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Exponential Bhatnagar-Gross-Krook integrator for multiscale particle-based kinetic simulations
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Despite the development of an extensive toolbox of multiscale rarefied flow simulators, such simulations
remain challenging due to the significant disparity of collisional and macroscopic spatiotemporal scales. Our
study offers a novel and consistent numerical scheme for a coupled treatment of particles advection and
collision governed by the BGK evolution, honoring positivity of the velocity distribution. Our method shares
its framework, in spirit, with the unified gas kinetic class of multiscale schemes. Yet it provides attractive
features for particle-based stochastic simulations, readily implementable to existing direct simulation Monte
Carlo codes. Two main innovations are integrated in the presented BGK particle method. The first ingredient
is a high-order time integration that can be interpreted probabilistically, independent of the time step size.
The next one is identifying modified particle distributions that remain invariant under the advection-relaxation
evolution. We demonstrate accuracy and performance of the devised scheme for prototypic gas flows over a wide
range of rarefaction parameters. Due to the resulting robustness and flexibility of the devised exponential BGK
integrator, the scheme paves the way towards more affordable simulations of large-scale and multiscale rarefied
gas phenomena.
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I. INTRODUCTION

The direct simulation Monte Carlo (DSMC) method has
become the standard approach for simulations of rarefied
nonequilibrium gas flows [1]. It is built on the main idea of
employing discrete particle collisions in order to statistically
mimic the molecular collisions. An important success ele-
ment of DSMC rests on the particle-based treatment of the
phase space, which allows rather straightforward integration
of the inner energy modes and chemical reactions, as well
as boundary interactions. Despite the established accuracy of
DSMC across the whole rarefaction regimes, it comes with
a drawback of dense operations near the continuum because
the mean-free path and the collision frequency have to be
resolved. As a consequence, it is still challenging to simulate
flows with large variation of the Knudsen number, covering
both continuum and rarefied phenomena. To overcome this
central issue, different approaches have been proposed. The
most direct solution is to couple continuum solvers based
on the Navier-Stokes equations with DSMC [2,3]. However,
since the two solvers operate at different levels of the flow de-
scription, i.e., macroscopic variables in the Navier-Stokes and
particle-based probabilities in DSMC, various problems arise
which limit the generality and robustness of such approaches.
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Another possibility is offered by multiscale methods based
on the discretization of the phase space, as provided e.g., in
discrete-velocity methods (DVMs) [4]. Along DVMs, recently
there have been several developments such as UGKS [5,6] and
DUKGS [7], where Bhatnagar-Gross-Krook (BGK) approxi-
mations of the collision term are computed efficiently. Due
to the deterministic treatment of the kinetic problem, these
methods provide noise-free solutions, which make them well
suited for low-Mach flows. However, this comes with the price
of the velocity-space discretization, which might render these
methods inefficient for high-Mach nonequilibrium flows with
significantly extended velocity domains.

An interesting remedy to circumvent this problem is pro-
vided by the UGKWP method [8]. Here the nonequilibrium
part of the velocity distribution is represented by particles, to
reduce the corresponding cost of the velocity discretization.
Furthermore, such hybrid representation allows for noise-free
solutions in the hydrodynamic limit, as particles are employed
only in the nonequilibrium portions of the flow. Nevertheless,
a mixed-particle-DVM treatment of the distribution leads to
implementation challenges, especially if the approach is to be
integrated into the existing mature DSMC solvers.

On a different front, quite a few particle-based BGK
[9–11] and Fokker-Planck (FP) [12–14] methods have come
to the fore in recent years, as they could simply be coupled
with DSMC while also being efficient at moderate and low
Knudsen flows. On the BGK side, especially the particle-
based ellipsoidal statistical BGK [15,16] (ES-BGK) and the
Shakhov BGK methods were investigated [9,17]. For the FP
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models, the main work was done on the entropic FP model
(EFP) [13], cubic-FP model [18], ellipsoidal statistical FP
(ESFP) model [14], and Bogomolov’s model [19]. However,
while the proposed schemes might reduce the cost of dense
collisions in the continuum regime, they still need fine res-
olutions. This is due to the typical first-order treatment of
particles’ evolution, which is implied by splitting between free
flight and collision-relaxation subtime steps.

In this study, we devise a particle-based multiscale BGK
solver. We remain in the realm of pure particle represen-
tation of the distribution with identical positive statistical
weights. This avoids implementation overheads of integrat-
ing the scheme with existing DSMC solvers. Moreover,
we anticipate straightforward extensions to more complex
nonequilibrium phenomena (e.g., chemical reactions). The
multiscale capability of the scheme is achieved by coupled
position-velocity integration of the particles evolution. After
applying a high-order time integration scheme, we identify
modified distributions that remain invariant under advection-
relaxation steps. This relaxes the assumption of frozen target
distribution per time step, commonly made for BGK particle
methods. Furthermore, by employing exponential time inte-
grators, the scheme ensures that the particles are sampled from
well-defined distributions independent of the time step size. In
the following, we discuss the details of the scheme after a brief
review of the governing theory.

II. THEORY

The Boltzmann equation describes a monatomic gas flow
with the corresponding distribution function f = f (x, v, t ) at
position x and velocity v,

∂ f

∂t
+ v · ∂ f

∂x
= δ f

δt

∣∣∣∣
coll

, (1)

where external forces are neglected and δ f /δt |coll follows the
Boltzmann collision integral

∂ f

∂t

∣∣∣∣
coll

=
∫
R3

∫
S2

B[ f (v′) f (v′
∗) − f (v) f (v∗)] dn dv∗. (2)

Here S2 ⊂ R3 is the unit sphere, n is the unit vector of
the scattered velocities, B is the collision kernel, and the
prime superscript denotes postcollision velocities. The mul-
tiple integration of this nonlinear collision term, besides high
dimensionality of the solution domain, makes the Boltzmann
collision integral computationally complex. For this reason,
the DSMC method reduces the collision integral to the Monte
Carlo sampling of collision events among random particles
representing the gas flow. Either through direct solvers or by
random particles, the mean-free path as well as the collision
frequency must be resolved, leading to a significant computa-
tional effort for low Knudsen number flows.

A. BGK approximation

The BGK model approximates the collision term by a
nonlinear relaxation form, where the distribution f relaxes
towards a target f t ,

∂ f

∂t

∣∣∣∣
Coll

= � = ν( f t − f ), (3)

with a certain relaxation frequency ν. It is assumed, in
the original BGK model, that the target distribution is the
Maxwellian

f M = n
( m

2πkBT

)3/2
exp

[
−mc · c

2kBT

]
, (4)

with the number density n, molecular mass m, temperature T ,
Boltzmann constant kB, and thermal velocity c = v − u with
the average flow velocity u [20]. The relaxation frequency
gives rise to the viscosity

μ = nkBT

ν
. (5)

The Maxwellian distribution, as the target, leads to the fixed
Prandtl number of Pr = μcP/K = 1, whereas the Prandtl
number for monatomic gases is close to 2/3 [21]. To over-
come this problem, several extensions of the BGK model have
been introduced. Some of these models transform the tar-
get distribution function, e.g., the ellipsoidal statistical BGK
model [22] or the Shakhov BGK model [23], while others
modify the relaxation frequency from a constant to a function
of the microscopic velocities as described by Struchtrup [24].

B. Particle-based BGK solver

While the BGK relaxation has a much simpler construct
compared to the Boltzmann collision integral, still stiff relax-
ation might be encountered if explicit time integrations are
applied. Furthermore, to obtain asymptotical convergence to
the Navier-Stokes equations, the advection (particle move-
ment) and the relaxation term should be treated in a coupled
way, as discussed in Refs. [5,7].

In the stochastic particle BGK method (SP-BGK), the time
integration of Eq. (3) is typically done by assuming a constant
target distribution [15,16]:

f (v, x, t + �t ) = e−ν�t f (v, x, t ) + (1 − e−ν�t ) f t (v, x, t ).
(6)

The advection part follows a first-order operator splitting,
which means that the particles of f (v, x, t + �t ) are moved
along their trajectory for a full time step �t to reach
f (v, x + v�t, t + �t ). This first-order time integration has
some advantages for particle methods. For ν�t � 1, the time
integration (6) recovers the forward Euler method

f (v, x, t + �t ) = (1 − ν�t ) f (v, x, t ) + ν�t f t (v, x, t ).
(7)

Yet in contrast to the forward Euler equation (7), the prefactors
of f (v, x, t ) and f t are always positive in Eq. (6), also when
ν�t > 1. In the stochastic particle method context, Eq. (6)
can be easily realized if each particle within a cell gets a
new velocity sampled from f t with the well-posed probability
(1 − e−ν�t ). For the Euler forward method, however, similar
realizations work only as long as ν�t remains below 1. Oth-
erwise, particles with negative weights have to be introduced
in order to construct the desired distribution function, as the
prefactor of f (v, x, t ) becomes negative in Eq. (7). While
ν�t > 1 may not be relevant for the first-order explicit time
integration, the unconditional positivity of the distribution
function reveals the advantage of Eq. (6) over Eq. (7) for
particle methods, in terms of both the robustness as well as
the implementation.
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To improve the explicit time integration to a second-order
method coupling advection and relaxation, we follow UGKS
[5,6] and DUGKS [7]. The Crank-Nicolson method is used
for the time integration

f (v, x + v�t, t + �t )

= f (v, x, t ) + �t

2
[�(v, x + v�t, t + �t ) + �(v, x, t )].

(8)

Next, let us introduce two additional distributions

f̃ = f − �t

2
� = 2τ + �t

2τ
f − �t

2τ
f t (9)

and f̂ = f + �t

2
� = 2τ − �t

2τ
f + �t

2τ
f t , (10)

with τ = 1/ν being the relaxation time. After inserting
the above-introduced distributions into Eq. (8), one sees
that f̃ (v, x + v�t, t + �t ) is nothing but the particles of
f̂ (v, x, t ), which are moved along their trajectories for �t ,

f̃ (v, x + v�t, t + �t ) = f̂ (v, x, t ). (11)

This approach provides an implicit integration of the coupled
advection and relaxation, suitable in theory also for stochastic
particle methods. Note that, in the case of DVM (including
UGKS and DUGKS), some additional work has to be done
for the flux reconstruction.

Nevertheless, for stochastic particle methods the problem
of negative prefactors for large �t arises again, so that addi-
tional particles with partly negative weighting factors would
have to be added to construct the distribution functions. A
practical solution was provided by Fei et al. [25,26], where
an additional collision term was inserted in which the current
distribution function is approximated by a Grad-13 approxi-
mation. This allows the advection and the relaxation process
to be solved together. The choice of the Grad-13 distribution
also ensures that the Navier-Stokes limit is asymptotically
preserved. This additional collision term is constructed to
satisfy the Navier-Stokes equations in the continuum domain
with a second-order time integration, whereas a conventional
first-order SP-BGK method is applied in the rarefied do-
main. Finally, a multiscale parameter was defined, allowing
a smooth transition between the normal SP-BGK method and
the one subject to the Grad-13 approximation. Nevertheless,
in the transition regime and depending on the choice of the
multiscale parameter, either the entire method falls back to
SP-BGK and is therefore first order, or one gets a mixture of
the SP-BGK method and the additional collision term, whose
order should then also fall back to the first order, and the error
due to the interpolation between the normal SP-BGK method
and the additional collision term is not quite clear.

Even though a good performance of the SP-BGK method
regularized by Grad-13 approximation has been demon-
strated, it is still desirable to construct a rigorous SP-BGK
algorithm with overarching properties of the DSMC method,
without the need of introducing auxiliary approximations
to deal with the negative prefactors. In the following, we
construct such a second-order particle method without mak-
ing additional approximations on the distribution functions.
Thus, the introduction of an additional multiscale parameter is

omitted, and the construction would become consistent with
the BGK equation, in a fashion similar to UGKS and DUGKS.

C. Exponential time differencing of the BGK equation

The exponential time differencing has advantages espe-
cially in dealing with ordinary differential equations that
contain a stiff linear term [27]

u̇ = cu + F (u, t ), (12)

where c is a constant that leads to the stiff system, and F is
the nonlinear part. The main idea is to integrate the stiff term
in the exact form, and then approximate the nonlinear term
numerically (typically explicitly) as

u(t + �t ) = u(t )ec�t + ec�t
∫ �t

0
e−csF (u(t + s), t + s) ds,

(13)
which is exact up to the point where the occurring integral is
approximated. If we now look at the relaxation term of the
BGK equation in a form corresponding to Eq. (12),

∂ f /∂t = −ν f + ν f t , (14)

we face an additional problem that the nonlinear part ν f t is
also stiff (since it scales with ν). Following Eq. (13), we get

f (t + �t ) = f (t )e−ν�t + e−ν�t
∫ �t

0
eνsν f t (t + s) ds. (15)

Now, in order to treat the stiffness of the nonlinear term,
an implicit integration, such as the Crank-Nicolson method
similar to the DUGKS method, can be carried out. In the fol-
lowing, we carry out this procedure, and it is shown that it has
various advantages for particle methods, since the prefactors
mentioned always remain positive.

1. Linear approximation

Let f t
t+s and f t

t represent the numerical approximations of
the target distribution at time steps t + s and t , respectively.
To construct a second-order scheme, we adopt the following
linear approximation for the target distribution:

f t
t+s = f t

t + s

�t

(
f t
t+�t − f t

t

)
(16)

leading to a Crank-Nicolson-type scheme. Using this approx-
imation, the integration of Eq. (15) yields to

ft+�t = ft e
−ν�t + e−ν�t

[
f t
t

(
eν�t

ν�t
− 1 − 1

ν�t

)

+ f t
t+�t

(
eν�t + 1

ν�t
− eν�t

ν�t

)]
, (17)

where ft+�t and ft denote the numerical approximations of
f (t + �t ) and f (t ), respectively. After a few rearrangements
and taking particle movement into account, Eq. (17) leads to
the following integration scheme:

ft+�t (v, x + v�t ) = ft (v, x)e−ν�t + (1 − e−ν�t )

× [
A f t

t (v, x) + B f t
t+�t (v, x + v�t )

]
,

(18)
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with

A = 1

ν�t
− e−ν�t

1 − e−ν�t
(19)

and B = 1

1 − e−ν�t
− 1

ν�t
. (20)

Equation (18) already contains the simple form of the
first-order SP-BGK method (6). Furthermore the prefac-
tors A ∈ [0, 0.5] and B ∈ [0.5, 1] are nonnegative. Following
Refs. [5,7], two additional distributions can be introduced:

f̂ = ft e
−ν�t + (1 − e−ν�t )A f t

t (21)

and f̃ = ft − (1 − e−ν�t )B f t
t , (22)

whereby once more

f̃ (v, x + v�t, t + �t ) = f̂ (v, x, t ) (23)

is honored. Therefore, by moving the particles of f̂ (v, x, t )
along the trajectories f̃ (v, x + v�t, t + �t ), the advection
and relaxation processes are coupled and the time integra-
tion remains second-order accurate. Starting from ft (v, x),
f̂ (v, x, t ) can be constructed from Eq. (21). Afterwards,
f̃ (v, x + v�t, t + �t ) is realized by moving the particles
from f̂ (v, x, t ), and finally ft+�t (v, x + v�t ) is constructed
via

ft = f̃ + (1 − e−ν�t )B f t
t . (24)

While all prefactors remain nonnegative, a renormalization
has to be introduced because the prefactors of Eqs. (21) and
(24) do not sum up to unity. To avoid deleting and creating
particles, the introduced distribution functions are normalized
by the factor

γ = e−ν�t + (1 − e−ν�t )A = 1 − e−ν�t

ν�t
, (25)

which results in new distributions f̂ ∗ = f̂ /γ and f̃ ∗ = f̃ /γ ,
with f̃ ∗(v, x + v�t, t + �t ) = f̂ ∗(v, x, t ), leading to

f̂ ∗ = e−ν�t

γ
ft + 1 − e−ν�t

γ
A f t

t

= ν�te−ν�t

1 − e−ν�t
ft +

(
1 − ν�te−ν�t

1 − e−ν�t

)
f t
t (26)

and ft = γ f̃ ∗ + (1 − e−ν�t )B f t
t

= 1 − e−ν�t

ν�t
f̃ ∗ +

(
1 − 1 − e−ν�t

ν�t

)
f t
t . (27)

To further simplify the time integration, one can also omit the
intermediate step via f and track only the additional distribu-
tion functions f̃ ∗ and f̂ ∗. By substituting Eq. (26) into (27),
we get

f̂ ∗ = e−ν�t f̃ ∗ + (1 − e−ν�t )

[
Be−ν�t

γ
+ A

γ

]
︸ ︷︷ ︸

=1

f t
t . (28)

This is a convenient formulation as similar to the original SP-
BGK, particles have to be sampled from the target distribution
with the probability (1 − e−ν�t ) to construct f̂ ∗ from f̃ ∗.
The two most common target distributions are the ellipsoidal

statistical BGK (ES-BGK) and the Shakhov model (S-BGK).
The ES-BGK distribution is given as

f ES = n√
det(2πλi j )

exp

[
−1

2
λ−1

i j cic j

]
(29)

with the matrix

λi j = kBT

m
δi j +

(
1 − 1

Pr

)
p〈i j〉
ρ

. (30)

Here δi j is the Kronecker delta, Pr is the Prandtl number, ρ is
the mass density, and p〈i j〉 is the traceless pressure tensor

p〈i j〉 = m
∫

c〈ic j〉 f dc. (31)

In the case of the S-BGK model, the target distribution is
defined as

f S = f M

[
1 + (1 − Pr)

c · q
5ρ(RT )2

(
c · c
2RT

− 5

2

)]
(32)

with the heat flux vector

q = 1

2
m

∫
c(c · c) f dc. (33)

Therefore to evaluate Eq. (28), knowledge about either
p〈i j〉( f ) or q( f ) becomes necessary. Due to the normaliza-
tion of the distributions, as already extensively discussed in
Refs. [5,7], the mass, momentum, and energy are conserved
by the collision operator and thus can be determined directly
from the additional distributions

ρ =
∫

m f dv =
∫

m f̂ ∗ dv =
∫

m f̃ ∗ dv, (34)

ρu =
∫

mv f dv =
∫

mv f̂ ∗ dv =
∫

mv f̃ ∗ dv, (35)

and ρε = 3

2
nkBT

=
∫

m

2
c2 f dv =

∫
m

2
c2 f̂ ∗ dv =

∫
m

2
c2 f̃ ∗ dv (36)

with ρε being the internal energy. Neither p〈i j〉( f ) nor q( f )
would be preserved during the relaxation process, yet can be
calculated directly from f̃ ∗:

p〈i j〉( ft ) = 1 − e−ν�t

ν�t
p〈i j〉( f̃ ∗) (37)

and q( ft ) = 1 − e−ν�tPr

ν�tPr
q( f̃ ∗). (38)

Following the ES-BGK target distribution, we can summarize
the algorithmic steps of the devised second-order time inte-
gration, whose computational complexity is almost identical
to the first-order conventional SP-BGK methods:

(1) Initialize the particles in the simulation domain (simi-
lar to DSMC) method to obtain ft .

(2) Use Eq. (26) to construct f̂ ∗ from ft by sam-
pling the particles from f t

t with the probability 1 −
ν�te−ν�t/(1 − e−ν�t ).

(3) Move the particles of f̂ ∗ in the physical domain (and
apply the boundary conditions similar to DSMC) to construct
f̃ ∗(v, x + v�t, t + �t ) = f̂ ∗(v, x, t ).
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(4) Construct f̂ ∗(v, x + v�t, t + �t ) out of f̃ ∗(v, x +
v�t, t + �t ) using Eq. (28), by sampling the particles from
f t
t with the probability (1 − e−ν�t ) given the pressure tensor

and heat fluxes from Eqs. (37) and (38).
(5) Repeat steps 3 and 4 for the entire duration of the

simulation.

2. Exponential approximation

The devised scheme can be further improved by applying
exponential relaxation

f t
t+s = f t

t + 1 − e−νs

1 − e−ν�t

(
f t
t+�t − f t

t

)
(39)

instead of the linear approximation of Eq. (16). The two addi-
tional distributions are then modified with the prefactors

A(exp) = 1 − 1

1 − e−ν�t
+ ν�te−ν�t

(1 − e−ν�t )2 (40)

B(exp) = 1

1 − e−ν�t
− ν�te−ν�t

(1 − e−ν�t )2 (41)

resulting in a modified γ (exp) for the normalization

γ (exp) = e−ν�t + (1 − e−ν�t )A(exp) = ν�te−ν�t

1 − e−ν�t
. (42)

Thus the normalized additional distributions for the exponen-
tial approximation are given as

f̂ ∗,(exp) = 1 − e−ν�t

ν�t
f +

(
1 − 1 − e−ν�t

ν�t

)
f t
t (43)

and ft = ν�te−ν�t

1 − e−ν�t
f̃ ∗,(exp) +

(
1 − ν�te−ν�t

1 − e−ν�t

)
f t
t . (44)

Interestingly, this exponential approximation just swaps the
prefactors in Eqs. (43) and (44) compared to Eqs. (26) and
(27) of the linear approach. Therefore, this results again in

f̂ ∗,(exp) = e−ν�t f̃ ∗,(exp) + (1 − e−ν�t ) f t
t . (45)

The only difference that arises is the calculation of the pres-
sure tensor and the heat flux from f̃ ∗,(exp):

p〈i j〉( ft ) = ν�te−ν�t

1 − e−ν�t
p〈i j〉( f̃ ∗,(exp)) (46)

and q( ft ) = ν�tPr
e−ν�tPr

1 − e−ν�tPr
q( f̃ ∗,(exp)). (47)

3. Properties of the ED-BGK method

The behavior of the introduced particle scheme with ex-
ponential differencing (ED-BGK) is analyzed in the limits
of free-molecular and continuum regimes. In the following
and without loss of generality, the discussion is limited to the
linear approximation. In the free molecular regime (τ 	 �t),
Eqs. (26) and (27) simplify to

f̂ ∗ = ft , ft = f̃ ∗, (48)

which is consistent with the collisionless limit implying
f (v, x + v�t, t + �t ) = f (v, x, t ). On the other hand, for the
continuum limit (τ � �t), the distribution relaxes after a time

step �t based on Eqs. (26) and (27) gives (shown in the
Appendix)

f (v, x + v�t, t + �t ) ≈ f M (v, x, t ) (49)

− τ (∂t + v∇) f M (v, x, t ) + �t∂t f M (v, x, t ), (50)

which recovers the Chapman-Enskog approximation of the
Navier-Stokes solution as discussed by Guo et al. [7].

III. IMPLEMENTATION

The presented BGK particle method is implemented in the
PIC-DSMC code PICLas [28,29] as described in detail by
Pfeiffer [9]. The main concept of the particle BGK method,
especially the energy and momentum conservation, is based
on the works of Gallis and Torczynski [15,16]. The particles
are moved in the physical space sorted in a computational
mesh, collide with boundaries, and their macroscopic prop-
erties are sampled, all similar to DSMC. However, in contrast
to the DSMC method, the collision step is replaced by a jump
relaxation with the probability

P = 1 − exp [−ν�t], (51)

according to Eq. (28), towards the target distribution. f̂ ∗ is
constructed out of f using Eq. (26) or (43) for the linear
or the exponential approximation, respectively. Next, f̃ ∗ is
constructed by moving the particles from f̂ ∗ in the next time
steps. The difference to the common SP-BGK method is that
the pressure tensor or heat flux vector must be relaxed accord-
ing to Eqs. (37) and (38) or Eqs. (46) and (47) depending
whether the linear or the exponential approximation is used
before sampling from the target distribution, since these are
from f and not from f̃ ∗. For the ellipsoidal statistical target
distribution, only the pressure tensor, and for the Shakhov
target distribution, only the heat flux vector is necessary.

To determine the correct relaxation frequency ν, the well-
known temperature dependency of the viscosity μ,

μ = μref

( T

Tref

)ωV HS

, (52)

is used, with the reference temperature Tref , and μref the refer-
ence dynamic viscosity at Tref [30], and ωV HS as the parameter
of the variable hard sphere (VHS) model. For a VHS gas, the
reference dynamic viscosity can be calculated with the VHS
reference diameter dref of the particles:

μref = 30
√

mkBTref√
π4(5 − 2ωV HS )(7 − 2ωV HS )d2

ref

. (53)

The sampling process itself as well as a detailed discussion
of the possible energy and momentum conservation schemes
for the particle BGK method can be found in Pfeiffer [9]. For
momentum and energy conservation, the final velocities of the
particles are corrected according to

v∗
i = u + α(v′

i − u′), (54)

where u = ∑N
i=1 vi/N is the bulk flow velocity before the

relaxation, v′
i is the particle velocity after the relaxation

(uncorrected), and u′ = ∑N
i=1 v′

i/N . Note that v′
i = vi, if no
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relaxation occurs for particle i. Due to

N∑
i=1

(v′
i − u′) = 0, (55)

Eq. (54) ensures the momentum conservation. The energy
conservation is achieved by choosing α as

α =
√

T

T ′ (56)

with T the temperature before relaxation, and T ′ after the
relaxation process (in the absence of energy correction).

In order to achieve second-order accuracy in space, the
values that enter the BGK operator are linearly interpolated,
instead of being constant values per computational cell. A
more detailed discussion, including an alternative to the linear
interpolation, especially for particle methods, can be found in
Fei et al. [25,26]. In this work, a conventional linear inter-
polation was used, similar to Particle-In-Cell codes, as have
already been described for the PICLas code by Fasoulas et al.
[29], among others.

A. Homogeneous relaxation

The first test case, similar to Fei et al. [25], considers a
spatially homogeneous relaxation (in a stationary frame of
reference) to examine the accuracy of the time integration
scheme. In a single adiabatic cell, argon with the particle
density n = 2.7 × 1025 m−3 and temperature T = 273 K is
simulated, subject to the initial condition of the 13-moment
Grads distribution [31]

f Grad = f M

[
1 + m2 p〈i j〉

2ρk2
BT 2

c〈ic j〉 − m2q jc j

ρk2
BT 2

(
1 − m

5kBT
c2

)]
.

(57)
This allows us to initialize the gas in a nonequilibrium

state with stresses and heat fluxes. Each deviatoric entry of
the pressure tensor was chosen according to p〈i j〉 = 3nkBT ,
whereas the heat flux is set based on qi = n(3kBT )3/2m−1/2.
Relaxation of the pressure tensor and the heat flux vector is
analyzed for different time step sizes. The normal SP-BGK
method, the proposed exponential differencing SP-BGK (ED-
SP-BGK) with the linear approximation [Eq. (16)], and the
exponential approximation [Eq. (39)] are employed. A finely
resolved DSMC calculation is deployed as the reference. As
shown in Fig. 1, the error in the pressure tensor for the
standard SP-BGK is significant, as the target distribution is
approximated as a constant per time step. Comparing the
results depicted in Fig. 2 and Fig. 3, it can be seen that the
relaxation is also correctly reproduced for time steps greater
than the collision time by the devised ED-SP-BGK model. In
the case of the linear approximation, the error in the relaxation
of the pressure tensor is greater than the one resulting from the
exponential approximation, while the heat flux is reproduced
slightly better with the linear approximation.

B. Sod shock tube

The well-known Sod test case is considered in two dif-
ferent regimes. Argon was again used for the simulations.
The physical domain has a length of 1 m. The starting tem-
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(b) Normalized heat flux

FIG. 1. Pressure tensor and heat flux relaxations with different
time step sizes �t using SP-BGK method. The finely resolved
DSMC results are provided as the reference. The time is normalized
using the relaxation time τ .

perature in the entire simulation domain is 273 K. However,
the particle density differs in the left nl , x ∈ [0, 0.5] and the
right nr, x ∈ [0.5, 1] subdomains. For the rarefied case, the
densities nl = 1.508 × 1019 m−3 and nr = 1.885 × 1018 m−3

were chosen. This results in a Knudsen number of about
Kn ≈ 0.1. In the continuum case, the imposed densities are
nl = 1.508 × 1021 m−3 and nr = 1.885 × 1020 m−3 resulting
in a Knudsen number Kn ≈ 0.001. The reference solutions
were generated with DSMC.

In the rarefied case, a computational mesh with 60 grid
cells was used for both DSMC and ED-SP-BGK simula-
tions. Also the time step �t = 3 × 10−5 s was the same
for both methods, resulting in ν�t ≈ 0.035 for the ED-SP-
BGK method. As depicted in Fig. 4, the DSMC result is
very well matched with the ED-SP-BGK method. To achieve
the same physical time in the rarefied case, DSMC and the
EIBGK method require pretty much the same simulation
time. This is also understandable since in this case the same
time step size and the same number of particles can be
used.

In the case of the continuum flow, while spatiotemporal
discretization of DSMC was adjusted to resolve the collisional
scales, the mesh similar to the rarefied setting was used for
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FIG. 2. Pressure tensor and heat flux relaxations with different
time step sizes �t using the ED-SP-BGK method with the linear
approximation. The finely resolved DSMC results are provided as
the reference. The time is normalized using the relaxation time τ .

ED-SP-BGK. Therefore, an adaptive subcell method besides
the time step size of �tDSMC = 2 × 10−7 s was used to resolve
the mean-free path and the mean collision time for the DSMC
method. The ED-SP-BGK simulations were performed with
the same time step as in the rarefied simulation. Thus, a
factor of ν�t ≈ 3.5 was obtained. As can be seen in Fig. 5,
the ED-SP-BGK method achieves similar number density,
mean velocity, and temperature with significantly coarser dis-
cretization. Both the linear and exponential approximations
were tested, yielding negligible differences. For the next test
cases, therefore, only the linear approximation was used. In
this simulation, since time-accurate results at a certain physi-
cal time and not steady-state results are compared, relatively
many particles per cell are needed with the stochastic methods
(both DSMC and ED-SPBGK) to minimize noise. Neverthe-
less, in the continuum case, DSMC requires 10 times more
particles than the ED-SP-BGK method to sufficiently resolve
the mean-free path. Therefore, the single time step of the
ED-SP-BGK method is already about eight times faster than
DSMC. In addition, the time steps of �tED−SPBGK/�tDSMC =
150 are very different, so to achieve the same phys-
ical time, DSMC needs about 1200 times the time
of ED-SP-BGK.

0 5 10

0

0.5

1

t/τ

p x
y(

t)
/

p x
y(

0)

DSMC νΔt = 0.66
νΔt = 1.32 νΔt = 2.64
νΔt = 6.18

(a) Normalized shear stress

0 5 10

0

0.5

1

t/τ

q x
(t

)/
q x

(0
)

DSMC νΔt = 0.66
νΔt = 1.32 νΔt = 2.64
νΔt = 6.18

(b) Normalized heat flux

FIG. 3. Pressure tensor and heat flux relaxation with different
time step sizes �t using the ED-SP-BGK method with the exponen-
tial approximation. The finely resolved DSMC results are provided
as the reference.

C. Couette flow

The next test case is a steady planar Couette flow of ar-
gon, confined between the two parallel plates which move in
opposite directions with the velocity vwall = ±500 m/s. The
initial temperature of the gas as well as the wall temperature
are T = 273 K leading to a supersonic Couette flow. The Cou-
ette flow was carried out in three different Knudsen number
ranges. The conditions are shown in Table I. In the table,
the reference time step is also given, for which the solution
of the standard SP-BGK method becomes identical to the
proposed ED-SP-BGK method. In order to investigate solely
the influence of the time integration on the performance of the
two methods, identical spatial interpolation was performed in
both SP-BGK and ED-SP-BGK.

An important feature of wall-bounded gas flows is the gas-
boundary interaction. In stochastic particle methods, the time
and location where a particle hits the boundary are estimated
using linear interpolation. This has been shown to reset the
scheme back to the first order [32,33], close to the bound-
aries. Consistent high-order treatment of boundaries normally
involves extensive modifications in the underlying stochastic
process (e.g., see the walk on sphere scheme for the case of
random walks [34,35]) Such treatments go beyond the scope
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FIG. 4. Rarefied Sod shock tube test case. ED-SP-BGK, and ref-
erence DSMC results were computed using the same spatiotemporal
resolution.

of this study, yet it should be noted that a certain reduction
in the order of time integration will be observed in following
scenarios where boundary interactions become dominant.

1. Kn=0.1

The first Couette flow is in the rarefied range with Kn =
0.1. Figure 6 shows results of ED-SP-BGK and SP-BGK with
different time step sizes. For the coarsest case of 32�t , a
factor of maximum ν�t ≈ 0.8 is obtained in the simulation
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FIG. 5. Continuum Sod shock tube test case. ED-SP-BGK and
reference DSMC results were computed, where much coarser reso-
lution has been employed for ED-SP-BGK.

region. We observe that the ED-SP-BGK method achieves
significantly better results compared to the SP-BGK method,
even in the rarefied range where ν� < t . In Fig. 7 the velocity
in the y direction vy is depicted. Here both methods match the
reference solution quite well for the different time step sizes.

2. Kn=0.01

In the transition regime with Kn = 0.01, the performance
of the SP-BGK method becomes worse for larger time step
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TABLE I. Start conditions of Couette flow simulations.

No. computational cells Number density [m−3] Kn �tref [s]

Case 1 25 1.37 × 1019 0.1 1 × 10−5

Case 2 100 1.37 × 1020 0.01 5 × 10−6

Case 3 500 1.37 × 1021 0.001 6.25 × 10−7

sizes as depicted in Fig. 8. The nondimensional time step
reaches ν�t ≈ 2 for the largest time step size of 16�t . The
ED-SP-BGK method still shows good agreements with the
reference solution. The time step is bounded by the CFL
condition. The velocity plot depicted in Fig. 9 again shows
good agreement for both methods.

3. Kn=0.001

The last test case enters the continuum range with Kn =
0.001. Here the required time step size to accurately resolve
the solution becomes prohibitively small for the SP-BGK
method, as shown in Fig. 10. We get ν�t ≈ 5 corresponding
to the time step size of 32�t , where again the ED-SP-BGK
scheme performs reasonably well. For the velocity plots in
Fig. 11, the picture is the same as before. Both methods can
represent the velocity very well.
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FIG. 6. Comparison of temperature using ED-SP-BGK and SP-
BGK as well as different time steps �t for Couette flow with
Kn = 0.1.

D. Poiseuille flow

A similar setup is employed in the Poiseuille flow, which
consists once more an argon gas confined between two paral-
lel plates in a distance of Ly = 1 m. The initial temperature of
the gas as well as the wall temperature are T = 273 K. In this
case, however, the walls do not move, but a constant volume
force F acts on the gas and accelerates it. The diffuse reflection
from the walls then leads to a characteristic velocity profile in
the gas. In order to achieve second order with the force term as
well, we use here the Strang splitting method [36]. Thus, after
constructing f̂ ∗ out of f̃ ∗ and before moving the particles, we
add half the force to the velocities of the particles:

vt1/2 = vt + �t

2m
F. (58)
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FIG. 7. Comparison of velocity vy using ED-SP-BGK and SP-
BGK as well as different time steps �t for Couette flow with
Kn = 0.1.
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FIG. 8. Comparison of temperature using ED-SP-BGK and SP-
BGK as well as different time steps �t for Couette flow with
Kn = 0.01.

Using these velocities, the particles are moved, and the other
half of the force term is added afterwards in the same way to
finalize the time step. The force term was chosen as nFx =
10−2 Pa/m, and again rarefied and continuum regime simula-
tions were done.

1. Rarefied case

The first case uses a density of n = 1.37 × 1019 m−3 for
a rarefied flow with a Knudsen number Kn ≈ 0.1. The flow
is simulated with SP-BGK and ED-SP-BGK methods, with a
fixed Courant-Friedrichs-Lewy number CFL ≈ 5, leading to
different time steps for different cell numbers. The resulting
relaxation factors are ν�t = 0.08, 0.16, 0.33, 0.66, 1.63
for, respectively, 200, 100, 50, 25, and 10 cells. The results
are compared in Fig. 12 to a reference solution, obtained
using DSMC on a 200 cells mesh. While, in this case, the
SP-BGK method is already close to the reference with only
10 cells, the second-order nature of ED-SP-BGK allows it
to better perform when the spatiotemporal resolution im-
proves. The error convergence is shown in Fig. 13, where
the results of each method are compared to the solutions
obtained with the finest resolution, because no analytical
solution is available in this case. As expected, the ED-SP-
BGK method displays second order while SP-BGK converges
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FIG. 9. Comparison of velocity vy using ED-SP-BGK and SP-
BGK as well as different time steps �t for Couette flow with
Kn = 0.01.

only linearly. Only three different resolutions were used be-
cause ED-SP-BGK then levels out due to the stochastic error
that would require many more simulation particles to be
overcome. In this rarefied case, the calculation times of the
DSMC and the ED-SPBGK are again in the same range as
expected.

2. Continuum case

In the continuum case, a density of n = 1.37 × 1021 m−3

is used, which corresponds to a Knudsen number of
Kn ≈ 0.001. In the continuum domain it is possible to
formulate an analytical solution for the velocity profile
[37]:

vx = ρFx

m

Lyy − y2

2μ
(59)

with the mass density ρ and the y position y. The solu-
tion of the ED-SP-BGK method and the SP-BGK method
compared to the analytical solution are depicted in Fig. 14.
Here a constant Courant-Friedrichs-Lewy condition of around
CFL = 0.35 is used. This leads to the factors ν�t =
0.6, 0.82, 1.2, 2.4 for the number of cells 200, 150, 100, 50,
correspondingly. As shown in Fig. 14, it is very clear that with
the ED-SP-BGK method significantly fewer cells can be used
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FIG. 10. Comparison of temperature using ED-SP-BGK and SP-
BGK as well as different time steps �t for Couette flow with
Kn = 0.001.

at significantly larger time steps to obtain the analytical result
than with the normal SP-BGK method. Furthermore, Fig. 15
shows the L2 error of the two methods. One can see that
ED-SP-BGK is second order whereas SP-BGK is first order.
Due to the long calculation time, a DSMC calculation was not
carried out here up to the steady state, but 1600 cells and a
time step 10 times smaller than in ED-SPBGK with 150 cells
were necessary in a test simulation to resolve the mean-free
path and the mean collision time. Because of the smaller num-
ber of cells, about 20 times fewer particles were used in the
ED-SPBGK simulation. Ultimately, to achieve the same phys-
ical end time, i.e. to reach steady state, DSMC needs about
30 times more computing time compared to the ED-SPBGK
method. However, the DSMC method in PICLas is already
heavily optimized in terms of computing time, whereas the
ED-SPBGK is still in a developmental state, and no code
optimization has yet been carried out. Here it is very clear how
much coarser discretization can be used with the proposed
ED-SPBGK method compared to the normal SPBGK method
or DSMC. However, in this case, with 150 cells, significantly
more cells are still needed than with the already mentioned
DUGKS method, which requires significantly fewer cells for
the same number of Knudsen cells [38]. The first tests with
the exponential time integration proposed here for a DVM
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FIG. 11. Comparison of velocity vy using ED-SPBGK and SP-
BGK as well as different time steps �t for Couette flow with
Kn = 0.001.

code have also shown that with this DVM implementation
only 20 cells are necessary instead of 150 with particles. So
this still seems to be a problem of the particle method itself. It
is possible that the cell-based energy and momentum conser-
vation algorithm in the particle method causes an additional
error. In the future, other methods should be investigated
that do not only perform energy and momentum conservation
with the cell-based values and possibly further improve the
discretization. Other methods for spatial interpolation should
also be investigated in the future in order to further improve
the spatial resolution.

IV. CONCLUSION

Particle methods comprise an attractive class of algorithms,
which are typically employed for rarefied gas simulations.
Despite their popularity and robustness, their numerical ac-
curacy and convergence order hardly go beyond first order.
Multiscale flow phenomena with realistic rarefaction regimes,
however, require high-order schemes and thus entail funda-
mental improvements on numerical aspects of the stochastic
particle methods. This study enhances SP-BGK schemes by
introducing a consistent second-order treatment of the BGK
relaxation, using the exponential differencing method. The
structure of the devised ED-SP-BGK method allows for a
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FIG. 12. Comparison of velocity vx using ED-SP-BGK and
SP-BGK as well as different resolutions for Poiseuille flow with
Kn = 0.1.

straightforward implementation and minimal overhead with
respect to the traditional SP-BGK method, as the particle
weights remain nonnegative irrespective of the spatiotempo-
ral scales. Besides correct asymptotic limits of the proposed
ED-SP-BGK scheme in both free-molecular and continuum
limits, its performance was investigated in a few standard
settings covering a large variation of the Knudsen number. It is
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FIG. 13. Comparison of L2 error using ED-SP-BGK and SP-
BGK for Poiseuille flow with Kn = 0.1.
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demonstrated that the devised scheme performs better than the
SP-BGK method in all considered scenarios including both
rarefied and continuum regimes. Extension of the scheme for
more complex gas flow scenarios besides improved treatment
of the boundary conditions will be pursued in the follow-up
studies.
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APPENDIX: TIME-DEPENDENT DISTRIBUTION
FUNCTION IN THE CONTINUUM LIMIT

This analysis is based on the procedure given by Guo et al.
[7]. Let us consider Eq. (27),

f (v, x + v�t, t + �t )

= 1 − e−ν�t

ν�t
f̃ ∗(v, x + v�t, t + �t )

+
(

1 − 1 − e−ν�t

ν�t

)
f M (v, x + v�t, t + �t ), (A1)

where it is assumed f t = f M . In addition, state (v, x +
v�t, t + �t ) is abbreviated as (t + �t ) and state (v, x, t ) as
(t ). It is known that f̃ ∗(v, x + v�t, t + �t ) results from the
movement of the particles along the trajectories of f̂ ∗(v, x, t ),
which corresponds to the advection step f̃ ∗(v, x + v�t, t +
�t ) = f̂ ∗(v, x, t ) − v�t∇ f̂ ∗(v, x, t ). Substituting this into

(A1) and using (27) yields

f (t + �t ) = 1 − e−ν�t

ν�t

[
ν�te−ν�t

1 − e−ν�t
[ f (t ) − v�t∇ f (t )]

+
(

1 − ν�te−ν�t

1 − e−ν�t

)
[ f M (t ) − v�t∇ f M (t )]

]

+
(

1 − 1 − e−ν�t

ν�t

)
f M (t + �t ). (A2)

Let f M (t + �t ) ≈ f M (t ) + �t∂t f M (t ), which is justified in
the continuum limit as discussed in Guo et al. [7], and suppose
that f (t ) in the continuum limit can be approximated by the
Chapman-Enskog expansion

f (t ) ≈ f M (t ) − τDt f M (t ) + O
(
D2

t

)
(A3)

with Dt = (∂t + v∇); then Eq. (A2) leads to

f (t + �t ) = e−ν�t [ f M (t ) − τDt f M (t )]

+
(

1 − e−ν�t

ν�t
− e−ν�t

)
f M (t )

+
(

1 − e−ν�t

ν�t

)
[ f M (t ) + �t∂t f M (t )]

− v�t

[
e−ν�t∇ f M (t ) +

(
1 − e−ν�t

ν�t
− e−ν�t

)

×∇ f M (t )

]
+ O(∂2), (A4)

Further rearrangements of the prefactors yields

f (t + �t ) = f M (t ) − τDt f M (t ) + �t∂t f M (t ) + O(∂2),

(A5)

which is the time-dependent Chapman-Enskog Navier-Stokes
distribution [7].
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