the squared residual, while LPDE is the
square of the mean residual. In theory, Lnorm is a redundant
loss term and simply setting LPDE to zero is sufficient to
ensure that g̃0 satisfies the g0 equation [Eq. (6)]. In practice,
however, training without Lnorm was found to produce approx-
imate solutions that captured the shape of the true solution
fairly accurately, but struggled to converge on the correct
magnitude (i.e., differed from the true solution by a small
multiplicative factor).

We note that our use of Lnorm is similar to the normal-
ization process used by Al-Aradi et al. [58] in solving the
time-dependent Smoluchowski equation. The use of Lnorm
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can also be contrasted with previous work by Avrutskiy [59].
There, Avrutskiy [59] showed benefits to adding redundant
loss terms that encourage the solution to satisfy the derivative
of the PDE operator F ′ = 0 over the spatial domain. Here,
the term Lnorm is a redundant loss term that encourages g̃0

to agree with the integral of the PDE operator F over the
spatial domain �. These additional loss terms can be thought
of as soft constraints on the training process, or equivalently
as regularization terms constructed out of prior knowledge of
the target problem.

In Secs. IV B 2–IV B 4, the neural network was par-
ametrized with respect to field strength λ, particle size σ , or
both. Thus, the loss terms were redefined as

LPDE[g̃0] =
〈∫

�σ

(Fλ,σ [g̃0])2dA

〉
λ,σ

, (12)

LBC[g̃0] =
〈∫

∂�σ

(Bλ,σ [g̃0])2ds

〉
λ,σ

, (13)

Lnorm[g̃0] =
〈[∫

�σ

(Fλ,σ [g̃0])dA

]2〉
λ,σ

. (14)

The notations �σ , Fλ,σ , and Bλ,σ indicate that the domain
changes with σ , and the PDE and BC operators change with
both λ and σ . The angled brackets indicate averages over
the parameter values. In other words, the loss used for the
parametrized neural networks is identical to that used for
the fixed parameter experiments, with the additional step of
averaging the loss over parameter space.

Note that the electric field �E was obtained by computing
the electric potential u using the NNM methodology of Magill
et al. [57]. Of course, this is not strictly necessary because u
could just as easily be approximated by some other method
(e.g., FEM). However, the intention was to illustrate the ease
with which previously computed NNM solutions can be fed
into the loss functional of new NNM solutions. A contour plot
illustrating both u and �E is included in Appendix B (Fig. 7).
Note that the electric potential is defined on the nominal
domain �0 corresponding to σ = 0, which differs from the
actual domain � on which g0 is defined.

All of the NNM experiments in this work were conducted
with fully connected feedforward neural networks of depth
d = 3 and width w = 50. The hyperbolic tangent was used
for activation functions in the hidden layers, while the out-
put layer was linear. To solve the nonparametrized problems
(Sec. IV B 1), the approximate solution g̃0 was constructed
as

g̃0(x) = fd+1 ◦ fd ◦ · · · ◦ f1(x), (15)

with

f1(x) = tanh (W1x + b1), (16)

fi(x) = tanh (Wi fi−1(x) + bi ), i = 2, . . . , d, (17)

fd+1(x) = Wd+1 fd (x) + bd+1, (18)

where W1 ∈ Rw×2, Wi ∈ Rw×w for i = 2, . . . , d , and Wd+1 ∈
R1×w are the network’s weight matrices, while bi ∈ Rw for
i = 1, . . . , d , and bd+1 ∈ R are its biases.

FIG. 3. Fully connected feedforward neural network of width
w and depth d mapping coordinates (x, y) and problem parameters
(λ, σ ) to an output g̃0(x, y; λ, σ ). At each node, a weighted sum of
the incoming arrows and a bias is computed and passed through an
activation function. The network’s parameters are optimized such
that g̃0(x, y; λ, σ ) approximately satisfies the target PDE and BCs.

The experiments in Secs. IV B 2–IV B 4 considered
parametrized neural networks, where one or both of the prob-
lem parameters λ and σ were included as additional inputs to
the network. In these cases, the networks were defined as

g̃0(x; m) = fd+1 ◦ fd ◦ · · · ◦ f1(x; m), (19)

with fi defined as before for i = 2, . . . , d + 1, but with f1

adjusted to

f1(x) = tanh
(
W (x)

1 x + W (m)
1 m + b1

)
, (20)

where W (x)
1 ∈ Rw×2 and W (m)

1 ∈ Rw×m, where m is the length
of the parameter vector m. In other words, the parameters
(λ or σ or both) were concatenated to the end of the input
vector of the network, and the weight matrices were adjusted
accordingly. This is illustrated schematically in Fig. 3. The
same approach was used by Sirignano and Spiliopoulos [28]
and Hennigh et al. [42] but can be contrasted with the recently
proposed DeepONet architecture of Lu et al. [60].

Training was conducted in TENSORFLOW [61] version 1.15
with all unspecified hyperparameters set to their default val-
ues. The weights were initialized using the Glorot method
[62], and biases were initialized to zero. Weights were iter-
atively updated using the Adam optimizer [63] to minimize L
with the learning rate set to 10−3 in Sec. IV B 1, and to 10−4 in
Secs. IV B 2–IV B 4. In each iteration, the integrals in L were
approximated by Monte Carlo sampling using the same pro-
cedure described in Magill et al. [57]. Specifically, rejection
sampling was applied to 10 000 nominal samples generated
in the bounding box [−5, 5] × [−3.125, 3.125], and each
smooth subunit of the boundary was randomly sampled with
a linear density of about 13 points per unit length. For the
parametrized network experiments (Secs. IV B 2–IV B 4),
the relevant problem parameters were also sampled randomly
in each training iteration. These samples were generated uni-
formly at random, with λ drawn from [5,50] and σ drawn
from [0.125,0.625]. In particular, it was necessary to sample
the parameter σ before sampling points in �, since the extent
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of � varies with σ . One random parameter vector was drawn
per training iteration.

The testing loss was evaluated every 1000 training itera-
tions, using ten times more samples than during a training
step. In the parametrized network experiments (Secs. IV B 2–
IV B 4), the testing loss was averaged across 100 random
parameter vectors. Training was continued for a fixed num-
ber of iterations (600 000 epochs for the fixed parameter
experiments, and 30 000 000 epochs for the parametrized
network experiments). The final network was taken as that
which achieved the lowest testing loss across all iterations.

B. Finite element method

The MFPT problem in the slit-well domain cannot be
solved exactly in closed form due to the complex nature of
the geometry. Instead, approximate ground truth solutions to
the problem were obtained using the finite element method
(FEM). Following Magill et al. [57], the problem for g0 was
solved using a mixed FEM formulation implemented in FEn-
iCS [64]. The electric field �E included in the PDE [Eq. (6)]
was obtained by also approximating the electric potential u by
a mixed FEM formulation. As stated above, u is defined on
the nominal domain �0, whereas g0 is defined on a smaller
domain depending on σ . Thus, for the FEM solutions it was
necessary to first solve u and �E on a discretization of �0,
project �E onto a discretization of the appropriate �, and then
define the variational problem for g0 on �.

The mesh decomposition of the domain was conducted
using the MSHR package in FENICS. The resolution parameter
was set to 200, and the re-entrant corners were approximated
linearly by 400 segments each. The same mesh parameters
were used for all values of σ , and for the nominal domain,
�0, on which u was solved.

IV. RESULTS

This section details results obtained using the NNM to
solve the g0 equation modeling the MFPT of nanoparticles
driven through the slit-well device (described in Sec. II). The
focus throughout is on the relationship between key problem
parameters and observables of physical interest, where g0 acts
as a proxy between the two. The first observable of interest
is, naturally, the mean first passage time 〈τ 〉. As described in
Eq. (4), 〈τ 〉 can be obtained by integrating g0 over the domain
�. Throughout this paper, the integration of g0 to estimate
〈τ 〉 is accomplished using the same Monte Carlo procedure
described for LPDE in Sec. III.

In practice, an observable of greater interest than the mean
first passage time itself is the net electrophoretic mobility
of the nanoparticles through the slit-well device over long
timescales [7,8]. In particular, the electrophoretic mobility is
typically defined as

μelectro := lim
t→∞

〈x〉t

Ect
, (21)

where 〈x〉t is the ensemble average of the x position at time
t , and Ec is a characteristic scale for the applied electric-field
strength. It is not clear whether μelectro can be inferred directly
from the g0 problem being solved here. Instead, the present

paper will investigate a similar observable of interest, which
will be called the effective mobility

μeff := L0/〈τ 〉
Ec

= 1

λ〈τ 〉 , (22)

where L0 is the mean horizontal distance from ρ0 to the
absorbing wall. The characteristic field strength is chosen of
the form Ec = Vc/Lc, where Vc is a characteristic voltage drop
and Lc is a characteristic length scale. Since the overall voltage
drop across the system is of order one and proportional to the
field strength λ, we choose Vc = λ. For numerical simplicity,
we also choose Lc = L0, thus obtaining the final equality in
Eq. (22). The effective mobility is expected to exhibit similar
features to the electrophoretic mobility because both consist
of characteristic particle velocities divided by characteristic
electric-field strengths. A comprehensive exploration of the
relationship between the two mobility definitions is left to
future work.

A. Characteristics of g0

Figure 4 shows contour plots of g0 solutions computed
using the NNM, with the corresponding estimates of 〈τ 〉 and
μeff shown in the legends. The four subplots correspond to
the four essential parameter regimes alluded to in Fig. 1. Note
that the magnitude of the color scale varies across the four
subplots.

First, consider the solution of g0 in Fig. 4(a) corresponding
to small particles (σ = 0.125) driven by a weak field (λ =
5.0). Here, g0 has a maximum in the left slit near the peak of
the initial particle distribution ρ0. Naturally, since the particle
positions are initialized according to ρ0, the average residence
time in that region is relatively high; this feature is common
to all four subplots in Fig. 4. Outside the left slit, g0 decreases
nearly monotonically from left to right, eventually reaching a
value of zero on the absorbing boundary. The shape of this
function is nearly visually indistinguishable from the solution
with σ = 0.125 and λ = 0 (not shown) and is characteristic
of predominantly diffusive dynamics in all regions of the
domain.

Figure 4(b) again shows g0 for small particles (σ = 0.125),
but now driven by a much stronger field (λ = 50.0). In con-
trast with the monotonically decreasing solution in Fig. 4(a),
in this scenario g0 is relatively constant throughout most of
the domain until a boundary layer near the absorber. In fact,
here g0 even exhibits some minor nonmonotonic features: a
shadow is evident in the bottom-left of the well, and a local
maximum is attained at the entrance to the right slit. Drift
and diffusion effects are relatively balanced in this case, with
the uniformity in x reflecting strongly driven motion in the
horizontal direction, and the uniformity in y reflecting rapid
diffusion in the vertical direction.

Figure 4(c) shows g0 for large particles (σ = 0.625) driven
by a weak field (λ = 5.0). Notice that the walls of the domain
are shifted inward by 0.5σ , reflecting the reduced area that
can be occupied by the center of mass of larger particles
(Sec. II). In this scenario, the smaller diffusion coefficient of
the larger particles balances the weaker field, resulting in a
solution that more closely resembles that in Fig. 4(b) than
that in Fig. 4(a). However, the solution in Fig. 4(c) is visibly
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(a) (b) (c) (d)

FIG. 4. NNM solutions to the g0 equation subject to (a) a small particle size and a weak electric field, (b) a small particle size and a strong
electric field, (c) a large particle size and a weak electric field, and (d) a large particle size and a strong electric field.

increasing from left to right across the well, in contrast with
both the solutions in Figs. 4(a) and 4(b). As was the case in
Fig. 4(b), drift and diffusion are of comparable importance;
the differences between the two solutions are primarily due to
the modifications to the domain geometry.

Finally, Fig. 4(d) shows g0 computed for large particles
(σ = 0.625) subject to a strong electric field (λ = 50.0). Here,
the shape of the solution differs significantly from those in
all of Figs. 4(a)–4(c). In Fig. 4(d), g0 takes on very small
values throughout the entire well, and decreases substantially
from the top of the well to its bottom. The combination of
the low diffusion coefficient and the very strong driving force
causes the large particles to remain primarily streamlined in
the upper region of the well as they move rapidly from ρ0 to
the absorber.

The MFPTs 〈τ 〉 and effective mobilities μeff in the four
scenarios of Fig. 4 are consistent with the expected sorting
mechanisms in each regime [7]. When the field is strong,
smaller particles have a larger 〈τ 〉 and lower μeff than larger
particles. The converse is true at weak fields.

Future work should explore the relationship of g0, 〈τ 〉, and
μeff with standard explanations for these phenomena, such as
the entrance effect [7,65]. The purpose of the discussion in
this section was to illustrate the variety of complicated be-
havior that arise in g0 solutions across the different physically
meaningful parameter regimes in the slit-well. In Sec. IV B,
parametrized NNM solutions will be trained to interpolate
nonlinearly between all four solutions in Fig. 4. Ultimately,
in Sec. IV B 4 this will yield continuously differentiable
mappings between both problem parameters λ and σ and both
key physical observables 〈τ 〉 and μeff , thereby capturing the
entirety of this rich sorting mechanism in a single numerical
solution.

B. Benchmarking the neural network method against the finite
element method

In this section, g0 will be leveraged as a proxy for the
calculation of the metrics 〈τ 〉 and μeff . In practice, it is
common in MNFD research and development (and scientific
research more broadly) to study how such key metrics change
in response to variations in the system parameters. The sim-
plest approach to characterizing this variation is to compute
or measure the metrics independently for a large number of
parameter choices. In Sec. IV B 1, the NNM is applied to

precisely this task of calculating 〈τ 〉 and μeff for many com-
binations of particle size σ and field strength λ.

The above approach, however, requires repeated calcu-
lation of the key metrics which can be expensive when
considering many independent parameters. As discussed in
Sec. I, the NNM can be leveraged to solve such parametrized
problems directly across continuous ranges of parameter val-
ues. The high-dimensional function g0(x, y; λ, σ ) implicitly
encodes 〈τ 〉 and μeff as continuously differentiable functions
of σ and λ. The NNM is used to approximate this function
directly in Secs. IV B 2–IV B 4, for g0 solutions parametrized
directly by λ, σ , or both simultaneously.

Throughout Sec. IV B, four quantities are used to charac-
terize the performance of the NNM across parameter space.
These quantities are all plotted in Fig. 5, with each column
corresponding to one of the four NNM formulations discussed
above. Naturally, both the MFPT 〈τ 〉 and the effective mobil-
ity μeff are included in the analysis. These are plotted in the
first two rows [Figs. 5(a)–5(d) and 5(e)–5(h)], respectively,
alongside the reference values computed using FEM. The
NNM results are indicated by lines, and the corresponding
FEM results are included as stars. Dotted lines in Figs. 5(a)
and 5(e) connect values that are only computed at discrete
parameter choices, whereas solid lines used everywhere else
indicate values that are computed over continuous parameter
ranges.

Next, in order to quantify the accuracy of the 〈τ 〉 values
obtained via the NNM, the relative error ε with respect to
the ground truth FEM solution is computed. Specifically, ε

is defined as the relative error of 〈τ 〉 with respect to 〈τ 〉FEM,
i.e.,

ε = |〈τ 〉 − 〈τ 〉FEM|
〈τ 〉FEM

, (23)

where 〈τ 〉 and 〈τ 〉FEM are the MFPTs computed by the NNM
and FEM, respectively. The relative errors ε are plotted in
Figs. 5(i)–5(l). Here, circular markers indicate the discrete
parameter choices at which ε was computed. Additionally,
the plots in Figs. 5(i)–5(l) contain a dotted black line at 10−2,
corresponding to a relative error of 1%. This is representative
of a relative error threshold that is typically attainable and
acceptable in MNFD research. Indeed, Appendix A describes
standard particle simulations that were used to approximate
〈τ 〉 with relative errors comparable to or below 1% for all
choices of parameters λ and σ .
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FIG. 5. Analysis of g0 solutions computed using the NNM. Mean first passage times 〈τ 〉 for the NNM (a) with fixed parameters, and
parametrized by (b) λ, (c) σ , and (d) both λ and σ . Star markers denote values obtained using the FEM, and insets display behavior at high
field strengths. Effective mobilities μeff for the NNM (e) with fixed parameters, and parametrized by (f) λ, (g) σ , and (h) both λ and σ . Star
markers denote values obtained using FEM, and insets zoom in on the minimum of the curves. Relative errors ε computed against the FEM
for the NNM (i) with fixed parameters, and parametrized by (j) λ, (k) σ , and (l) both λ and σ . Dotted black line denotes 1% error baseline
computed by particle simulations. (m) Testing loss of the NNM with fixed parameters, and marginal loss of the NNM parametrized by (n) λ,
(o) σ , and (p) both λ and σ .

The final quantity included in the analysis is similar to
the loss functional L used during the NNM training pro-
cess [Eq. (9)]. However, the total loss provides only a single
characterization of a network’s performance over its entire
domain. When the NNM was used to solve parametrized
g0 problems, it was valuable to evaluate the relative per-
formance of these solutions at different points in parameter
space. To this end, we defined the marginal loss L(g0|λ, σ ), a
parameter-dependent generalization of the total loss. As with
the true loss, L(g0|λ, σ ) is the sum of the L2 norms of the
PDE-, BC-, and norm-based residuals. However, whereas the
total loss averages these quantities over all choices of λ and/or
σ [Eqs. (12)–(14)], the corresponding terms in L(g0|λ, σ )
were instead treated as functions of λ and σ . In the case of
nonparametrized NNM solutions, the marginal loss definition
simply reduces to the original total loss.

The marginal losses are plotted in Figs. 5(m)–5(p). The
values in Fig. 5(m) correspond to NNM solutions trained at
fixed parameter choices and are thus indicated by discrete cir-
cular markers. Conversely, since L(g0|λ, σ ) can be evaluated
continuously for parametrized solutions, the corresponding

marginal loss values shown in Figs. 5(n)–5(p) are indi-
cated by solid lines sampled finely throughout the parameter
space.

1. Neural network method with fixed parameters

This section contains a discussion of the results in
Figs. 5(a), 5(e), 5(i), and 5(m). Here, the NNM was applied
repeatedly to solving the g0 equation for fixed choices of the
problem parameters: field strength λ and particle size σ . This
NNM formulation is the same as the one used in Sec. IV A but
is now applied to many more choices of the problem param-
eters. Specifically, the results are shown for ten choices of λ

uniformly spaced from 5 to 50 and five choices of σ uniformly
spaced from 0.125 to 0.625, with a distinct neural network
used to approximate g0 for each parameter combination.

For small values of λ in Fig. 5(a), 〈τ 〉 is monotonically
increasing with σ , and for large values of λ (see the inset) the
opposite is true. Moreover, the finer sampling of parameter
space resolves new features that were not clear from examin-
ing only the four samples in Sec. IV A. For instance, Fig. 5(a)
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shows that 〈τ 〉 decreases monotonically with λ for each choice
of σ . In addition, the dependence of 〈τ 〉 on σ is much stronger
at low field strengths.

The same sorting behavior can be viewed from a different
perspective via μeff in Fig. 5(e). In addition, the crossover in
sorting order around λ ≈ 25 is better resolved by μeff than
〈τ 〉. Indeed, in Fig. 5(e) it is clear that there is no single value
of λ for which 〈τ 〉 and μeff are entirely independent of σ . Of
course, the results discussed above for 〈τ 〉 and μeff are not
novel because they are consistent with published results on
the slit-well device (see, e.g., Cheng et al. [7]). Rather, the
purpose of this discussion is to illustrate two points: first, that
valuable information can be extracted by studying the varia-
tion of key output metrics (here, 〈τ 〉 and μeff) as functions of
the key input parameters (here, λ and σ ) and, second, that the
physical problem being studied in this paper (Sec. II) indeed
captures essentially the same physical mechanisms expected
for the actual slit-well system.

Before considering the benefits of the more ambitious
parametrized NNM formulations, it is important to assess how
accurately the NNM resolves 〈τ 〉 and μeff when applied to the
simpler task of solving g0 at a single point in parameter space.
The accuracy is quantified in Fig. 5(i), which shows ε, the
relative error in 〈τ 〉. In this plot, it appears that ε is roughly
independent of both σ and λ, suggesting that the current
implementation of the NNM is fairly robust throughout the
problem parameter space. This is corroborated by the testing
losses L(g0|λ, σ ) plotted in Fig. 5(m), which are also roughly
independent of the problem parameters. Most importantly,
for all choices of parameters λ and σ in Fig. 5(i), ε is well
below the 1% error threshold indicated by the black line. In
other words, the NNM is at least as effective at resolving
〈τ 〉 as the Brownian dynamics particle simulations included
in Appendix A.

2. Neural network method parameterized by field strength

Whereas in Sec. IV B 1, 50 networks where used to obtain
50 different g0 solutions, which were then integrated over their
respective domains to produce 50 different 〈τ 〉 measurements,
in this section only five networks are utilized to accomplish
the same goal. Each of these five networks solves g0(x, y; λ)
for λ ∈ [5, 50] at a fixed choice of σ . As in Sec. IV B 1, the
metrics 〈τ 〉, μeff , ε, and L(g0|λ, σ ) are computed from the
solutions; these are plotted in Figs. 5(b), 5(f), 5(j), and 5(n),
respectively. Comparing Figs. 5(b) with 5(a) and Fig. 5(f) with
5(e), it is clear that the NNM formulation parametrized by
λ recovers the same results previously obtained by solving
g0 independently for many different parameter choices in
Sec. IV B 1.

One advantage of the parametrized NNM formulation is
evident in the inset of Fig. 5(f). For each choice of σ , there
is a λ value for which μeff is minimal. When computing μeff

only at discrete choices of the parameters [as in Fig. 5(e)], the
exact location of these minima is not clear. Instead, the results
in Fig. 5(f) illustrate that the parametrized NNM formulation
naturally resolves the existence of local minima, since the
solution is trained continuously for all parameter values in
the training domain. The benefit of continuous mappings from
problem parameters to key output metrics becomes more valu-

able as dimensionality of parameter space is increased (e.g., as
explored in Sec. IV B 4).

The relative error ε and marginal loss L(g0|λ, σ ) in
Figs. 5(j) and 5(n) quantify the accuracy of the g0(x, y; λ)
solution. Here, both ε and L(g0|λ, σ ) are highest at the bound-
aries of the λ training range and fairly uniform throughout the
majority of the interior of the training range. In particular, both
are highest at the left boundary, λ = 5. This relationship be-
tween error and loss is similar to those studied in Magill et al.
[57] and provide further justification for using the (marginal)
loss as an a posteriori method for gauging the reliability of
NNM solutions.

The deterioration in performance seen in Figs. 5(j) and
5(n) at the boundaries of the λ training range can likely be
attributed to the uniform Monte Carlo sampling of λ during
training. The exact endpoints have very low probabilities of
being sampled directly; moreover, their neighborhoods are
only sampled on one side, whereas the neighborhoods of
points nearer to the middle of the λ training range are sampled
thoroughly on both sides. This could effectively lead to an
under-representation of the behavior near the endpoints in
the training loss. Characterizing this tentative mechanism is
beyond the scope of the present work.

Overall, only three of the 50 relative errors in Fig. 5(j)
slightly exceed the 1% error threshold. Thus, the implementa-
tion of the parametrized NNM studied in this section meets the
standard of accuracy typically attained by Brownian dynamics
(BD) simulations. In the regions of parameter space where
the relative error was not measured directly, the marginal
loss [Fig. 5(n)] provides an a posteriori estimate of the error,
suggesting that the NNM’s performance is excellent except
for λ values very close to the boundaries of the training range.
Altogether, these results demonstrate that the NNM is a fea-
sible technique for solving the g0 problem over a continuous
range of field strengths. Moreover, using g0 as a proxy for 〈τ 〉
and μeff enables the NNM to resolve the behavior of these key
output metrics continuously over the target parameter range.

3. Neural network method parameterized by particle size

To expand upon the unique strengths of the NNM, this
section will consider the problem of solving g0 as a function
of the particle size σ . Here, since the diffusion coefficient is
being modeled as D = σ−1, the terms of the g0 PDE depend
directly on the parameter σ , just as they depend directly on
λ. However, the location of the boundaries of the slit-well
domain also depend explicitly on the parameter σ (Sec. II).
Thus, whereas λ only modified the PDE terms, σ modifies
both the PDE terms and the domain geometry. As described
in Sec. I, it is challenging for classical reduced-order methods
to deal with parametrized domain geometries. However, this
section will demonstrate that the NNM can handle geometry-
modifying parameters (σ ) just as easily as parameters that do
not modify the domain geometry (λ).

Once again, the MFPT 〈τ 〉, effective mobility μeff , relative
error ε, and marginal loss L(g0|λ, σ ) are computed from the
NNM solutions and plotted in Figs. 5(c), 5(g), 5(k), and 5(o),
respectively. Whereas the results in Figs. 5(a), 5(e), 5(i), and
5(m) and Figs. 5(b), 5(f), 5(j), and 5(n) for Secs. IV B 1–
IV B 2 were solved and plotted as functions of λ, the results
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for this section are presented as functions of σ . Specifically,
each curve in Figs. 5(c), 5(g), 5(k), and 5(o) represents a single
neural network trained over the range σ ∈ [0.125, 0.625] at a
fixed choice of λ [indicated by the legend in Fig. 5(o)].

The 〈τ 〉 and μeff measurements in Figs. 5(c) and 5(g)
indicate that the NNM parametrized by σ recovers the same
physical properties observed for the NNM with fixed pa-
rameters (Sec. IV B 1) and the NNM parametrized by λ

(Sec. IV B 2). For the 〈τ 〉 measurements in Fig. 5(c), the λ =
5.0 curve is monotonically increasing whereas the λ = 50.0
curve (enhanced in the inset) is monotonically decreasing.
This implies that small particles have a lower MFPT at low
field strengths, and large particles have a lower MFPT at
high field strengths. Likewise, the λ = 5.0 curve for μeff in
Fig. 5(g) indicates that small particles are more mobile at low
field strengths, whereas the λ = 50.0 curve indicates that large
particles are more mobile at high field strengths.

Visual comparison of the NNM results (solid lines) to
the ground-truth FEM results (stars) in Figs. 5(c) and 5(g)
suggests good agreement between the two through most of
the parameter space. However, the effective mobilities com-
puted by the NNM in Fig. 5(g) deviate noticeably from the
FEM results at the left endpoint σ = 0.125. Accordingly, the
relative errors and marginal losses plotted in Figs. 5(k) and
5(o) are also highest at σ = 0.125. In fact, ε and L(g0|λ, σ )
of the NNM solutions parametrized by σ [Figs. 5(k) and 5(o)]
exhibit the same structure previously identified (Sec. IV B 2)
in ε and L(g0|λ, σ ) of the NNM solutions parametrized by
λ [Figs. 5(j) and 5(n)]. That is, ε and L(g0|λ, σ ) are roughly
uniform for intermediate values of σ but increase sharply near
the boundaries of the training domain. In particular, ε and
L(g0|λ, σ ) are consistently higher at the low-σ endpoint than
at the high-σ endpoint.

Overall, the relative error in Fig. 5(k) is well below the
1% error threshold for most of the training range. As was the
case in Sec. IV B 2, at the few points where relative error
exceeds 1%, it only does so by a small amount. The marginal
loss continues to behave as an a posteriori measure of solution
accuracy and suggests that the regions of high relative error
are once again concentrated near the endpoints of the training
range. Despite the fact that parameter σ directly changes the
domain geometry in addition to modifying the terms of the
PDE, the performance measured in this section is essentially
the same as that reported in Sec. IV B 2, where the NNM
was parametrized by the simpler parameter λ. Thus, it appears
that the NNM can handle geometry-modifying parameters just
as easily as parameters that do not modify domain geometry.
This is particularly interesting given the difficulty of treating
parametrized geometries with other reduced-order modeling
techniques.

4. Neural network method parameterized by field strength
and particle size

The results shown so far have established that the NNM
can robustly solve the g0 equation in the slit-well MNFD
(Sec. IV B 1), and that the method can easily be ex-
tended to produce solutions parametrized by field strength λ

(Sec. IV B 2) or particle size σ (Sec. IV B 3). Expanding upon
this capability, in this section the NNM is used to approximate

g0 as a function of both λ and σ simultaneously (Fig. 3).
Specifically, a single neural network is trained to approx-
imate the four-dimensional function g0(x, y; λ, σ ) over the
same parameter space previously spanned by five networks
in Secs. IV B 2 and IV B 3 or 50 networks in Sec. IV B 1.

The MFPT 〈τ 〉, effective mobility μeff , relative error ε,
and marginal loss L(g0|λ, σ ) are computed from the NNM
solution g0(x, y; λ, σ ) and plotted in Figs. 5(d), 5(h), 5(l), and
5(p). The lines are shown as functions of σ and evaluated
at the same choices of λ used in Sec. IV B 3 [indicated by
the legend in Fig. 5(o)]. The 〈τ 〉 and μeff values plotted in
Figs. 5(d) and 5(h) closely match those in Figs. 5(c) and 5(g),
demonstrating that the NNM parametrized by both λ and σ

can resolve all the same major physical phenomena previously
identified in Secs. IV B 2–IV B 3.

However, the accuracy of the solution g0(x, y; λ, σ ) is
slightly worse than that observed in the previous sec-
tions [Figs. 5(a)–5(c) and 5(e)–5(g)] as visible in 〈τ 〉 and μeff

[Figs. 5(d) and 5(h)] and quantitatively confirmed by ε and
L(g0|λ, σ ) [Figs. 5(l) and 5(p)] This is not entirely surpris-
ing, since the four-dimensional problem here is intrinsically
more difficult than the three-dimensional (Secs. IV B 2 and
IV B 3) and two-dimensional formulations (Sec. IV B 1) of the
problem. Moreover, the network depth and width were held
constant over all experiments, and the training time was held
constant for all the parametrized formulations (Sec. III A).
Regardless, although g0(x, y; λ, σ ) appears somewhat less ac-
curate than the solutions from previous sections, it generally
still meets the target 1% error threshold over most of its
parameter training range.

An exception to this statement is presented by the results at
λ = 5 [the brown lines in Figs. 5(d), 5(h), 5(l), and 5(p)], for
which the error of g0(x, y; λ, σ ) is greater than 1% over nearly
the entire σ training range. The marginal loss also reflects
this poor performance; for λ = 5, L(g0|λ, σ ) in Fig. 5(p)
is more than an order of magnitude larger than L(g0|λ, σ )
from all previous experiments [i.e., those in Figs. 5(m)–5(o)],
and several times larger than the other L(g0|λ, σ ) curves in
Fig. 5(p). Conspicuously, the L(g0|λ, σ ) curves in Fig. 5(p)
vary significantly with λ, whereas in Figs. 5(m)–5(o) very
little variation was observed between the different L(g0|λ, σ )
curves.

Of course, the results in Fig. 5(p) differ fundamen-
tally from those in Figs. 5(m)–5(o); whereas each curve in
Figs. 5(m)–5(o) corresponds to one or more independent net-
works, all the curves in Fig. 5(p) are generated by a single
network. In fact, the brown (λ = 5) and blue (λ = 50) curves,
which exhibit the highest marginal losses in Fig. 5(p), lie
directly on the boundary of the network’s (λ, σ ) training
domain. When analyzing the NNM parametrized by λ or σ

(Secs. IV B 2 and IV B 3), a substantial deterioration in
accuracy was found to be highly localized near the boundaries
of the parameter training range. If a similar boundary effect
exists here for the g0(x, y; λ, σ ) solution, then the results in
Figs. 5(d), 5(h), 5(l), and 5(p) are not representative of the
solution’s overall accuracy over the entire problem parameter
space, as essentially half of the data shown in those plots lie
on the boundary of the network’s parameter training space.

To investigate this possibility, the same metrics that are
shown as discrete lines in Figs. 5(d), 5(h), 5(l), and 5(p) are
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FIG. 6. Analysis of the g0(x, y; λ, σ ) solution obtained using the NNM parametrized by both field strength λ and particle size σ . (a), (e)
Mean first passage time 〈τ 〉 with white contours to show nonmonotonic sorting behavior. (b), (f) Effective mobility μeff with white contours
to show saddle point. (c), (g) Relative error ε of the MFPT with white contour to denote 1% error threshold. (d), (h) Marginal loss L(g0|λ, σ )
with white contour to denote testing loss L.

replotted in Fig. 6 as continuous functions of (λ, σ ). The
first row [Figs. 6(a)–6(d)] shows three-dimensional plots of
the metrics over parameter space, whereas the second row
shows two-dimensional contour maps [Figs. 6(e) and 6(f)]
and color maps [Figs. 6(g) and 6(h)] of the same metrics.
As anticipated, the relative error ε [Figs. 6(c) and 6(g)] and
marginal loss L(g0|λ, σ ) [Figs. 6(d) and 6(h)] are only large
near the boundaries of the parameter training space. Indeed, ε

in Fig. 6(g) is below the 1% threshold (indicated by the solid
white line) throughout the majority of the parameter space,
confirming the suspicion that the line plots in Fig. 5 provide a
biased view of the g0(x, y; λ, σ ) solution.

The boundary effect is particularly clear in L(g0|λ, σ ) in
Fig. 6(d), which features a prominent convex shape. Here,
L(g0|λ, σ ) is consistently higher along all the edges of the
training parameter space and decreases monotonically and
rapidly away from the boundary. In particular, L(g0|λ, σ ) is
exceptionally large at the corners of the training space.

Note that the decay of marginal loss away from the bound-
aries of the parameter space is actually substantially sharper
than it appears visually in Figs. 6(d) and 6(h). The color
scales for Figs. 6(d) and 6(h) are logarithmic and the color
map is not perceptually uniform: it exhibits far more variation
in color and contrast near the lower end of the scale. These
plotting choices make the subtle structure of the marginal loss
more apparent, but give it the biased appearance of a gradual
variation throughout the domain. In actuality, when plotted
with a linear color scale and a perceptually uniform color map,
the marginal loss appears essentially flat through most of the
domain.

As expected, the relative error ε [Figs. 6(c) and 6(g)]
is closely tied to the marginal loss L(g0|λ, σ ). Relative

error is uniformly low in the interior of the parameter space
(roughly (λ, σ ) ∈ [15, 45] × [0.2, 0.6]), corresponding to the
flat interior of L(g0|λ, σ ). Additionally, near the two cor-
ners at λ = 5 where L(g0|λ, σ ) is largest, ε also attains
its highest values, approaching 10%. There is also a small
peak in ε at the (λ, σ ) = (50, 0.125) corner, corresponding
to an equally small peak in L(g0|λ, σ ) at the same corner.
Surprisingly, although L(g0|λ, σ ) exhibits a clear peak at
the (λ, σ ) = (50, 0.625) corner, ε does not. Therefore, the
marginal loss L(g0|λ, σ ) once again appears to act as a
conservative a posteriori estimator of relative error ε: high
relative error occurs near regions of high marginal loss, al-
though high marginal loss does not always imply high relative
error.

As noted above, the performance of the g0(x, y; λ, σ ) so-
lution deteriorates even more significantly at the corners of
the parameter training space than on its edges. This is more
complicated than the boundary effect discussed for the solu-
tions parametrized by just λ or σ , and can be accounted for
by extending the postulated mechanism from Secs. IV B 2
and IV B 3. There, it was argued that the deterioration
in performance arises because the stochastic sampling used
during training under-represents boundary points: whereas
the neighborhoods of interior points are thoroughly sam-
pled on all sides, this is not true for boundary points.
In the two-dimensional parameter training space considered
here, the corners and the edges of the boundary are under-
represented to different extents by the stochastic sampling
process. Whereas parameter values on the edges of the domain
only have 50% as many neighboring points inside the training
space as interior points, parameter values on the corners have
only 25% as many. This tentatively explains why performance
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is so much worse at corners of the parameter training space
than it is on the edges.

If this mechanism extends to higher dimensional parameter
spaces, it may eventually prove to be a dominant source of
error: for instance, the corners of an n-dimensional hyper-
cube have only 1/2n as many neighbors inside the training
space as interior points, and the number of boundary segments
(corners, edges, faces, ...) grows rapidly with n. In fact, the
fraction of a parameter space lying within a given distance of
its boundary also increases with dimensionality. Altogether,
these observations suggest the need for further investigation
into this boundary effect, its possible connection to Monte
Carlo sampling of the loss during training, and methods (such
as low-discrepancy sampling methods [66,67]) for resolving
the problem.

In contrast to the line plots in Fig. 5, the plots in
Fig. 6 highlight the richness of information available through
the g0(x, y; λ, σ ) solution compared with the solutions
parametrized only by λ (Sec. IV B 2), σ (Sec. IV B 3), or nei-
ther (Sec. IV B 1). For instance, although the NNM solutions
parametrized by λ or σ (Secs. IV B 2 and IV B 3) suggested
a nonmonotonic dependence of 〈τ 〉 and μeff with respect to σ

for certain values of λ, they did not provide sufficient informa-
tion to estimate the exact range of λ over which this behavior
persists. Just as the NNM solutions parametrized by λ or σ

(Secs. IV B 2 and IV B 3) are more helpful than the fixed pa-
rameter solutions (Sec. IV B 1) in localizing one-dimensional
critical points, so is the NNM solution parametrized by both λ

and σ more useful for delineating the nonmonotonic regions
of parameter space.

The range of nonmonotonic behavior can be estimated
visually from μeff in Figs. 6(b) and 6(f). Using a vertical line
test, it is easy to see that nonmonotonic dependence of μeff on
σ is present at voltages as low as λ ≈ 10. In fact, μeff is doubly
nonmonotonic with respect to both λ and σ in the large-σ ,
low-λ range [black region in Figs. 6(b) and 6(f)]. Although
the same trends were suspected from the solutions discussed
in Secs. IV B 2 and IV B 3, g0(x, y; λ, σ ) resolves the features
more completely.

Despite the usefulness of g0(x, y; λ, σ ) for resolving crit-
ical points, the solution predicts a false saddle point in μeff

at (λ, σ ) ≈ (40, 0.2) [highlighted by the white solid line in
Fig. 6(f)]. Additional FEM results (not shown) confirm that
there is no saddle point anywhere in the parameter space
under consideration. This error can be attributed to the fact
that the true μeff changes extremely little in the high-λ, low-σ
region of the domain. For illustration, the two dotted white
lines in Fig. 6(f) indicate contours for μeff values 1% greater
and smaller, respectively, than the value of μeff on the solid
white line passing through the saddle point. Despite this range
corresponding to a very small fraction of the total variation of
μeff over the domain, the area between the dotted white lines
account for roughly 25% of the total parameter training space,
demonstrating that μeff is extremely flat throughout this entire
region.

Although the presence of a false saddle point is a noticeable
qualitative error, it corresponds to a very small quantitative
error in the key output metrics 〈τ 〉 and μeff . In fact, the visual
appearance of the saddle point in Fig. 6(f) is intentionally
accentuated by the choice of color map, as discussed for

the marginal loss above. It is quite feasible that an error of
such small magnitude could be resolved simply by increasing
network capacity and/or training time.

Still, the question arises of whether and how the NNM
can be used reliably in applications where these types of
incorrect or ill-conditioned features may occur. The marginal
loss L(g0|λ, σ ) provides one possible resolution to this
concern. The region of increased L(g0|λ, σ ) near (λ, σ ) =
(50, 0.125) in Fig. 6(h) coincides fairly closely with the right
half of the saddle point in Fig. 6(f). Thus, L(g0|λ, σ ) cor-
rectly reflects that the solution is less reliable in this region,
drawing into question the validity of the predicted saddle
point.

Future work should elaborate on what quantitative predic-
tions of solution quality can be based on the marginal loss,
along the lines of the investigations of Magill et al. [57]. In
the interim, we propose using the total loss [as indicated in
Fig. 6(h) by the solid white line] as an approximate threshold
between regions of relatively high and low expected accuracy.
In fact, the marginal loss L(g0|λ, σ ) as defined here is likely
a suboptimal tool for the detection of false critical points in
parameter space because it does not directly measure gradient
information with respect to (λ, σ ). Rather, it is only indirectly
sensitive to the error in the shape of 〈τ 〉 and μeff insofar as
it emerges from errors in the shape of g0(x, y; λ, σ ). For ap-
plications in which the localization of ill-conditioned critical
points is of interest, modified loss functions that incorporate
the derivatives of the target PDE with respect to λ and σ

(e.g., like those explored by Avrutskiy [59]) might be more
relevant error estimators. This notion illustrates the potential
benefits of customizing the NNM for specific PDEs and re-
search questions, just as flux- or energy-conserving numerical
methods are preferred for applications where those features
are particularly important.

In summary, the results in this section demonstrate that the
NNM can produce a robust approximation to the g0(x, y; λ, σ )
solution. Here, g0(x, y; λ, σ ) enables higher-dimensional vi-
sualization of 〈τ 〉 and μeff over λ and σ , resolving features
in parameter space more accurately and completely than
the solutions parametrized by only λ or σ . Furthermore,
g0(x, y; λ, σ ) accurately predicts the magnitude of 〈τ 〉 and μeff

to within the 1% error threshold simultaneously over the ma-
jority of the parameter training space. Although g0(x, y; λ, σ )
exhibits some regions of high relative error, L(g0|λ, σ ) once
again provides a robust a posteriori estimator of the solution’s
reliability throughout the parameter space.

V. CONCLUSIONS

This work investigated the use of the neural network
method to solve a parametrized time-integrated Smolu-
chowski equation describing nanoparticle passage through the
slit-well microfluidic device. The g0 solutions were solved for
a variety of fixed choices of field strength λ and particle size
σ using both the NNM and a standard FEM implementation.
Additionally, the NNM was used to solve the equation directly
as a function of λ and/or σ . Mean first passage time 〈τ 〉 and
effective mobility μeff were studied as the primary output
metrics of interest, with relative error ε and marginal loss
L(g0|λ, σ ) used to characterize solution performance.
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The qualitative examinations of g0 in Sec. IV A revealed a
wide variety of functional behavior over the region of (λ, σ )
parameter space studied here. The four primary regimes un-
derlying nanoparticle sorting in the slit-well (i.e., low and high
fields for small and large particles) correspond to four sig-
nificantly different g0 solution types, each reflecting different
interplays of drift, diffusion, and geometry. This highlights the
challenging nature of the parametrized PDE problem studied
in this work. Additionally, this analysis suggested that the
g0 solutions themselves may encode interesting and useful
qualitative information about biophysical processes. Future
work should examine how information encoded in g0 may
be complementary to qualitative information derived from
stochastic particle trajectories.

Of course, qualitative insights aside, the most salient fea-
ture of g0 is that it integrates to yield the mean first passage
time 〈τ 〉. As noted, although 〈τ 〉 is a quantity of widespread
interest in all first passage problems and is relevant to many
MNFD design problems, it appears that numerical solutions
of g0 have rarely been leveraged for such applications. The
results of this paper support that g0 may be an undervalued
tool in computational biophysics.

Although g0 can be computed using many methods, such
as FEM or particle simulations, this work focused on re-
solving g0 using the NNM. When applied to fixed choices
of problem parameters, the NNM consistently estimated 〈τ 〉
with errors below 1%. In particular, the NNM values were
at least as accurate as typical particle simulations, which are
the most common tool for studying first passage problems in
biophysics. However, a proper comparison of runtime was not
conducted in this work, and should be a major focus of future
investigations.

The main appeal of the NNM is the unique ease with
which it can be applied to parametrized g0 problems. Via
integration of g0, these solutions yield a direct mapping from
key problem inputs (e.g., λ, σ ) to key problem outputs (e.g.,
〈τ 〉, μeff ). This is particularly appealing for the application
of MNFD research, where essential phenomena often depend
nontrivially on the coupling of many system parameters. The
results in the current work demonstrate that the NNM can
learn accurate approximations of g0 parametrized by λ, σ ,
or both, all using a modest network size and even without
careful hyperparameter optimization. Whereas classical ROM
techniques typically require special considerations to handle
geometry-modifying parameters like σ , the NNM was found
to resolve g0(x, y; σ ) just as easily as g0(x, y; λ). As discussed,
parametrized solutions can be quite useful in characterizing
entire regions of parameter space.

Although the NNM is expected to perform well on highly
parametrized PDEs, the careful error analysis presented in the
current study revealed several points of caution for future ef-
forts in this direction. First, all parametrized solutions studied
here exhibited a deterioration in accuracy near the boundaries
of their parameter training space. Nonetheless, the predicted
values of 〈τ 〉 were still mostly within the 1% margin of error.
Moreover, the marginal loss functional L(g0|λ, σ ) proposed
here was found to act as a conservative a posteriori estimator
of the solution accuracy throughout parameter space.

The second point of caution that must be considered
when applying the NNM to parametrized PDEs concerns the

interpretation of key features, such as critical points, that are
identified using these solutions. For instance, in Sec. IV B 4,
the NNM solution exhibited an erroneous saddle point in a
flat region of μeff , which was an artifact that arose due to the
ill-conditioning of the gradients of μeff (λ, σ ). In fact, plots of
ε showed no indication of errors in this region, as the mistake
only manifested in the curvature of the mapping. However,
once again the marginal loss L(g0|λ, σ ) did indicate that the
NNM solution lost fidelity in this region of parameter.

In summary, the parametrized NNM solutions were gener-
ally accurate far from the training boundaries, and L(g0|λ, σ )
provided robust regions of confidence. Altogether, these re-
sults highlight the specific appeal of the NNM as a method
for studying parametrized first passage problems via the time-
integrated Smoluchowski model. We hope this work prompts
further investigation into the use of g0 with or without the
NNM, and into the relationship of 〈τ 〉 and μeff to more
standard MNFD metrics. Regarding the application of the
NNM to such problems, future work should address technical
challenges such as singularities posed by sharp corners, train-
ing difficulties for highly skewed geometries, and achieving
competitive runtime.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from Mitacs
under the Accelerate Entrepreneur program (Ref. IT21168)
and from Smart Computing for Innovation (SOSCIP Ref.
3-076). H.W.d.H. also acknowledges funding from the Nat-
ural Sciences and Engineering Research Council (NSERC)
in the form of Discovery Grant No. 2020-07145. M.M. also
acknowledges funding from the Ontario Graduate Scholarship
(OGS) Program and the Vector Institute Postgraduate Affiliate
Program.

APPENDIX A: COMPUTING MEAN FIRST PASSAGE
TIMES WITH PARTICLE SIMULATIONS

This section contains a description of standard Brown-
ian dynamics (BD) simulations used to measure the mean
first passage times of nanoparticles traversing the slit-well
microfluidic device (Sec. II). The BD simulations were ini-
tialized with N = 100 000 noninteracting particles placed
according to the distribution ρ0 [Eq. (7)]. The position of the
ith particle �xi was updated according to the discretized BD
equation


�xi


t
=

√
2D


t
�R(t ) + qλ

γ
�E0 + 1

γ
�FWCA. (A1)

In Eq. (A1), the particle properties are the diffusion coef-
ficient D, the friction coefficient γ , and the particle charge
q. As noted in Sec. II, both q and γ were set equal to the
particle diameter σ , to capture free-draining behavior. The
diffusion coefficient D was set to 1/σ and the time step was
set 
t = 10−5 The term �R(t ) in Eq. (A1) is a random driving
force representing the thermal motion of an implicit solvent
which was sampled from a uniform distribution of mean 0
and variance 1.

Rather than representing the interactions between particles
and walls as perfectly rigid, the walls were implemented using
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FIG. 7. Contour plots of the baseline electric potential u0 (black)
and field �E0 (red) computed by the NNM.

a short-range repulsive shifted WCA force

�FWCA = −∇UWCA, (A2)

with

UWCA(ri ) =
{

4ε
[(

σ0
ri

)12 − (
σ0
ri

)6] + ε, ri < rcut

0, ri � rcut.
(A3)

where ri is the minimum distance from particle i to the near-
est reflective wall minus a distance rshift = 0.5(σ − σ0). Here
rshift corresponds to the radius of the hard core of the particle,
whereas σ0 = 0.125 is the length over which the surface of
the particle is partially compressible. The potential is zero
beyond a cutoff distance rcut = 21/6σ0, so that if the center
of the particle is farther than a distance rshift + rcut from the
wall there is no interaction. The energy scale of the repulsive
interaction was set to ε = 0.125 = σ0.

Although this type of model is commonly used for particle-
wall interactions, due to its improved numerical stability
relative to perfectly rigid interactions, it introduces a small
difference between the underlying physics of the BD simu-
lations and the PDE models being solved in this work. For
this reason, the MFPTs determined using particle simulations
should not be expected to agree exactly with those obtained
using the NNM and FEM methods, even in the limit of
small 
t and large N . Nonetheless, as our results corrob-
orate, the effect of this difference between the models is
small.

The term �E0 in Eq. (A1) corresponds to the baseline electric
field in the slit-well domain (denoted by red in Fig. 7). This
was solved for a voltage drop of two units from the leftmost
to rightmost boundaries, as in Magill et al. [57]. The net
electric-field strength was set by the parameter λ. �E0 used
here was the same one described in Sec. III B. As shown in
Magill et al. [57], particle simulations conducted using an
electric field solved with the NNM are nearly statistically
indistinguishable from those conducted using a field solved
with the FEM, so long as the NNM electric field exhibits a
sufficiently small loss. The purpose of the present study is
not to replicate this result, but to explore the computational
advantages of the NNM over other techniques in parametrized
problems. Thus, the particle simulations are conducted using

FIG. 8. Passage time properties of particles escaping the slit-well
model computed using Brownian dynamics simulations. Star mark-
ers denote values obtained via FEM. (a) Mean first passage time 〈τ 〉.
(b) Effective mobility μeff . (c) Relative error of 〈τ 〉 computed against
the ground truth FEM solution.

the FEM electric field, which is taken as the reference ground
truth.

Parallel to the analysis conducted in Sec. IV B, the mean
first passage time 〈τ 〉 and effective mobility μeff are computed
using the BD simulations for various choices of field strength
λ and particle size σ . These values are plotted with dashed
lines in Fig. 8(a) and 8(b) with star markers to denote 〈τ 〉 and
μeff values obtained by FEM. Note that 〈τ 〉 and μeff are only
solved for the same discrete choices of λ and σ that are also
computed using FEM.

In addition, the relative error ε is computed using Eq. (23)
where 〈τ 〉 and 〈τ 〉FEM are the MFPTs computed by BD and
FEM, respectively. The values are plotted in Fig. 8(c) with
circular markers denoting the parameter choices where the
relative error was computed. All of the relative errors in
Fig. 8(c) fall below 2%, with majority of the values being
within 1% error. This establishes a 1% error baseline against
the ground truth MFPT values computed by FEM, for which
to benchmark the performance of the NNM.
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TABLE I. Comparison of computational time (in minutes) of the
NNM, BD, and FEM methods used to compute the MFPT at fixed
parameter values.

Runtime (minutes)

Parameters (λ, σ ) NNM BD FEM

(5.0, 0.125) 136.95 5.02 2.25
(50.0, 0.125) 138.37 1.03 2.15
(5.0, 0.625) 126.57 12.80 2.18
(50.0, 0.625) 133.63 1.12 2.13

APPENDIX B: CONTOUR PLOTS OF ELECTRIC
POTENTIAL AND FIELD

The baseline electric field �E0 used to drive particle mo-
tion in the slit-well device [Eq. (6)] was computed using the
NNM, as described in Magill et al. [57]. That is, the baseline
electric potential u0 was solved using Laplace’s equation over
a voltage drop of two units from the left slit wall to the
right slit wall. The electric field was then computed using the
relation �E0 = ∇u0. The red and black contour lines in Fig. 7
correspond to the electric field �E0 and electric potential u0,
respectively, inside the slit-well MNFD.

APPENDIX C: RUNTIME COMPARISON

The MFPT and effective mobility of nanoparticles travers-
ing the slit-well MNFD were obtained using BD simulations,
the FEM, and the NNM. Table I shows the runtime, in min-
utes, of each method used to solve the MFPT at fixed choices
parameter values. Four choices of the parameters are included,

TABLE II. Comparison of computational time (in days) of the
various methods used to compute the MFPT over ranges of parameter
space.

Method Mean Runtime (days)

NNM parameterized by λ 6.33
NNM parameterized by σ 7.79
NNM parameterized by (λ, σ ) 7.66
High-resolution FEM sampling 12.18

illustrating that runtimes were fairly independent of parame-
ters for NNM and FEM but depended strongly on parameters
for BD. Table II shows the runtime, in days, of each method
used to solve the MFPT over large regions of parameter space.
As implemented, the various parametrized NNM methods
all have runtimes comparable to one another. Moreover, the
total runtime of the high-resolution FEM sampling exceeds
the mean runtime for the parametrized NNM methods. How-
ever, this runtime obviously depends on the number of points
sampled. Here, 8099 parameter combinations were utilized in
order to produce high-resolution maps of error over parameter
space.

Optimizing runtime was not a goal of the current work.
The implementations of each of the algorithms studied here
(NNM, BD, FEM) can undoubtedly be improved upon to
substantially decrease the runtimes from those reported in
Tables I and II. Moreover, judicious use of parallelization
across GPUs and/or CPUs, as applicable, could provide fur-
ther improvements to each of the methods. Thus, the runtimes
included here are provided for reference only, and a more
careful comparison is left to future work.
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