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We perform a quantitative analysis of Monte Carlo simulation results of phase separation in ternary blends
upon evaporation of one component. Specifically, we calculate the average domain size and plot it as a function
of simulation time to compute the exponent of the obtained power law. We compare and discuss results obtained
by two different methods, for three different models: two-dimensional (2D) binary-state model (Ising model),
2D ternary-state model with and without evaporation. For the ternary-state models, we study additionally the
dependence of the domain growth on concentration, temperature and initial composition. We reproduce the
expected 1/3 exponent for the Ising model, while for the ternary-state model without evaporation and for the one
with evaporation we obtain lower values of the exponent. It turns out that phase separation patterns that can form
in this type of systems are complex. The obtained quantitative results give valuable insights towards devising
computable theoretical estimations of size effects on morphologies as they occur in the context of organic solar
cells.
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I. INTRODUCTION

Morphology formation is one of the key factors in the
processing of multicomponent thin films from solution. In
applications such as organic solar cells the photoactive layer is
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a thin film of electron donor and electron acceptor molecules.
The internal structure of the morphology of this layer plays
a very important role for the electric charge generation and
collection; cf., e.g., [1]. The photoactive layer is produced
within a solution with organic solvent, a distinguishing feature
of the organic solar cells compared to the more conventional,
silicon-based, photovoltaic systems.

Morphologies are formed by phase separation of the
electron donor and electron acceptor molecules during the
evaporation of the solvent [2,3].

In the framework of this paper, lattice spin systems are
used to understand size effects on different morphologies as
well as characteristic time scales observed in domain growth
phenomena. A paradigmatic model is the widely studied two-
dimensional (2D) Ising model [4], that served as a model
system for the investigation of phase separation in magnetic
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materials and of novel transport mechanisms under nonequi-
librium conditions [5]. For such a model, it has been well
established that in the spinodal decomposition regime, namely
for zero external field and subcritical temperature, the average
diameter of the formed domains scales with time as a power
law, where the exponents depend on the details of the dy-
namics. For nonconservative and conservative dynamics the
exponents are 1/2, and respectively, 1/3; see, e.g., [6]. Inter-
estingly, these results were shown to be robust with respect to
slight modifications of the Hamiltonian describing the equilib-
rium properties of the system; we refer the reader, for instance,
to [7]. On the other hand, different interesting phenomena are
observed when the dynamics are modified more drastically by
introducing, for example, shear effects as in [8].

In order to describe the formation of internal structures in
the presence of an evaporating solvent as typical to applica-
tions in the context of organic solar cells, a three-state model
is needed. Two straightforward generalisations of the Ising
model with nearest neighbor interaction between three-state
spin variables are the Blume-Capel [9–11] and the Potts [12]
models. Both these models have received much attention for
their ability to model different physical situations both at
equilibrium [13] and out of equilibrium [14–17]. The dis-
tinguishing feature between these two models is that in the
Blume-Capel model, interfaces between different spins have
different costs. The dynamics of phase separation for the Potts
model seen in the spinodal decomposition regime are not
completely understood: a rather clear scenario is described for
nonconservative dynamics for three- and four-state spins [18],
whereas the understanding is only partial when spin variables
with larger cardinality are considered [19]. To the authors’
knowledge, no references are available for the Potts nor the
Blume-Capel model with conservative dynamics.

Three-state lattice models were used in [20] and [21] as
an efficient tool to study phase separation patterns in ternary
mixtures that allow the evaporation of one of the compo-
nents as an alternative to phase-field models used in the same
context [22–25]. In our previous work [20], we focused our
attention on exploring the relevant parameters that influence
the morphology formation. This is a subject of large interest in
the community and was discussed in many experimental and
computational studies[22–24,26–34]; see also [35] for related
work done for stochastic models for competitive growth of
phases.

In the present work, the emphasis falls onto the quantitative
analysis of the results for relevant choices of parame-
ters. Quantitative studies are important particularly when
one wants to compare morphologies obtained with differ-
ent computational models or to compare computational and
experimental results. In general, different models and com-
putational methods give results on different length scales. In
some approaches the characteristic length scales are incor-
porated into the model parameters, such as the parameters
arising in the structure of the interaction potential for atomistic
molecular simulations. Even in apparently scale-free models,
the nature of the modeling assumptions induces a length scale
range for the results. Having in view potential applications of
our three-state lattice models, it is of a primary concern to
identify relevant quantities that capture the essence of domain
size evolution across the scales.

The quantitative analysis presented here is an important
step towards a more general quantification and eventual
classification of morphology pictures obtained by different
experimental and computational methods.

In this paper, we follow up the ideas developed in our
previous work [20] and give a quantitative study of the phase-
separated domains using a slightly simplified version of our
original model generalizing the Blume-Capel and Potts mod-
els. The three possible states of the spin variable are denoted
here by −1, 0, and +1: “0” is interpreted as solvent molecules,
whereas “±1” represent the other two components. In a real
system the properties of the molecules, such as the molecu-
lar weight of the polymers, have a significant effect on the
resulting film morphology and ultimately on the performance
of the polymer solar cell [36–38]. Here we prefer the above
mentioned more general formulation, since we do not take in
account the different molecular weights of the three compo-
nents or the volumes they occupy and hence each site occupies
the same volume in the lattice. In the case where the molecular
weights of the three components are comparable, the spin
variables could be interpreted as different molecules, but in
our case of interest, where the nonevaporating molecules, e.g.,
polymers, have different sizes and are much larger than the
solvent molecules, a more general interpretation is needed.
In our model, lattice sites are associated with volumes filled
with substance, i.e., molecules of one of the components
of the ternary system. The morphology is determined to a
large extend by the molecular interactions represented by the
interaction matrix J , whose elements, in principle, could be
adjusted according to experimental evidence [22] or molecu-
lar simulations [39]. Even if spin lattice systems are simplified
models that do not fully capture all aspects of real molecular
interacting systems, they can reproduce bulk heterojunction
morphologies reasonably well and are commonly used in the
field [40,41].

To study the phase separation in the ternary mixture upon
evaporation of one of the components, we consider a spin
model with a Kawasaki-like dynamics [42] governed by the
Metropolis algorithm [43] to account for energy differences
associated to possible spin exchanges and computed using
appropriate boundary conditions. The Kawasaki dynamics is
modified here such that evaporation of the 0 component is
allowed. Keeping track of the solvent evaporation is crucial
for the study of the morphology formation in solution-borne
thin films, used, e.g., in the preparation of the active layer in
organic photovoltaics. To implement such a mechanism, the
zeros in the first row of the lattice are removed (evaporation)
and replaced by a +1 or a −1 with probability chosen pro-
portionally to the initial fractions. The dynamics start with a
randomly chosen configuration consisting of a fixed fraction
of the three different spin species and evolve until an a priori
small concentration of solvent is reached. The problem we
study is related to the spinodal decomposition with the new
ingredient of the evaporation of the zero component. We have
to keep in mind that our model relies on assumptions and will
not correspond to all aspects of the physical reality and that
further improvements are possible to make the model more
realistic. This falls outside the scope of the present work.

The model will be studied by means of Monte Carlo simu-
lations and the size of the growing domains will be estimated
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via correlation function and structure factor methods. Several
other techniques have been proposed and used in the past lit-
erature, including renormalization group techniques. We refer
to [6] for a wide overview of methods, techniques, and results
in this area of research.

The paper is organized as follows: we first define the model
and describe the tools that we rely on to investigate the domain
formation under evaporation. Then we discuss our numerical
results first in the absence of the evaporation, and then, when
the evaporation of the solvent, i.e., of the zero component,
is involved. After discussing the effect of the temperature
parameter on the overall system dynamics, a short summary
of our findings concludes the paper.

II. MODEL AND METHODS

In this section we first define the model and then illustrate
the tools that we use to measure the domain growth. In the
last part of this section, we briefly illustrate these methods
by discussing the standard Ising case. For more details on the
Monte Carlo method and its variations, we refer the reader,
e.g., to the monographs [44,45].

A. Model

Let � be the square {1, . . . , L}2 endowed with periodic
boundary conditions, where L is the lateral size of the sim-
ulation box expressed in lattice points. An element of � is
called a site and two sites are said to be nearest neighbors
if their Euclidean distance is one. A pair of nearest neigh-
boring sites is called a bond. We associate the spin variable
σ (x, y) ∈ {−1, 0,+1} with each site (x, y) ∈ � and define the
total energy using the Hamiltonian

H (σ ) = 1

2

∑
(x,y),(x′,y′ )∈�:
|(x,y)−(x′,y′ )|=1

Jσ (x,y)σ (x′,y′ ), J =
⎡
⎣

0 1 4
1 0 1
4 1 0

⎤
⎦, (1)

for any configuration σ ∈ {−1, 0,+1}�, where the elements
Jα,β , with α, β = −1, 0, 1, are organized in the matrix J such
that the row and the column indices take the values −1, 0,+1.

In this case, there is no cost associated with self-interaction
(the main diagonal of J), a relatively small cost between
±1 and 0 sites, and a relatively large cost of an interface
between −1 and +1. Such a choice of interaction matrix
corresponds to a well-studied parametrization of the Blume-
Capel model with zero magnetic field and zero chemical
potential; see, e.g., [14,15,17]. Note that this specific structure
of the interaction matrix J promotes the phase separation of
the components, irrespective of the presence or absence of the
evaporation.

Consider the integer time variable t � 0, that will be
expressed in Monte Carlo Sweeps (MCS) [44,45]. Fix the
parameter β > 0 and refer to 1/β as the temperature. Fix
c−1, c0, c+1 ∈ [0, 1) with the constraint c−1 + c0 + c+1 = 1.
They are the corresponding fractions of −1, 0, and +1 spins
in the initial configuration, that is at time t = 0. In the case
of the two-state model and three-state model without evapo-
ration, we follow a classical Kawasaki dynamics for the Ising
model and Blume-Capel model, respectively. In the case of the

three-state model with evaporation, the stochastic evolution σt

is constructed by repeating at each time t > 0 the following
steps L2 times:

(i) Choose a bond at random with uniform probability
(ii) If the bond is of the type ((x, L), (x, 1)) and σ (x, L) =

0, then replace the spin zero at the site (x, L) by +1 with prob-
ability c+1/(1 − c0) and by −1 with probability 1 − c+1/(1 −
c0) = c−1/(1 − c0) (say that the zero evaporated)

(iii) Otherwise, let � be the difference of energy between
the configuration obtained by exchanging the spins at the two
sites of the bond and the actual configuration; exchange the
two spins at the sites of the bond with probability 1 if � < 0
and with probability exp{−β�} if � � 0.

We stop the dynamics when the total number of zeros in the
system becomes smaller than L2/10, hence at c0 = 0.1. Based
on this description, the dynamics are of Kawasaki type com-
plemented with a Metropolis updating rule with the addition
of the evaporation rule (i.e., step ii) of the algorithm).

B. Methods

A common measure of the average domain size is obtained
by fixing a cutoff for the two-point correlation function. More
precisely, for any s ∈ {sx, sy} let

G(s, t ) = 1

L2

∑
(x,y)∈�

σt (x, y)σt (x + sx, y + sy) (2)

be the two-point correlation function. Moreover, we also
consider the horizontal and vertical two-point correlation
functions Gx(r, t ) = G((r, 0), t ) and Gy(r, t ) = G((0, r), t ),
where r is an integer number. The direction-dependent two-
point correlation functions typically decrease from their
maximum value at s = 0 in an oscillatory fashion, such that
it is possible to estimate the size of the domains by fixing
a cutoff and finding the value at which the two correlation
function intersect such a cutoff. In this way, we shall find
an estimate for the horizontal and vertical diameters of the
domains, Rx and Ry, respectively.

Another well-established domain-size measurement is
based on the first momenta of the structure factor. More pre-
cisely, for any (kx, ky) in the first Brillouin zone {−π, −π +
2π/L, . . . , π − 2π/L, π}2, let

C((kx, ky), t ) = 1

L2

∣∣∣∣
∑

(x,y)∈�

σt (x, y) ei (kxx+kyy)

∣∣∣∣
2

(3)

be the structure factor. Note that the quantity in the absolute
value above is simply the Fourier transform of the configura-
tion at Monte Carlo time t , and can thus be evaluated using
any form of fast Fourier transform technique to speed up
execution. Hence, another way of estimating the horizontal
and the vertical diameters of the domains is by redefining Rx

and Ry as follows:

Rα =
∑

(kx,ky ) C((kx, ky), t )∑
(kx,ky ) |kα|C((kx, ky), t )

, (4)

where α ∈ {x, y} and each summation is carried out over the
first Brillouin zone.
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FIG. 1. Single history for the Kawasaki Ising dynamics with L =
512 and β = 1.0. Correlation function measure and structure factor
measure of the horizontal and vertical domain size in the upper and
lower panel, respectively. Circles and diamonds refer, respectively,
to Rx and Ry. The purple line gives the x1/3 slope.

C. Domain growth in the 2D Ising model

As a test of this methodology, we consider the classical 2D
Ising model under Kawasaki dynamics, for which the growth
exponent of 1/3 has been extensively verified; we refer the
reader, for instance, to the works [6,7]. The results for our
case are shown in the left and right panel of Fig. 1. Here
we report the resulting domain growth of the same run as
evaluated using both the correlation function and the structure
factor. The previously established 1/3 exponent is recovered,
lending credit to the chosen methodology.

Based on Fig. 1, we note that the two methods yield quite
similar power-law structures, i.e., the same exponent with
different constant prefactors. This yields a discrepancy in the
absolute values of the domain sizes calculated based on these
two methods. Since we do not have a physically imposed
length scale (i.e., no physical meaning of length is included in
our lattice models), this is not a critical distinction. It is more
important to observe how the domains grow, hence we wish
to compare the exponents in the power laws mainly at long
times. Sometimes, also short timescales could be of interest if
power laws of suitable observables are detected.

Both the correlation function and structure factor measure
show that two different regimes can be distinguished: the
initial one in which the domains start to be formed by coales-
cence of equal spins and the second one, characterized by the

FIG. 2. Three-state model with L = 512 and β = 1.0. Estimate
of the horizontal domain size via two-point correlation function
and structure factor in the upper and lower panel, respectively. One
single system history for each solvent concentration c0 is considered.
Different colors refer to different values of the concentration of zeros,
c0 = 0.0, 0.1, . . . , 0.8 from light to dark. The purple, orange, and
green lines give, respectively, the x1/3, x1/5, and x1/10 slope.

power-law scaling, in which the already formed domains grow
in time. This last regime will be addressed as the growing or
scale invariant regime.

III. NUMERICAL RESULTS

After having checked the validity of the different method-
ologies on the Kawasaki Ising dynamics, we now study the
three-state model introduced above. We explore the model
for different choices of the initial fraction of zeros c0. For all
the simulations, we set c−1 = c+1, so that the initial number
of minuses and pluses will be equal. Due to the evaporation
mechanism, the ratio between minuses and pluses will oscil-
late slightly during the overall evolution, while the fraction of
zeros will progressively decrease.

A. Domain growth in the three-state model without evaporation

The results for the growth of domains obtained with the
two different methods for calculating Rx from the same Monte
Carlo simulation of the three-state model are shown in Fig. 2.
We omit to show the results for Ry as in the absence of evapo-
ration domains are isotropic, as in the Ising case (see Fig. 1).
Data for different values of the initial zeros concentration
c0 are reported here. The connecting lines between the data
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FIG. 3. Morphology formation and domain coarsening of the
three-state model without evaporation for L = 512 and β = 1.0.
From the top to the bottom c0 = 0.0, 0.1, 0.2, 0.4, 0.8. From the left
to the right t = 0, 8102, 98714, 729415 MCS.

points do not imply piecewise linear regression. The x1/3 line
is shown as reference, since a 1/3 exponent of the power
law for the domain size as a function of time is the observed
behavior in the scale-invariant regime via the correlation func-
tion (left panel). This is consistent with the findings for a
conserved dynamics as reported in [6].

The two panels show that in the two-state case, namely, for
c0 = 0, growth is very slow and in the time interval considered
in the simulation, domains have just started to form. This
simply means that the scaling regime has not yet been reached,
and that the overall process is still in its incipient phase. This
line of reasoning is supported by comparing the configurations
shown in the upper two rows of Fig. 3. Indeed, looking at
the first row, configurations referring to the case c0 = 0.0 are
shown. They point out clearly that the growth regime has not
yet started, compared to the second row with c0 = 0.1, where
the domains have grown substantially.

Both analysis techniques agree when predicting that the
domain growth is much faster when a moderate amount
of zeros is present in the system. This situation is not
unprecedented in literature; see, e.g., [46] where the au-
thors demonstrate a process of greatly speeding up the Ising
Kawasaki dynamics by introducing one or several vacancies in

the lattice. We argue that the zero component of the three-state
model acts as a form of vacancy, since its interface cost is
smaller. Hence, replacing it by a −1 or by a +1 spin is
cheaper. Thus, zero sites are more mobile and greatly speed
up the dynamics. Indeed, for c0 = 0.1, which is reported in the
second row of the same figure, the domain formation started
at about 103 MCS. This is also very well confirmed by the
data in the right panel of Fig. 2: the curve referring to the case
c0 = 0.1 mildly grows until 103 MCS where it experiences
an abrupt change of the slope to a growth regime with the
exponent 1/3.

Both the correlation function and the structure factor
measure characteristic domain sizes. Interestingly, they give
different results for c0 � 0.2; see again Fig. 2. The correlation
function-based measure is compatible with a 1/3 exponent in
the scaling regime for all values of c0. On the other hand, the
structure factor-based measure suggests that growth is slower
when the zeros concentration is increased. The configurations
plotted in the lower three rows of Fig. 3 indicate that the
growth mechanisms change when more zeros are present. In
the second row of Fig. 3 zeros form a thin film around plus and
minus domains, so that growth happens essentially as in a two-
state lattice system. This is a typical situation observed in the
Blume-Capel model, see also the behavior in the metastable
regime studied in [14] where the nucleation of the stable phase
is realized via the formation of a critical droplet in which the
minuses are separated by the pluses by a thin layer of zeros.
As usual in lattice spin models, interfaces are characterized by
a sharp behavior, in contrast to what happens in other contexts,
such as phase models and lattice Boltzmann systems [47],
where diffuse interfaces are observed.

In the plots provided in the lower three rows of Fig. 3
the situation is rather different: domains of zeros have sizes
comparable with pluses and minus ones. Furthermore, the
three species seem to compete during growth. In the last
row, when the zero concentration is very high, the process
seems to become more peculiar, in the sense that plus and
minus domains grow inside a connected background of ze-
ros. It is worth mentioning that similar behaviors have been
observed in different regimes, specifically in the study of the
metastability occurring in the framework of the Blume-Capel
model [14–17], when growth does not happen via the coales-
cence of small droplets but rather via a sudden nucleation of a
large droplet.

The fact that different values of the zeros concentration
give rise to different growing mechanisms suggests that, for
this three-state system, the way in which the structure factor
measures the size of the domains is more reliable than that
provided by the correlation function technique. Even if, from
the experimental point of view, this case might seem less
interesting, our results can be related to situations where the
concentration of the active components in the solvent does not
vary much, as it would be, for instance, the case for a certain
short amount of time at the bottom of the film or for a very
slow evaporation.

B. Domain growth in the three-state model with evaporation

Now we discuss our results for the domain growth in the
presence of the evaporation, which is the most interesting case
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FIG. 4. Horizontal domain size-based measure via the correla-
tion function (upper panel) and the structure factor computation
(lower panel) for the three-state lattice model with evaporation for
L = 512 and β = 1.0. One single system history per initial concen-
tration. Different colors refer to different values of the concentration
of zeros, c0 = 0.2, 0.3, . . . , 0.8 from light to dark. The purple and
the orange lines give, respectively, the x1/3 and x1/5 slope.

in terms of applications to ternary mixtures in the context of
organic solar cells referred to in the introduction. The horizon-
tal and vertical domain sizes measured with the correlation
function and with the structure factor are reported in Fig. 4
and Fig. 5, respectively. Just like in the case discussed in the
previous section, the two-point correlation function shows a
domain growth exponent of 1/3 in the appropriate regime,
while the structure factor method gives a more complex be-
havior, showing growth exponents between 1/5 and 1/3 for
Rx. What concerns Ry, we see briefly a growth exponent of
1/3, which then speeds up further near the end of the evap-
oration. This asymmetry is not necessarily surprising as this
problem is anisotropic due to the evaporation of the zeros at
the top row of the lattice.

Even in the presence of evaporation, the growth mechanism
seems to depend on the solvent concentration; see Fig. 6. Note
that the last frame (for 729 415 MCS) is missing for the first
two initial concentrations of zeros, as the length of the simu-
lation is decided by the final concentration of zeros (recall the
stopping condition for the dynamics is when c0 = 0.1) and,
in these cases, that value is reached for shorter simulation
lengths. By similar arguments as before, it is believed that
the structure factor yields the most meaningful domain size
calculation, which is further supported by the observation that

FIG. 5. As in Fig. 4 for the vertical domain size.

Ry > Rx near the end of the evaporative process (compare
Fig. 4 and Fig. 5). This also appears to be the case when
looking at the final configurations in Fig. 6, and it is thus
believed to be a good indicator of the validity of the domain
size calculations.

FIG. 6. Morphology formation and domain coarsening of the
three-state lattice model with evaporation for L = 512 and β = 1.0.
From the top to the bottom c0 = 0.2, 0.4, 0.8. From the left to the
right t = 0, 8102, 98 714, 729 415 MCS.
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FIG. 7. Structure factor estimate of horizontal domain size for
the three-state lattice model without evaporation for c0 = 0.0 (upper
row, left), c0 = 0.1 (upper row, right), c0 = 0.2 (lower row, left), and
c0 = 0.4 (lower row, right) for different values of the temperature
(see inset). Different colors refer to different values of the inverse
temperature, β = 0.8, 0.9, . . . , 1.2 from light to dark. The blue and
the green lines give, respectively, the x1/4 and x1/2 slope.

C. Effect of temperature

Temperature is an important factor in the context of our
lattice models as well as for the actual experimental process-
ing of the thin film, both in the initial phase of the solvent
evaporation, but also in the late stages and even for after
processing, via thermal annealing. Direct comparisons of the
simulation results with experiment are not feasible at this
stage due to lack of temperature controlled in-situ experimen-
tal data especially at early stages but also due to the qualitative
character of the temperature in our model, captured only in
terms of β−1. Nevertheless, we can see clear tendencies on
the domains growth and this is a good starting point for fur-
ther investigations. In this section, we investigate the effect
the temperature β−1 has on the domains growth as they are
formed in the context of the three-state lattice model without
and with evaporation. The estimates of the domains size are
done via the structure factor method.

In Fig. 7 we plot our result in absence of evaporation.
Several noteworthy aspects appear. With a binary ±1 mixture,
namely, c0 = 0.0 (see the left top panel in the figure), it is
clear that increasing temperature (decreasing β) is associated
with accelerating dynamics. As the concentration of zeros is
increased, this behavior becomes more complex. More specif-
ically, the initial trend is still comparable, i.e., increasing
temperature can be associated with larger domains after the
same time. At larger times, this is no longer the case; see
the time slice ∼105 MCS in the top right panel of Fig. 7,
where the β = 1.2 data cross the β = 0.8 one. As the solvent
concentration continues to increase, the effect of the tempera-
ture diminishes before the inflection point (which also occurs
at earlier times, bringing evidence to the idea that the third
species speeds up the dynamics). Finally, for c0 = 0.6, the
inflection point is no longer visible in the current time domain;
see the right bottom panel in Fig. 7.

It is instructive to look for a moment at the morphology
formation exhibited in Fig. 8 for the case c0 = 0.4. Note that

FIG. 8. Morphology formation, and domain coarsening of the
three-state lattice model without evaporation for L = 512, c0 = 0.4,
β = 0.8 (top row), and β = 1.2 (bottom row). From left to right:
t = 0, 8102, 98 714, 729 415 MCS.

for a high temperature (β = 0.8), the zero sites (depicted in
red) readily penetrate the minus- and plus-filled domains (the
yellow and blue regions), to the point where the interface
boundaries are rather difficult to identify. When the temper-
ature is low (e.g., for β = 1.2), the situation is significantly
different, and the phases are clearly defined, with minimal
interpenetration. It is difficult to say by inspection that the
domains are larger in terms of area in the second case (i.e.,
lower row in Fig. 8), but it is clear that they are more well
defined. Since the Fourier transform is quite sensitive to the
sharpness of the boundaries of the domains, this will affect
the results in Fig. 7 in the sense that results for high β are
more accurate compared to those for low β.

We further consider the effect of temperature when the
zeros evaporate through the top row of the lattice; see Fig. 9.
These data appear consistent with the case without evapora-
tion at least from the point of view that the initial behavior
is similar. At longer times, the evaporation effects dominate,
and the domain coarsening deviates from scenarios computed
with the three-state lattice model without evaporation. Here
again we observe the inflection point, but only in the first row
of Fig. 9, indicating that the dynamics are further accelerated
due to the evaporation.

A proposed mechanism explaining the inflection points in
Fig. 7 and Fig. 9 is the following: high temperatures and/or
high ratio of ±1 sites favors the growth of the domains. This
seems to hold until a certain critical domain size is reached, af-
ter which both the increase in temperature, and hence, increase
in fluctuations allow the zeros to penetrate the domains more
easily. Consequently, this leads to an altering of the average
domain size.

IV. CONCLUDING REMARKS AND FURTHER RESEARCH

In this work, we proposed a quantitative analysis of phase
formation and domain growth in ternary mixtures, both with
conservative and nonconservative dynamics. In the latter case,
one component is evaporated from the top of the lattice in
a process akin to that utilized in the fabrication of solution
borne thin films used in photovoltaics applications based
on organic solar cells. We reproduce the 1/3 exponent for
the Ising model, while for the ternary-state model without
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FIG. 9. Structure factor estimate of horizontal (each lower sub-
panel) and vertical (each upper subpanel) domain size for the
three-state model with evaporation for c0 = 0.2, 0.4, 0.6 (upper, left,
and right two panels, respectively) for different values of the tem-
perature. Different colors refer to different values of the inverse
temperature, β = 0.8, 0.9, . . . , 1.2 from light to dark. The blue and
the purple lines give, respectively, the x1/4 and x1/3 slope.

evaporation and for that with evaporation we obtain lower
values of this exponent. Estimating how domains grow is a
quite complex task—in our context, it is heavily influenced
by the initial mixture concentration as well as by the tempera-
ture. Interestingly, note that the morphologies obtained in the
present simulations can be found as well in experimentally
built thin films; see, e.g., [22,48].

Further research

Suggestions for further research include an extension to
three dimensions for improved applicability to experiments
and to validate the two-dimensional results by studying a slice
of the morphology. Understanding three-dimensional effects
is indeed our next target and short time plan, as such a setting
would allow direct comparison with experimentally obtained
morphologies.

Even in two dimensions, one could conceive a number of
interesting avenues of research, such as the further investiga-
tion of the influence of changes to the interaction matrix J
and extending the model to a more physically relevant one
by taking into account the different molecular weights and

FIG. 10. Horizontal domain size-based measure via the correla-
tion function (upper row) and the structure factor computation (lower
row) for the three-state lattice model with evaporation for β = 1.0,
L = 128 (left column), L = 256 (right column). One single system
history per initial concentration. Different colors refer to different
values of the concentration of zeros, c0 = 0.2, 0.4, 0.8 from light to
dark. The purple and the orange lines give, respectively, the x1/3 and
the x1/5 slope.

volumes of the substance. In the introduction section, we
referred to the experimental situation that raised the domain
size question we are addressing here. Monitoring the domain
size evolution experimentally during film formation requires
in situ techniques that can monitor the formation of structures
directly or indirectly as a function of drying time [49–51]. An-
other approach to capture early stages of the phase separation
is to prepare the evaporating films under microgravity con-
ditions and then simulate numerically those scenarios. Alike
investigation routes will be studied elsewhere.
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orange lines give, respectively, the x1/3, x1/4 and the x1/5 slope.
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APPENDIX: SENSITIVITY WITH RESPECT TO L AND J

We check if the growth behaviors discussed above are
sensible with respect to the choice of the lattice size L and
the interaction J . We expect no dependence on L, while we
cannot exclude that the details of the growth will depend
even on slight modifications of the structure of the matrix J .
Indeed, as we mentioned in the Introduction and in the Further
Research sections, we think that the interaction matrix can be
used to encode some physical properties of the system which
can influence the growth rates.

For what concerns L, we have repeated some of the mea-
sures for smaller values of the lattice size, namely, L =

FIG. 13. As in Fig. 12 for the vertical domain size.

128, 256 and, as shown in Fig. 10 and Fig. 11 the same be-
haviors observed for L = 512 are found; see Fig. 4 and Fig. 5.
It is worth mentioning that the simulation data for L = 128
are clearly lower in resolution compared to higher values
of L.

For what concerns the dependence of the growth behavior
on the details of the interaction J , we have considered the two
possible choices,

J1 =
⎡
⎣

0 1 6
1 0 1
6 1 0

⎤
⎦ and J2 =

⎡
⎣

0 2 4
2 0 2
4 2 0

⎤
⎦, (A1)

and we have repeated the measures as those reported in Fig. 4
and Fig. 5 on a lattice with L = 256. The new interactions
have been chosen by keeping the same structure as in J: the
energy cost of a direct interface between −1 and +1 spins is
kept larger than that of interfaces involving zero spins, but we
have modified the relative magnitudes of the energy costs. As
shown in Fig. 12 and Fig. 13, we found for J1 similar results
to those obtained for J , while for J2 we found again a growth
factor x1/3 via the correlation function technique, whereas the
structure factor calculation seems to be consistent with a x1/4

growth rate.
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