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Search for rogue waves in Bose-Einstein condensates via a theory-guided neural network
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An important and incompletely answered question is whether machine learning methods can be used to
discover the excitation of rogue waves (RWs) in nonlinear systems, especially their dynamic properties and
phase transitions. In this work, a theory-guided neural network (TgNN) is constructed to explore the RWs of
one-dimensional Bose-Einstein condensates. We find that such method is superior to the ordinary deep neural
network due to theory guidance of underlying problems. The former can directly give any excited location,
timing, and structure of RWs using only a small amount of dynamic evolution data as the training data, without
the tedious step-by-step iterative calculation process. In addition, based on the TgNN approach, a phase transition
boundary is also discovered, which clearly distinguishes the first-order RW phase from the non-RW phase. The
results not only greatly reduce computational time for exploring RWs, but also provide a promising technique
for discovering phase transitions in parameterized nonlinear systems.
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I. INTRODUCTION

Rogue waves (RWs) have attracted increasing attention
over the past decades because they have been universally
characterized as mysterious due to their remarkable feature
in which they appear suddenly and disappear without a trace
[1–3]. Thus far, RWs have been widely found in many non-
linear systems, including oceans, the atmosphere [4], optics
[5], plasmas [6], superfluids [7], Bose-Einstein condensates
(BECs) [8], and capillary waves [9]. Especially in oceans, the
sudden occurrence of such extreme events represents a signif-
icant threat to offshore platforms, ships, and renewable energy
devices [1]. Therefore, obtaining their excited locations, tim-
ing, and structures in these complex nonlinear systems is not
only significant for the safety of human life and property in
maritime activities, but also an essential task to elucidate the
nature of this unusual phenomenon.

Currently, the structures, dynamics, and other properties of
RWs have yielded pioneering achievements, both theoretically
[10–12] and experimentally [13,14]. For example, in terms of
theory, the interesting transverse stability of RWs has recently
been studied in the NLS equation [15], and feasible schemes
for generating them are also proposed [16]. Moreover, exci-
tations of RWs have been observed experimentally in water
tanks [17], nonlinear fiber optics [18], and multifractal pho-
tonic arrays [19]. Other important investigations of RWs have
also produced notable results [20–29].

Significantly, although RWs have been widely investigated,
these results mainly rely on real-time evolution methods
(RTEM) with the iterative calculation process. If one intends
to predict in advance a possible excited location, timing, and
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structure of the RW that needs to be explored, substantial
time and computing resources will be required. This is es-
pecially true in cases in which the system being studied is
large and complex, because the tedious step-by-step iterative
calculation process is inevitable in current traditional RTEM.
Consequently, it is nonpragmatic to find all possible RWs that
have not been discovered within a certain parameter range
by current methods, and developing a universal approach to
replace these traditional methods is urgently needed.

In recent years, machine learning (ML) technique, as a
powerful tool for analyzing data, has achieved enormous
success, from industrial applications to fundamental research
[30–44]. In particular, the study of dynamic characteristics
and phase transitions of physical systems has been actively
pursued using the deep neural network (DNN) [45–49].
However, two problems are commonly encountered in DNN
methods. First, data acquisition is often difficult and time
consuming in many scientific researches; and second, the
DNN itself does not consider prior theories that it should obey
for specific physical problems, leading to some predictions
that may violate common sense in physics. In order to over-
come these deficiencies, the physics-informed neural network
(PINN) has recently been proposed, in which a constraint
term from physical laws that it should obey is incorporated
into neural network training [50–52]. Furthermore, the theory-
guided neural network (TgNN) framework has also been
developed, which can not only incorporate physics principles,
but also integrate practical engineering theories into neural
network training [53]. Adding these theories to guide the
training of DNN can not only improve the accuracy of neural
network predictions, but also reduce its dependence on data.

Based on these advantages of neural networks and the
shortcomings of traditional research methods of RWs, in this
paper, we incorporate the Gross-Pitaevskii equations that it
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should obey into the neural network. Then, a TgNN approach
is developed to replace traditional methods to more quickly
give any excited location, timing, and structure of RWs in a
one-dimensional (1D) BEC, thus avoiding the tedious step-
by-step iterative calculation process. Further, based on this
method, a phase transition boundary is also discovered, which
clearly distinguishes the first-order RW phase from the non-
RW phase.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the model of the dimensionless 1D BECs
and briefly review the structures of first-order RWs. In Sec. III,
We introduce the network structure and operation mechanism
of DNN and TgNN methods in detail. In Sec. IV, we compare
and discuss the results of DNN and TgNN for RW prediction.
Finally, we conclude in Sec. V.

II. MODEL

We consider dilute degenerate bosons confined in a cigar-
shaped trap and assume that the system is far from the Tonks-
Girardeau regime [54]. Then, the BECs can be well described
by the dimensionless 1D Gross-Pitaevskii (GP) equation:

i
∂ψ (x, t )

∂t
=

[
−1

2

∂2

∂x2
+ g|ψ (x, t )|2 + V (x)

]
ψ (x, t ), (1)

where the coordinate x is measured in units of
√

h̄/mωx;
time is in units of 1/ωx; ωx is the x component frequency of
the harmonic trap; ψ (x, t ) is the macroscopic wave function
of the condensate, and it satisfies

∫ |ψ (x, t )|2dx = 1; g =
4Nπα1d as/

√
h̄/mωx characterizes the interatomic interaction,

and is determined by the s-wave scattering length as (here,
we focused on attractive BECs for which as < 0); and α1d =∫ |ϕ(y, z)|4dydz/(

∫ |ϕ(y, z)|2dydz)5/2 is a coefficient, which
compensates for the loss of two dimensions [55] and depends
on the transversal directions being integrated out. In the above
expressions, m is the mass of atom; N is the total number of
atoms; and ϕ(y, z) is the ground wave function of the lateral
dimensions. Finally, the potential V (x) = 1

2�2x2, and we here
assume � = �0 = 0.02. These settings are easy to implement
experimentally [56], and related hyperfine states or isotopes of
the observed dynamics could also be experimentally traced.

Next, we assume that the initial wave packet is a simple
Gaussian function

ψ (x, t = 0) = C ∗ exp

(
− x2

2σ 2

)
, (2)

where σ and C denote the width and normalized coefficient
of the wave packet, respectively; and the boundary condi-
tions are ψ (x = −40) = ψ (x = 40) = 0, and here we have
set x ∈ (−40, 40). It has been demonstrated that, if σ is large,
the initial Gaussian wave packet will expand and evolve into
a structure of a “Christmas tree” [16,57,58] (i.e., the peak
emergence from one to two, then to three, etc.), as shown
in Fig. 1(a). The first high-amplitude waveform marked by
a white square is called the Peregrine soliton [2], which is the
typical first-order RW, and its detailed structure is shown in
Fig. 1(b). However, the peak marked by white dotted box D
in Fig. 1(a) has the same structure of first-order RW, but its
amplitude is lower than that of Peregrine soliton. In order to
distinguish them we temporarily name it as weak-first-order

FIG. 1. (a) Dynamics of one-dimensional BECs with the initial
condition Eq. (2) as time, which are solved from Eq. (1) numerically.
The first excitation marked by a white square is a first-order RW,
which is also called the Peregrine soliton. (b) The detailed structure
of first-order RW of (a). The color represents |ψ (x, t )| in both (a) and
(b). The parameters are: g = −8 and σ = 20, and C is determined by
normalization.

RW. It is important to note that this phenomenon does not
appear in all parameter cases, but strongly depends on both g
and σ . Indeed, that is the subject addressed by this work.

III. METHOD

In general, the structure of DNN contains an input layer,
several hidden layers, and an output layer. As a powerful
nonlinear function approximation tool, it can learn complex
projection mapping between inputs and outputs with a simple
network [53,59]. If we assume that there are L hidden layers,
the forward formulation of DNN can be described as follows:

Fn = 
n(WnXn−1 + bn), n = 1, 2, . . . , L + 1, (3)

where X0 and FL+1 are the input and output vectors, respec-
tively; Fn, n = 1, 2, . . . , L, is the output of the nth layer, and
is also the input of the (n + 1)th layer; 
n is the activation
function of the nth layer, such as rectified linear unit (ReLU),
hyperbolic tangent (Tanh), and sigmoid; Wn and bn are the
weights and biases matrices of the nth layer, respectively; and
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FIG. 2. The black dots represent the training data obtained by the
traditional real-time evolution method. The red stars represent the
cases that are used to test and compare the performance of the neural
network that has been successfully trained, which correspond to
Fig. 4 and Fig. 6. Phases I–II correspond to the first-order RW phase
and the non-RW phase, respectively. They are clearly distinguished
by the black dotted line obtained by the TgNN method. The blue
upper triangles represent the same phase transition boundary attained
by the traditional method.

the input of the (n − 1)th layer is Xn−1. The loss function,
being the mean square error (MSE) between the output of the
network and the truth data, can be represented as follows:

LNN = 1

Ndata

Ndata∑
k=1

(
φNN

k (Xk; W, b) − φk
)2

, (4)

where Ndata denotes the total number of training data points;
and φNN and φ are the prediction of the neural network and
the true data, respectively. Obviously, the smaller the LNN is,
the closer the predicted result is to the truth data. During the
training process, the network parameters (W, b) can be opti-
mized and updated by minimizing the loss function with the
algorithms of stochastic gradient descent or Adam. It should
be noted that when the neural network is actually trained to
replace the process of solving GP equations, the input data
should include (g, σ, x, t ). Once the neural network is success-
fully trained, we can directly give the corresponding dynamic
process for any parameters without the tedious step-by-step
iterative calculation process.

In this work, our aim is to introduce a TgNN model based
on DNN to explore the RWs of the system described by
Eq. (1). As Fig. 2 shows, at the parameters marked by the
black dots, the dynamic processes of forming RWs have been
obtained in advance using traditional RTEM, and their entire
real-time evolution data have been recorded as training data.
Then, our intention is to use the TgNN method, bypassing
the iterative calculation process of RTEM, to rapidly discover
any unknown excited location, timing, and structure of RWs
within this parameter plane, using only these small amounts of
known data as the training data. In addition, a phase transition
boundary needs to be given based on this method to determine

which range of RWs can be excited, and which ones cannot,
within our observation period.

Prior to elaborating the structure of TgNN [53], it is neces-
sary to first separate the real and imaginary parts of the wave
function ψ (x, t ) = u(x, t ) + iv(x, t ) in Eq. (1), because the
neural network does not support complex operations. Thus,
Eq. (1) becomes:

∂u

∂t
= −1

2

∂2v

∂x2
+ gv(u2 + v2) + 1

2
�2

0x2v

∂v

∂t
= 1

2

∂2u

∂x2
− gu(u2 + v2) − 1

2
�2

0x2u, (5)

where u(x, t ) and v(x, t ) denote the real and imaginary
parts of ψ (x, t ), respectively. Therefore, the atomic density
is |ψ (x, t )| =

√
u(x, t )2 + v(x, t )2. If we assume �NN (·) =

�NN (g, σ, x, t ; W, b) and � can be u or v, which represents
the NN approximation of the real and imaginary parts for ψ ,
respectively, then Eq. (5) can be redefined as follows:

fu = −∂uNN (·)
∂t

− 1

2

∂2vNN (·)
∂x2

+
(

gρ + 1

2
�2

0x2

)
vNN (·)

fv = −∂vNN (·)
∂t

+ 1

2

∂2uNN (·)
∂x2

−
(

gρ + 1

2
�2

0x2

)
uNN (·),

(6)

where ρ = [uNN (·)]2 + [vNN (·)]2, and the partial derivatives
can be easily computed by applying the chain rule for the net-
work through automatic differentiation. In order to enforce the
Eq. (5) constraint during the training process, both fu and fv
should approach zero. The NN approximations of initial and
boundary conditions �I and �B can be denoted by �NN

I (·) and
�NN

B (·), respectively. The loss function of TgNN is then jointly
determined by the data mismatch (Rdata), strong form residual
(R f ), and initial and boundary condition regularization (RI and
RB):

R�
data = 1

Nd

Nd∑
k=1

[
�NN

k (·) − �k (·)]2
,

R�
I = 1

NI

NI∑
k=1

[�NN
I,k (·) − �I,k]2,

R�
B = 1

NB

NB∑
k=1

[�NN
B,k (·) − �B,k]2,

R�
f = 1

Nf

Nf∑
k=1

[ f�,k (·)]2, (7)

where Nd denotes the total number of training data points; Nf

is the number of collocation points for Eq. (6) residual eval-
uation; NI and NB are the numbers of collocation points for
the evaluation of initial and boundary conditions, respectively.
R�

data, R�
I , R�

B , and R�
f are actually the same as Eq. (4). For

example, R�
data represents

Ru
data=

1

Nd

Nd∑
k=1

[
uNN

k (g, σ, x, t ; W, b) − uk (g, σ, x, t ; W, b)
]2

,

(8)
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FIG. 3. Illustration of the TgNN, which contains an input layer,
hidden layers, and an output layer. Each circle represents a neuron,
and each arrow connecting them represents a functional mapping
between the two neurons. The input includes σ , g, t , and x. The
output contains u and v, which are the real and imaginary parts of
the wave function, respectively. The deep learning process is not
only driven by data, but more importantly by its Gross-Pitaevskii
equation (PDE), initial condition and boundary condition.

and

Rv
data=

1

Nd

Nd∑
k=1

[
vNN

k (g, σ, x, t ; W, b) − vk (g, σ, x, t ; W, b)
]2

,

(9)

where uNN
k and uk are the prediction of the neural network and

the true data, respectively. Obviously, the smaller the Ru
data

is, the closer the predicted result of u is to the true data. For
Rv

data, it is the same. Similarly, the smaller the R�
f is, the more

the result predicted by the neural network enables Eq. (5) to
be established. The smaller both R�

I and R�
B are, the closer the

initial and boundary results predicted by the neural network
are to the true initial and boundary conditions, respectively.
Finally, the loss function of TgNN can be represented by:

LTgNN = λdata
(
Ru

data + Rv
data

) + λI
(
Ru

I + Rv
I

)
+ λB

(
Ru

B + Rv
B

) + λ f
(
Ru

f + Rv
f

)
, (10)

where λdata, λ f , λI , and λB are the weights of each residual
term, which can be tuned during the training process, so as to
achieve more desirable performance based on the value of the
loss function.

The structure of the TgNN is described in detail in Fig. 3.
For comparison, we here set four hidden layers with 240 neu-
rons in each layer, and choose softplus f (δ) = ln(1 + eδ ) as
the activation function both in TgNN and DNN. We randomly
extracted xi ∈ (−40, 40), i = 1, . . . , 320 and ti ∈ (0, 40), i =
1, . . . , 100 in the real-time evolution process of each dynamic
solution marked by black dots in Fig. 2 as the training data
set. For the TgNN, 6000 and 10000 collocation points are
used to impose boundary and initial condition constraints,
respectively. 10000 collocation regions are sampled from the
whole domain (g, σ, x, t ) to impose the Eq. (5) constraint,
with their center coordinates determined using the Latin hy-
percube sampling strategy.

IV. RESULTS

In order to examine the performance of TgNN, we plot
Fig. 4, where we have set σ = 20 and g as increasing. The
first three rows represent the true results, predictions of DNN,
and predictions of TgNN, respectively; the colors represent
atomic density |ψ | = (u2 + v2)1/2 in all of them. The last
two rows represent the relative errors between the true results
and predictions from DNN and TgNN, respectively; their
strengths are denoted by the colors. Furthermore, because our
focus here is the first-order RWs of this system, in order to
more clearly demonstrate the superiority of the TgNN model,
we plot Fig. 5 to perform a more detailed investigation of
their structures, which are shown in Fig. 4. The first two rows
represent the predictions of the spatial structure at the peak of
the first-order RWs from DNN and TgNN, respectively, and
they correspond to the first white dotted lines in Figs. 4(a)–
4(i). The last two rows represent the predictions of the spatial
structure at the peak of weak-first-order RWs from DNN and
TgNN, respectively, and they correspond to the second white
dotted lines in Figs. 4(a)–4(i). The solid blue lines represent
the true data in all cases.

From the first column of Fig. 4, it can be seen that if
g = −5.5 and σ = 20, in which the data are known and have
been used for network training (see Fig. 2), both DNN and
TgNN, as expected, can accurately give the results of dy-
namics, including the first-order RWs, with almost no errors.
Accordingly, the first-order RWs and weak-first-order RWs
are accurately predicted by both DNN and TgNN, as shown
in the first column of Fig. 5. If g = −5.4 increased slightly,
in which the data are unknown and have not been used for
network training, both DNN and TgNN can still predict their
dynamics, but the results from DNN are slightly inaccurate,
as shown in the second column of Fig. 4. Thus, the first-
order RWs predicted by TgNN are accurate [see Fig. 5(e)],
while the others are slightly inaccurate. However, if g = −5
increased more, the result error of DNN is considerable, and
the dynamic structure is destroyed, as shown by the second
white dotted line in Fig. 4(f). Consequently, the results of
DNN become unreliable [see Fig. 5(c) and 5(i)]; whereas,
the result of TgNN remains relatively accurate, especially
the first-order RW about which are concerned [see Fig. 5(f)].
These results demonstrate that the TgNN approach is superior
to the traditional DNN due to the theory guidance of such
problem.

In order to determine whether the TgNN approach can
assist us to discover the first-order RWs that have not
been discovered under other parameters in such system,
we next randomly select three parameter points (g, σ ) =
(−3.4, 23), (−5, 26), and (−1.8, 31) marked by red stars
within the valid parameter plane of Fig. 2 for examination,
and plot Figs. 6–7. It is worth noting that if we do not use
the TgNN for prediction, it is unknown whether the RWs can
be excited, and what their structures will be, until the rele-
vant calculations are performed by traditional RTEM under
these parameters. In Fig. 6, the first three rows represent the
true results, predictions of DNN, and predictions of TgNN,
respectively; the last two rows represent the relative errors be-
tween the true results and predictions from DNN and TgNN,
respectively. The predictions of first-order RWs from DNN
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FIG. 4. Comparison of predicted results of dynamic properties between the DNN and the TgNN. The first three rows represent the true
results, predictions of DNN, and predictions of TgNN, respectively. The colors represent atomic density |ψ | = (u2 + v2)1/2, and the white
lines correspond to the results of Fig. 5. The last two rows represent the relative errors between the true results and predictions from DNN and
TgNN, respectively. In all cases, the parameters (g, σ ) correspond to the red stars in Fig. 2.
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FIG. 5. The first two rows represent the predictions of first-order
RWs from DNN and TgNN, respectively. They correspond to the
first white dotted lines in Figs. 1(a)–1(i). The last two rows repre-
sent the predictions of weak-first-order RWs from DNN and TgNN,
respectively. They correspond to the second white dotted lines in
Figs. 1(a)–1(i). In all cases, the solid blue lines represent the true
data, and the parameters (α, γ ) correspond to Fig. 4.

and TgNN are presented in Fig. 7, and they correspond to the
white dotted lines in Fig. 6. The solid lines indicate the true
data in all cases.

It can been seen from Fig. 6, if (g, σ ) = (−3.4, 23) and
(−5, 26), the first-order RWs can be excited, which are able
to be predicted by both DNN and TgNN, as shown in the
first two columns. However, the prediction results of TgNN
for the first-order RW structure are significantly better than
those of DNN, even for the point (−5, 26) far away from the
training parameter point. This is demonstrated in more detail
in Fig. 7. In contrast, if (g, σ ) = (−1.8, 31), no RWs can be
found within our observation period, and as anticipated, the

performance of TgNN is also better than that of DNN, as
shown in the third column of Fig. 6. In other words, not all
parameter conditions can lead to the generation of RWs in
this parameter plane, and they could be excited only in special
region. Therefore, based on the TgNN, the parameter plane
is further clearly divided by a dotted line into two regions:
phase I and phase II. In phase I, the RWs can be excited, but
they cannot be excited in phase II. This is in close accordance
with the results obtained by the traditional real-time iterative
calculation method represented by the blue upper triangles.
These results show that the TgNN can be successfully used,
and replace traditional methods, to explore the new physics of
first-order RWs in such system.

It is worth noting that, compared with the TgNN approach,
it will take approximately 48 s to obtain the structures of
the RWs above using the RTEM in this system; whereas,
the TgNN approach requires only approximately 0.85 s. This
greatly reduces the time cost of exploring the RW structures
of such system. Furthermore, if one intends to explore the
properties of RWs outside of the plane of the current valid
parameter, transfer learning [53] may constitute an appropri-
ate choice, which may need less time to retrain a new TgNN
with new real-time evolution data outside of this plane based
on the above results.

Finally, in order to quantitatively evaluate these results,
we introduce two metrics. They are relative L2 error and
coefficient of determination (R2 score), which are defined as
follows:

L2 = ‖ εNN − ε ‖2

‖ ε ‖2
, R2 = 1 − �

NR
k=1(εNN

k − εk )2

�
NR
k=1(εk − ε̄)2

, (11)

where ε = |ψ | = (u2 + v2)1/2 and εNN = |ψNN | =
[(uNN )2 + (vNN )2]1/2; ‖ · ‖2 denotes the standard Euclidean
norm; NR is the total number of evaluation points; and ε̄

is the average value of ε. Table I is calculated based on
these two metrics. It can be seen from Table I that if the
data of parameter point has been used for neural network
training, there is only a negligible difference in L2 and
R2 between DNN and TgNN, such as parameter point
(g = −5.5, σ = 20). In contrast, if the parameter points
are far away from the training data points, L2 of TgNN is
always smaller than that of DNN, while R2 is the opposite of
this. These results once again quantitatively demonstrate the
superior performance of TgNN and its reliability to explore
the RWs of a physical system.

TABLE I. Comparison of L2 and R2 for DNN and TgNN.

L2 R2

(g, σ ) TgNN DNN TgNN DNN

(−5.5, 20) 7.3119e-03 1.3655e-02 9.9989e-01 9.9964e-01
(−5.4, 20) 3.1929e-02 5.5979e-02 9.9806e-01 9.9404e-01
(−5, 20) 1.1989e-01 2.1601e-01 9.7246e-01 9.1061e-01
(−3.4, 23) 1.0495e-02 1.4551e-02 9.9974e-01 9.9950e-01
(−5, 26) 1.9430e-02 2.4744e-02 9.9900e-01 9.9837e-01
(−1.8, 31) 2.0448e-02 2.3277e-02 9.9844e-01 9.9798e-01
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FIG. 6. Comparison of predicted results of dynamic properties between the DNN and the TgNN. The first three rows represent the true
results, predictions of DNN, and predictions of TgNN, respectively. The colors represent atomic density |ψ | = (u2 + v2)1/2, and the white
lines correspond to the results of Fig. 7. The last two rows represent the relative errors between the true results and predictions from DNN and
TgNN, respectively. In all cases, the parameters (g, σ ) correspond to the red stars in Fig. 1.

V. CONCLUSION

By incorporating scientific knowledge, such as GP equa-
tions, boundaries and initial conditions, into the neural

network, a theory-guided neural network (TgNN) model is
constructed in this work to explore the rogue waves (RWs)
of one-dimensional Bose-Einstein condensates. Through the
TgNN, deep learning is not only driven by data, but more
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FIG. 7. The two rows represent the predictions of first-order RWs
from DNN and TgNN, respectively. They correspond to the white
dotted lines in Figs. 5(a)–5(b) and 5(c)–5(d). In all cases, the solid
blue lines represent the true solutions, and the parameters (α, γ )
correspond to Fig. 6.

importantly by physical laws, which has enabled the model to
achieve better accuracy, generalization ability, and robustness.

The results show that such method is superior to the tradi-
tional deep neural network (DNN) because of theory guidance
of underlying problems, and it is able to directly give any
unknown excited location, timing, and structure of the first-
order RWs using only a small amount of dynamic evolution
data gained from real-time evolution methods (RTEM) as the
training data, without an onerous and repetitive tedious step-
by-step iterative calculation process. Furthermore, based on
such method, a phase transition boundary is also discovered,
which clearly distinguishes the first-order RW phase from
the non-RW phase. This means that based on the tedious
RTEM method the TgNN model can practically become a
faster and more efficient universal method to explore unusual
phenomena of RW in a system. Finally, the TgNN approach
not only greatly conserves computing resources and time,
but also constitutes a promising and universal technique for
discovering novel structures of RWs in other parameterized
nonlinear systems.

Although we focus here on the universal BECs, our re-
sults may also be applicable in spin-orbit coupling BECs,
multicomponent BECs, and two-dimensional or even three-
dimensional BECs. The more complex the system being
explored, the more difficult and time consuming it is to ex-
plore rogue waves with traditional methods, thus the TgNN
method will have more advantages.
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