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The Monte Carlo method is often used to simulate systems which can be modeled by random walks. To
calculate observables, in many implementations the “walkers” carry a statistical weight which is generally
assumed to be positive. Some random walk simulations, however, may require walkers to have positive or
negative weights: it has been shown that the presence of a mixture of positive and negative weights can impede
the statistical convergence, and special weight-cancellation techniques must be adopted to overcome these issues.
In a recent work we demonstrated the usefulness of one such method, exact regional weight cancellation, to solve
eigenvalue problems in nuclear reactor physics in three spatial dimensions. The method previously exhibited had
several limitations (including multigroup transport and isotropic scattering) and needed homogeneous cuboid
cancellation regions. In this paper we lift the previous limitations, in view of applying exact regional cancellation
to more realistic continuous-energy neutron transport problems. This extended regional cancellation framework
is used to optimize the efficiency of the weight cancellation. Our findings are illustrated on a benchmark
configuration for reactor physics.
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I. INTRODUCTION

For day-to-day industrial needs in the field of nuclear reac-
tor physics, deterministic codes are used to solve the neutron
transport equation, estimating the reaction rates and the power
distribution in the reactor core [1–3]. Deterministic methods
have the advantage of running fast, but this speed comes at
the cost of accuracy: many approximations are introduced,
discretizing the phase space (position, direction and energy)
and thus leading to a bias in the results. The gold-standard in
reactor physics for solving the neutron transport equation is
the Monte Carlo method, which does not need to introduce
any discretization of the phase space, and is therefore free of
any bias [4]. This high-fidelity simulation method comes at
the cost of requiring extensive computer resources. Because
of this computational cost, multiphysics simulations of a full-
core nuclear reactor model, using Monte Carlo neutronics
codes coupled with other state-of-the-art thermal-hydraulics
and fuel performance codes, have become possible only very
recently, mainly thanks to the increase in available computer
power and to the development of efficient variance-reduction
techniques [5,6].

In these Monte Carlo simulations, the particles being simu-
lated (typically neutrons or photons) carry a statistical weight,
which is used to estimate observable quantities such as re-
action rates and power distributions within the core of the
nuclear reactor. For most applications involved in nuclear
reactor physics or radiation shielding problems, these statis-
tical weights are always positive. However, several types of
Monte Carlo neutronics simulations require that the particles
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being sampled carry negative statistical weights (or complex
weights, where each component is allowed to be negative).
Problems that require negative weights include the evaluation
of the second harmonic of the flux, critical buckling, and
neutron noise, as the quantities being estimated in these prob-
lems can be negative [7–9]. There are also special rejection
sampling methods which allow negative weights, that could
be used to treat spatially continuous material properties, even
when the desired quantities should be positive [10]. Random
walk problems using positive and negative statistical weights
emerge more broadly in many applications outside of nuclear
reactor physics, e.g., in quantum diffusion Monte Carlo [11],
or in the Wigner Monte Carlo formalism [12]. Such simu-
lations can be particularly challenging, as the summing of
positive and negative contributions to estimate the observable
quantities leads to very large variances in these tallies: it
is often recognized that weight cancellation is mandatory to
ensure convergence [7,8,13].

In a recent work, we have focused on the case of spa-
tially continuous material properties for particle transport
applications emerging in reactor physics. Material cross sec-
tions for neutron transport depend on the energy of the
incident particle, as well as on the temperature and density
of the material. Traditional neutronics codes (both Monte
Carlo and deterministic) make the approximation that each
material region in the reactor model has a constant tem-
perature and density [1–3,14–17]. In a real nuclear reactor,
however, this is certainly not the case, as the temperature and
density will depend continuously on position. The continual
advances of high-performance computing resources allows us
to consider new ways of improving the fidelity of our Monte
Carlo codes. It is in this context that we have examined the
possibility of treating spatially continuous material tempera-
tures and densities in Monte Carlo simulations in a previous
work [10]. In particular, we have focused on assessing which
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particle-tracking methods might be best suitable to treat spa-
tially continuous cross sections for fixed-source transport
problems, typically occurring in radiation shielding applica-
tions [10]. Among the possible choices, the delta tracking
[18,19] and negative-weighted delta-tracking [20,21] sam-
pling strategies were deemed particularly attractive. Negative-
weighted delta tracking, although beneficial for dealing with
spatially continuous cross sections, has a potential drawback
due to the statistical weights of the particles being allowed
to become negative: in a subsequent study concerning k-
eigenvalue problems, we have shown that the coupling of
positive and negative particle weights prevents convergence
of the power iteration method to the fundamental mode of the
physical system being studied [22].

To overcome these issues, an exact regional weight cancel-
lation method, originally proposed by Booth and Gubernatis
in a 1D context [23], was extended to 3D and was shown
to allow the convergence of power iteration with negative-
weighted delta tracking in a multigroup reactor physics
benchmark [22]. Such a weight cancellation technique might
be useful to improve the simulation methods of the other
previously mentioned problems which have particles with
negative statistical weights. While our previous work in
Ref. [22] demonstrated potential for the method, many ques-
tions were left unanswered: under what conditions is regional
cancellation unbiased? How might one extend cancellation
from multigroup to continuous-energy material cross sec-
tions? Is it possible to maximize the efficiency of weight
cancellation, for a given set of particles in a cancellation
region? Our goal in this paper is to build upon our previ-
ous results in Ref. [22] and to start addressing these very
questions.

Our manuscript is organised as follows. In Sec. II, we
provide a brief summary of the exact regional cancellation
technique which we presented in our previous paper. Sec-
tion III will develop the mathematical theory behind the
family of techniques for regional cancellation, for the most
general continuous-energy case. We also examine what con-
ditions must be satisfied to ensure that a regional cancellation
method is unbiased. The theory presented in this section elu-
cidates the concepts which are integral to the technique (for
both multigroup and continuous-energy calculations), and
blazes the trail for implementing exact regional cancellation
in continuous-energy problems. The question of optimizing
cancellation is then treated in Sec. IV, where two candi-
date optimization methods are proposed. Section V discusses
the implementation of the two optimization strategies in our
Monte Carlo code, and discusses how these two strategies
allow us to deal with heterogeneous cancellation regions. The
different optimization strategies are compared in Sec. VI,
and we also assess the performances of our methods on a
reactor physics benchmark with heterogeneous cancellation
regions. Some concluding thoughts and remarks are provided
in Sec. VII.

II. REGIONAL WEIGHT CANCELLATION

Previously, we have extended the 1D exact regional can-
cellation scheme of Booth and Gubernatis [23] to work in 3D
multigroup neutron transport problems [22]. Here, we shall

briefly outline the mechanics of this method, in a general
continuous-energy framework. For the case of k-eigenvalue
problems, the fundamental mode and eigenvalue are sought by
Monte Carlo methods using power iteration, which basically
consists of following the neutron histories over fission gen-
erations [4]. When negative-weighted delta tracking is used
to sample particle flights, the transported neutrons will have
positive and negative weights, and weight cancellation will be
mandatory to ensure the convergence of power iteration [22].
In this context, the regional cancellation operation is applied
to neutrons born from fission. The fission particles are first
sorted into user-defined cancellation regions, based on their
position. Once all of the particles have been sorted into their
cancellation regions, we may then consider each cancellation
region independently for the cancellation procedure. In our
previous work, a simple rectilinear mesh was imposed on top
of the problem geometry.

Consider cancellation region R (which is assumed to be
composed of only one fissile material), containing fission
neutrons which have already been sampled. In addition to
storing its own position (r), energy (E ), and direction (�̂),
each fission particle also stores its parent’s energy (E ′), the
position of the previous collision (r′), and the direction of the
parent’s penultimate flight (�̂

′′
).1 From this information, we

can calculate the “fission density function,” i.e., the expected
fission density at r due to a collision at r′ coming from di-
rection �̂

′′
, and a subsequent flight from r′ to r at energy E ′;

this is a key ingredient for the weight cancellation procedure.
The exact form of the fission density function depends on the
particle-tracking method being used. For the case of negative-
weighted delta tracking,2 as examined in our previous work,
the fission density function was taken to be

ζ (r|r′, �̂
′′
, E ′) =

P
(

r−r′
|r−r′| · �̂

′′)
� f (r, E ′)

2π |r − r′|2 e−�smp(E ′ )|r−r′|.

(1)

In this notation, �smp is the sampling cross-section required
for negative-weighted delta-tracking, � f is the fission cross-
section, and P is the probability density function for the
cosine of the scattering angle for the previous collision.3

Based on ζ , we are able to split each fission particle in R
into two components: a point-wise component with weight
wp, and a uniform component of weight wu. The point-wise
portion, wp, keeps the phase space coordinates (r, �̂, E ) of the
split fission particle. The uniform component, wu, is spread

1The direction of the parent’s last flight is not explicitly stored, as
it can be calculated as �̂

′ = r−r′
|r−r′ | .

2We will only mention negative-weighted delta tracking in the text,
since that was the focus of our previous work, but Eq. (1) is also valid
for regular delta-tracking, where �smp would be the majorant cross
section. This could be of use for neutron noise or critical buckling
problems, which would not necessarily require the use of negative-
weighted delta tracking but nonetheless require weight cancellation.

3While the symbol f was used for the fission density function in
Ref. [22], we have instead chosen to use ζ in this paper, to avoid any
confusion with other subsequent symbols.
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uniformly over the region R. To calculate the point-wise and
uniform weights, we use

wp = ζ (r|r′, �̂
′′
, E ′) − β

ζ (r|r′, �̂
′′
, E ′)

w, (2)

wu = β

ζ (r|r′, �̂
′′
, E ′)

w, (3)

respectively, with w being the weight of the original fission
particle [23]. Note that wp + wu = w, so that the net weight
is conserved. The free parameter β can take any value, and
in general is chosen independently for each particle in R.
Our previous work followed the recommendation of Booth
and Gubernatis, and always took β to be the minimum value
of ζ (r′′|r′, �̂

′′
, E ′) over all possible r′′ ∈ R, for the particle

of interest. We demonstrated that, for the case of isotropic
scattering and cuboid cancellation regions, one only needs to
evaluate ζ (r′′|r′, �̂

′′
, E ′) for the eight corners of the cuboid

(taking r′′ to be the corner positions) to find the minimum
value within R.

With wp and wu having been calculated for each fission
particle in R, we then take the sum of all the uniform weight
components

U =
N∑

i=1

wu,i, (4)

where the extra subscript i indicates the fission particle. This
operation is effectively where the cancellation occurs: de-
pending on the initial weights wi of the fission particles,
the individual uniform components wu,i will be positive or
negative, and taking their sum cancels some of the positive
and negative weight which was in the region R. The uniform
weight U must be distributed uniformly within R. To do
this, n = �|U |� new fission particles are sampled within R,
each having a weight of U/n. The positions of the n uniform
particles are sampled uniformly in R. In our previous work,
the direction was sampled from an isotropic distribution, as
fission was assumed to be perfectly isotropic, and the energy
was sampled from the fission spectrum of the material in R,
as it was assumed that the fission spectrum had no depen-
dence on incident neutron energy. These n new uniform fission
particles must be added to the fission bank, and will then be
transported along with the other fission particles during the
next fission generation.

The method proposed in Ref. [22] that we have recalled
here, was demonstrated to work successfully and be unbi-
ased on a simple reactor physics benchmark problem. While
those results were very promising, the initial implementation
admittedly had several limitations. First, cancellation regions
must be homogeneous, containing only a single fissile mate-
rial. Second, fission must always be isotropic, and the fission
spectrum must be independent of the incident energy. In gen-
eral, even in continuous-energy transport, fission is almost
always represented as isotropic, so this is not necessarily a
large inconvenience. However, the fission energy spectrum is
generally assumed to be dependent on the incident neutron
energy. Furthermore, while Booth and Gubernatis argue that
cancellation is unbiased for any value of the parameter β,
the amount of canceled weight (and thus the efficiency of the

method) clearly does depend on β. Using the minimum value
of the fission density as β is not necessarily the most effi-
cient choice for achieving the highest amount of cancellation.
Nonetheless, taking β to be the minimum within R guarantees
that both wp and wu have the same sign as w: when β is larger
than the minimum, the point-wise portion, wp, can change
sign, potentially leading to even more positive and negative
weight in the region than there was initially. The cancellation
operation does not change the net weight Wnet in the bin, as

Wnet =
N∑
i

wi =
N∑
i

wu,i +
N∑
i

wp,i = U +
N∑
i

wp,i (5)

will still be located in the bin. However, cancellation does
change the total weight, Wtot, defined as the sum of the abso-
lute values of all weights. The total weight before cancellation
is

Wtot =
N∑
i

|wi|, (6)

while the post-cancellation total weight is

Wtot,post =
N∑
i

|wp,i| + |U | =
N∑
i

|wp,i| +
∣∣∣∣∣

N∑
i

wu,i

∣∣∣∣∣. (7)

By using the triangle inequality, it is possible to show that

Wtot,post � |Wnet|.
The more efficient cancellation is, the closer Wtot,post will be
to Wnet, with 100% cancellation efficiency corresponding to
Wtot,post = Wnet (i.e., all negative weight is removed). The op-
timal choice for β will maximize the cancellation efficiency,
and therefore minimize Wtot,post. This optimal choice of β is
clearly dependent on the other particles in the bin, and deter-
mining this optimal value is vital for improving the overall
computational efficiency of the simulation.

III. UNBIASEDNESS OF CANCELLATION

In this section, a method for performing exact regional
cancellation in general continuous-energy problems shall be
developed, and it will be demonstrated under what conditions
such schemes lead to an unbiased fission source. For this
purpose, it is mathematically beneficial to use the integral
form of the transport equation, as opposed to the integrod-
ifferential form adopted in our previous work. We will begin
by presenting the integral transport form for the eigenvalue
transport problem in Sec. III A. Section III B makes a first
attempt at developing an estimator for the fission emission
density in a region, which averages over all possible collisions
and subsequent flights which induce the fission. While this
exact estimator is likely of little use to a practical application,
we are able to use it to examine what requirements must be ob-
served to have an unbiased fission emission density estimator.
Section III C discusses how far back in a particle’s history one
must look, so that it is possible for it to have contributed to the
fission emission density everywhere within the cancellation
region. Section III D uses the ideas from Sec. III C to decom-
pose the collision operator as is done in most Monte Carlo
codes, to produce a fission emission density estimator which
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could potentially be used in an industrial code to achieve exact
regional cancellation. Section III E outlines the possibility of
distributing some of the fission emission density within the
region according to a generic function, instead of distributing
it uniformly. Finally, Sec. III F examines why delta tracking
algorithms are more suited to exact regional cancellation, and
the peculiarities which can arise from delta-scatters.

A. Integral formulation of the transport equation

We will start with the k-eigenvalue Boltzmann transport
equation in integral form. Let P = (r, �̂, E ) denote the co-
ordinates of a point in phase space. The collision density
ψ (P) = �t (r, E )ϕ(r, �̂, E ) and the emission density χ (P)
are related by [4]

ψ (P) = Tχ (P), (8)

χ (P) =
[
Cs + 1

k
C f

]
ψ (P), (9)

where �t is the total macroscopic cross section, and ϕ is the
angular neutron flux. In this notation, T is the flight operator,
defined as

Tg(P) =
∫

T (P′ → P)g(P′)dP′, (10)

where we have made use of the flight kernel

T (P′ → P) = �t (r, E ′)
|r − r′|2 exp

(
−

∫ |r−r′|

0
�t (r′ + u�̂

′
, E ′)du

)

× δ

(
�̂ − r − r′

|r − r′|
)

δ(�̂
′ − �̂)δ(E − E ′).

(11)

We note that the flight kernel T (P′ → P) is normalized, and
can be interpreted as the probability density function (PDF)
for a particle having a flight and landing at the phase space
coordinate P, conditioning on its initial phase space coordi-
nate being P′.

The scattering operator Cs in Eq. (9) is defined as

Csg(P) =
∫

Cs(P
′ → P)g(P′)dP′, (12)

with the scattering kernel Cs(P′ → P) being

Cs(P
′ → P) = νs(r′, E ′)�s(r′, E ′)

�t (r′, E ′)

× fscat (�̂, E |r′, �̂
′
, E ′)δ(r − r′), (13)

where �s is the macroscopic scattering cross section, νs is the
average number of neutrons emitted from a scatter, and fscat is
the joint PDF for a neutron to scatter in direction �̂ at energy
E . The fission operator C f is similar to the scattering operator
in Eq. (12), but instead uses a fission kernel Cf (P′ → P),

defined as

Cf (P′ → P) = ν f (r′, E ′)� f (r′, E ′)
�t (r′, E ′)

× ffiss(�̂, E |r′, �̂
′
, E ′)δ(r − r′), (14)

where � f is the macroscopic fission cross section, ν f is the
average number of neutrons produced per fission, and ffiss is
the joint PDF for fission neutrons to be emitted in direction
�̂ at energy E . The scattering and fission operators may be
combined into a collision operator

χ (P) = Cψ (P), (15)

which has a corresponding collision kernel

C(P′ → P) = Cs(P
′ → P) + 1

k
Cf (P′ → P). (16)

Here C(P′ → P) can be interpreted as the average number of
particles produced about the phase space coordinate P, from a
collision induced by a particle at P′. Given this interpretation,
it is also possible to rewrite C(P′ → P) in a more concise
form, using an average yield ν̄(r′, E ′), and an average transfer
function f̄ (�̂, E |r′, �̂

′
, E ′):

C(P′ → P) = ν̄(r′, E ′) f̄ (�̂, E |r′, �̂
′
, E ′)δ(r − r′). (17)

It is clear that Eq. (17) is true if

ν̄(r′, E ′) = νs(r′, E ′)�s(r′, E ′)
�t (r′, E ′)

+ ν f (r′, E ′)� f (r′, E ′)
k�t (r′, E ′)

(18)

and

f̄ (�̂, E |r′, �̂
′
, E ′) = νs(r′, E ′)�s(r′, E ′)

ν̄(r′, E ′)�t (r′, E ′)
fscat (�̂, E |r′, �̂

′
, E ′)

+ ν f (r′, E ′)� f (r′, E ′)
kν̄(r′, E ′)�t (r′, E ′)

× ffiss(�̂, E |r′, �̂
′
, E ′). (19)

B. Averaging over all scattering events

Consider the following particle history. A neutron enters a
collision at P1, and then leaves that collision at P2. The particle
then undergoes a flight and experiences a fission at P3. The
fission at P3 then contributes to the fission emission density
at P4. It is assumed that P4 is located within the generalized
phase space region R, which will act as our cancellation
region.4 This partial particle history is depicted in Fig. 1.
Despite the fact that r4 = r3, P3 is not, in general, located in
the cancellation region R, as �̂3 and E3 may not be within
the domain of R. To examine the fission emission density at
point P4, we must first determine the collision density ψ (P3),
for a given collision at P1. From Eqs. (8) and (9), it follows

4While our previous work in Ref. [22] used cancellations which
only spanned space, we now consider cancellation regions spanning
all dimensions of phase space. We therefore must consider three
spatial dimensions, two dimensions for direction, and one dimension
for energy.
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that

ψ (P3) = TCψ (P3) =
∫

T (P2 → P3)
∫

C(P1 → P2)ψ (P1)dP1dP2 (20)

=
∫∫∫

dr1d�̂1dE1

∫∫∫
dr2d�̂2dE2ψ (r1, �̂1, E1)ν̄(r1, E1) f̄ (�̂2, E2|r1, �̂1, E1)δ(r2 − r1)

×�t (r3, E3) exp

[
−

∫ |r3−r2|

0
�t (r2 + u�̂2, E2)du

]
δ
(
�̂3 − r3−r2

|r3−r2|
)
δ(�̂3 − �̂2)δ(E3 − E2)

|r3 − r2|2 (21)

=
∫∫∫

dr1d�̂1dE1ψ (r1, �̂1, E1)ν̄(r1, E1)δ

(
�̂3 − r3 − r1

|r3 − r1|
)

f̄ (�̂3, E3|r1, �̂1, E1)�t (r3, E3)

|r3 − r1|2

× exp

[
−

∫ |r3−r1|

0
�t (r1 + u�̂3, E3)du

]
. (22)

The integral over P1 in Eq. (22) indicates that ψ (P3) is a sum of contributions from all possible initial phase space points P1 for
which �̂3 = r3−r1

|r3−r1| .
The fission emission density χ f (P4) is defined as

χ f (P4) = 1

k
C f ψ (P4). (23)

Combining Eqs. (14) and (22), we obtain

χ f (P4) =
∫∫∫

dr1d�̂1dE1ψ (r1, �̂1, E1)ν̄(r1, E1)

×
∫

dE3

ν f (r4, E3)� f (r4, E3) ffiss
(
�̂4, E4|r4,

r4−r1
|r4−r1| , E3

)
f̄
( r4−r1

|r4−r1| , E3|r1, �̂1, E1
)

k|r4 − r1|2

× exp

[
−

∫ |r4−r1|

0
�t

(
r1 + u

r4 − r1

|r4 − r1| , E3

)
du

]

=
∫∫∫

ψ (r1, �̂1, E1)ν̄(r1, E1)ζ (P1 → P4)dr1d�̂1dE1. (24)

In the last step we have introduced the function ζ :

ζ (P1 → P4) =
∫

dE3

ν f (r4, E3)� f (r4, E3) ffiss
(
�̂4, E4|r4,

r4−r1
|r4−r1| , E3

)
f̄
( r4−r1

|r4−r1| , E3|r1, �̂1, E1
)

k|r4 − r1|2

× exp

[
−

∫ |r4−r1|

0
�t

(
r1 + u

r4 − r1

|r4 − r1| , E3

)
du

]
. (25)

Here ζ (P1 → P4) is the transition kernel for a particle starting
at P1, undergoing a collision, then a flight, and then producing
fission particles at P4.

We now wish to construct an estimator for the expected
fission emission density at a point Q ∈ R. Our estimator op-
erates on events where a fission particle is emitted at P4 ∈ R,
from a particle originally entering a collision at P1. To be unbi-
ased, our estimator ϑ (P1 → P4|R, Q) for the fission emission
density must have the property [4]

∫
ζ (P1 → P4)ϑ (P1 → P4|R, Q)dP4 = ζ (P1 → Q). (26)

To achieve regional cancellation, we would like to define
an estimator ϑ for the fission emission density at Q where a
portion of the fission emission density is located exactly at Q,

and the remaining portion is uniformly distributed within the
phase space region R. We shall define this estimator to have
the form

ϑη(P1 → P4|R, Q) = (1 − η)δ(Q − P4) + η

VR
. (27)

Here, VR is the generalized phase space volume occupied
by R, and η is the portion of the fission emission den-
sity that we wish to uniformly distribute within R.5 If η is
taken to be a constant with respect to P4, then, upon eval-
uation of the left-hand side of Eq. (26), using Eq. (27), we

5Note that the parameter η may take any value (real or complex);
in particular, it is not required to lie in the [0,1] interval.
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FIG. 1. Depicted here is the relationship between phase space
points P1, P2, P3, and P4. Points connected by a flight operator (solid
line) share the same direction and energy, and are only discontinuous
in position. Points connected by a collision or fission operator (dotted
and dashed lines respectively) share the same position, but are gen-
erally discontinuous in direction and energy. Any branches which
might result from the application of the collision operator from P1 to
P2 are not depicted.

obtain∫
ζ (P1 → P4)ϑη(P1 → P4|R, Q)dP4

=
∫

ζ (P1 → P4)
[
(1 − η)δ(Q − P4) + η

VR

]
dP4

= (1 − η)ζ (P1 → Q) + η

VR

∫
ζ (P1 → P4)dP4. (28)

Comparing Eqs. (28) and (26), it is clear that the only unbiased
option is η = 0, corresponding to no cancellation. It is permis-
sible, however, to allow η = η(P1, P4) to be both a function
of P1 and P4, as ϑ is already a function of these parameters.
Using the ansatz

η(P1, P4) = β

ζ (P1 → P4)
, (29)

inspired by Eq. (3), we see that∫
ζ (P1 → P4)ϑη(P1,P4 )(P1 → P4|R, Q)dP4

=
∫

ζ (P1 → P4)

[(
1 − β

ζ (P1 → P4)

)
δ(Q − P4)

+ β

VRζ (P1 → P4)

]
dP4

= ζ (P1 → Q) − β + β = ζ (P1 → Q), (30)

which, compared with right-hand side of Eq. (26), shows that
this choice leads to an unbiased estimator.

Equation (30) indicates that we are allowed to distribute a
factor β/ζ (P1 → P4) of the fission particle uniformly within
R, so long as β has no functional dependence on P4. This
requirement on β is essential to ensure that, after integrating
over P4, both β terms will cancel; note however that β is
allowed to depend on P1. We are therefore allowed to pick
β = 0 whenever it is convenient, so long as information from
P4 is not used to make this choice.

Additionally, Eq. (30) indicates that we must require
ζ (P1 → P4) �= 0 ∀P4 ∈ R. If this is not the case, then η

is undefined. In particular, this implies that we require
� f (r4, E3) > 0 everywhere within our cancellation region.
We must also require ffiss(�̂4, E4|r4,

r4−r1
|r4−r1| , E3) > 0 ∀P4 ∈

R; as fission is nearly perfectly isotropic, the angular com-
ponent is not problematic, but the energy component could
indeed be zero for very low energies, and care must therefore
be taken when selecting the energy bounds for R. Despite
these restrictions, we are given some liberty as to the defi-
nition of R, as it is allowed to be nonconvex.

The ansatz of Eq. (29) has the following remarkable prop-
erty. Suppose that ζ (P1 → P4) has the structure

ζ (P1 → P4) = h0(P1)ζ0(P1 → P4). (31)

Consider the estimators

ϑζ = ϑ

(
P1 → P4|R, Q, η = β

ζ

)
, (32)

ϑζ0 = ϑ

(
P1 → P4|R, Q, η = β0

ζ0

)
. (33)

The two estimators are actually identical for β0 = β/h0. In
other words, any factor in ζ (P1 → P4) that is independent of
P4 can be pulled out of the definition of ζ and still yield an
unbiased estimator for the fission emission density.

Finally, note that the integral over E3 in the definition of
ζ could be somewhat problematic and/or expensive to com-
pute in a continuous-energy Monte Carlo code. It effectively
corresponds to averaging over all possible nuclides, reaction
channels, and energies, which could have been sampled in
determining P3, and leading to a fission particle at P4. We
therefore would like to determine if there is an alternative,
simpler, unbiased option.

C. Expected-value estimators for cancellation

As it has been developed, ζ (P1 → P4) can be interpreted
as a type of expected-value estimator [24], because it is the
expected contribution to the fission emission density at P4,
for a particle entering a collision at P1. For the purpose of
carrying out weight cancellation, several kinds of expected-
value estimators for the fission emission density at P4 could
potentially be used in place of the form given by Eq. (25).
All that is required of ζ (P1 → P4) is that it be nonzero for
all points P4 in R. This is required by Eq. (30), as we can
only distribute fission emission density uniformly within R
if ζ (P1 → P4) > 0 ∀P4 ∈ R. With this in mind, we will now
consider what types of expected-value estimators could be
used in lieu of ζ .

Next-event estimators are particular forms of expected-
value estimators that average the sampled quantity over the
following event in the stochastic process. Let us evaluate if
a next-event estimator is suitable for the purpose of cancella-
tion. Consider a next-fission estimator for the fission emission
density; such an estimator is applied to particles undergoing
a collision at P3 = (r3, �̂3, E3) and yields the expected fis-
sion emission density at a generic point Q = (r, �̂, E ) ∈ R.
Since fission does not change the position of particles, the
contribution of the next-fission estimator vanishes everywhere
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except for r = r3. Therefore, a next-fission estimator is not
able to yield a nonvanishing contribution at all the points in
cancellation region R.

Thus, for cancellation to be possible, we need to include
more than one event in our expected-value estimator, i.e., we
need to use at least a next-next-event estimator, or possibly an
estimator of even higher order. It is then crucial to determine
the number of events that our estimator needs to look ahead
and average over, to yield a nonvanishing contribution to all
the phase space points in the cancellation region. Indeed, we
want to minimize the number of look-ahead events, because
the evaluation of expected-value estimators becomes more
and more cumbersome as the number of look-ahead events
increases.

Consider now the possibility of a next-flight-fission estima-
tor. In our notation, such an estimator acts on particles emitted
at P2 and yields the expected fission emission density at Q, av-
eraged over all possible flights from P2 and all possible fission
events. Since the flight operator does not modify the particle
direction [see Eq. (11)], the expected fission density vanishes
everywhere except at positions reachable from r2 with direc-
tion �̂2. In general, this does not cover the whole cancellation
region, except in the one-dimensional case [22,23].

It is now probably clear that a next-collision-flight-fission
estimator should in general yield a nonvanishing contribution
to the fission emission density at all phase space points within
R. In other words, given a particle undergoing a collision at
P1, the expected fission emission density (averaged over the
next collision, flight, and fission) should not vanish anywhere
within R. This corresponds to Eq. (25) above and justifies the
construction of the previous section.

Two remarks are in order here. First, there are cases where
even a next collision-flight-fission estimator is not sufficient
to achieve a nonvanishing expected fission emission density
at all points within R. Indeed, the collision between P1 and
P2 may be subject to kinematic constraints, and Eq. (25)
shows that the expected fission emission density vanishes if
f̄ ( r−r1

|r−r1| , E3|r1, �̂1, E1) = 0 for some r in cancellation region
R. Second, an estimator based on Eq. (25) would require the
evaluation of the integral over E3 at every collision, which is
impractical. In fact, regional cancellation attempts to perform
the cancellation algorithm a posteriori, after flights have al-
ready been sampled, and fission particles have been produced.
Since we have already sampled a Monte Carlo history from
P1 through P2, P3, and P4, we would like to reuse as much
information as possible from the sampled history to remove
part of the fission density from P4 and redistribute it uniformly
within R.

Thus, our expected-value estimator needs to average over
sufficiently many event samplings to be able to “see” the
whole region R; at the same time, we want our estimator
to average over the strict minimum number of samplings.
Each additional real variable that we average over introduces
an extra integration in the expression of the expected fission
emission density and reduces the usefulness of the P1 → P4

history that we have already sampled.

D. Intermediate collision points

For the subsequent analysis, it is useful to consider a dif-
ferent form of the collision kernel, more aligned with how

most continuous-energy Monte Carlo codes sample a colli-
sion event. While Eq. (17) presents the collision kernel in
terms of the averaged macroscopic cross sections and yields,
most continuous-energy Monte Carlo codes do not handle
collisions in such a manner. In production-level codes, mi-
croscopic cross sections are tabulated for different nuclides
and different reaction channels (elastic, level inelastic, etc.)
[14–17]. Each combination of nuclide and reaction channel
has an independent transfer function for each type of non-
capture collision. The concentration Ni(r′) of nuclide i is a
function of position, and the total microscopic cross section
σi(r′, E ′) is a function of position and energy.6 The total
macroscopic cross section is

�t (r′, E ′) =
∑

i

Ni(r′)σi(r′, E ′). (34)

At a collision site, we select the nuclide with which our
particle will undergo a collision: nuclide i is chosen with
probability Ni(r′)σi(r′, E ′)/�t (r′, E ′). With nuclide i having
been sampled, a reaction channel m must next be sampled. If
we let σi,m(r′, E ′) be the partial microscopic cross section for
channel m, then the total microscopic cross section is

σi(r′, E ′) =
∑

m

σi,m(r′, E ′), (35)

and channel m will be selected with probability
σi,m(r′, E ′)/σi(r′, E ′). This channel has an associated
yield of νi,m(E ′), and transfer function fi,m(�̂, E |�̂′

, E ′).
Continuous-energy nuclear data files typically give fi,m as a
product of a marginal PDF in energy and a conditional PDF
in direction:

fi,m(�̂, E |�̂′
, E ′) = fi,m(E |�̂′

, E ′) fi,m(�̂|�̂′
, E ′, E ). (36)

When this is the case, the energy E is first sampled from the
marginal PDF, and the direction is subsequently sampled from
the conditional PDF. With these provisions, it is then possible
to write the collision kernels, Eqs. (13) and (14), as

Cs(P
′ → P) = δ(r − r′)

�t (r′, E ′)

∑
i

Ni(r′)
∑

m
m �=fiss

νi,m(E ′)σi,m(r′, E ′)

× fi,m(E |�̂′
, E ′) fi,m(�̂|�̂′

, E ′, E ), (37a)

Cf (P′ → P) = δ(r − r′)
�t (r′, E ′)

∑
i

Ni(r′)νi,fiss(E
′)σi,fiss(r′, E ′)

× fi,fiss(E |�̂′
, E ′) fi,fiss(�̂|�̂′

, E ′, E ). (37b)

Based on the form of Eqs. (37), we introduce then the
concept of an “intermediate collision point,” indicating that
the required pieces of information are sampled incrementally
when performing a collision. Examples of intermediate colli-
sion points would be the state where we have sampled only

6The microscopic cross section is typically given as a function of
temperature and energy. However, since the temperature is a func-
tion of position, we have chosen to present the microscopic cross
section as a function of position and energy, to avoid the introduction
of a superfluous variable.
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the nuclide, or the nuclide and the channel, or the nuclide,
reaction channel, and energy. With the concept of an interme-
diate collision, it is then evident that there is an intermediate
collision point between P1 and P2, where the particle has
selected an isotope to collide with (i), a reaction channel (m),
and even an outgoing energy (E2), but has yet to select a
direction �̂2 out of the collision. In general, this intermedi-
ate collision point between P1 and P2 is the strict minimum
number of steps we must look back in a particle’s history,

to see a nonzero fission emission density everywhere within
R (assuming that is is possible to scatter into all directions
subtended by R). This state is accessible in a Monte Carlo
simulation, as the nuclide, reaction channel, and energy E3

were all sampled when producing the fission particle at P4,
and this information can be stored with the particle. The
transition kernel from P1 to P4, given a collision with nu-
clide i in reaction channel m and outgoing energy E3, is
then

ζ (P1 → P4|i, m, E3) =
ν f (r4, E3)� f (r4, E3) ffiss

(
�̂4, E4|r4,

r4−r1
|r4−r1| , E3

)
fi,m

( r4−r1
|r4−r1| |�̂1, E1, E3

)
k|r4 − r1|2

× exp

[
−

∫ |r4−r1|

0
�t

(
r1 + u

r4 − r1

|r4 − r1| , E3

)
du

]
. (38)

This is now quite reminiscent of the fission density function
which we used in our previous work [22], as summarized in
Sec. II [see Eq. (1)]. It is worth stressing that Eq. (38) uses
the macroscopic fission cross section � f and the average fis-
sion transfer function ffiss, which are averaged over all fissile
nuclides at r4. In general, these quantities might vary within
R, due to spatial dependence in the nuclide concentrations
and temperature. Examining under what circumstances the
estimator ϑ (P1 → P4|R, Q, η) is unbiased for the transition
kernel presented in Eq. (38), it is straightforward to observe
that this condition is met for the choice of η = β/ζ (P1 →
P4|i, m, E3).

Equation (38) (and its associated estimator) are subject to
the same constraints as Eq. (25), as discussed in Sec. III C,
namely, the expected fission emission density must be nonzero
at all the points in the cancellation region. In particular, it is
required that fi,m( r4−r1

|r4−r1| |�̂1, E1, E3) > 0 ∀ r4 ∈ R. A special
case arises when the reaction channel m uses a delta dis-
tribution for either the energy or direction (such as in level
inelastic scattering). If such a channel was selected during
the last collision, then the value of ζ (P1 → P4) is infinite at
the collision point (as we are evaluating the delta distribution
at the singularity), and it vanishes almost everywhere within
R. Thus, such channels do not generally partake in cancella-
tion, as the uniform portion would then necessarily be zero
according to Eq. (29). Finally, not all nuclear data facilitates
the decomposition provided by Eq. (36). Sometimes the joint
PDF might be provided as a marginal PDF in direction, and
a conditional PDF in energy. If this is the case, one must go
back to the intermediate collision point before having sampled
the direction, to see the entire cancellation region.

If the region R contains only one material, which is
completely homogeneous in nuclide concentrations and tem-
perature, then ν f and � f are independent of P4. As we have
discussed in Sec. III B, these factors may be removed from
the definition of ζ , without compromising the unbiasedness of
the method. In addition, if fission is assumed to be perfectly
isotropic (a frequent assumption), and if the fission energy E4

is completely independent of the incident energy and direc-
tion, then we do not actually need to perform cancellation on
the fission emission density, but only on the collision density

at r4. For the multigroup benchmark in Ref. [22] in which we
previously demonstrated exact regional cancellation in 3D, we
used homogeneous cancellation regions, where both fission
and scattering were isotropic, and the fission energy was also
assumed to be independent of the incident energy E3. This
indicates that ζ could be simplified to

ζ (P1 → P4|E3) =
exp

[− ∫ |r4−r1|
0 �t

(
r1 + u r4−r1

|r4−r1| , E3
)
du

]
|r4 − r1|2

(39)

and still result in an unbiased cancellation method.

E. Nonuniform cancellation

Suppose now that, instead of distributing some fission
emission density uniformly over R, we would like to dis-
tribute fission emission density according to an arbitrary
function, D(Q). In this case, our estimator must be modified
as

ϑD(P1 → P4|R, Q, η)

= ζ (P1 → Q|i, m, E3) − D(Q)β

ζ (P1 → Q|i, m, E3)
δ(Q − P4)

+ β

ζ (P1 → P4|i, m, E3)

D(Q)

VR
. (40)

This can be shown by following the same approach taken in
Eq. (30).

Here, we have placed a portion [ζ (P1 → Q|i, m, E3) −
D(Q)β]/ζ (P1 → Q|i, m, E3) of the weight at the sampled
point P4, and a portion β/ζ (P1 → Q|i, m, E3) of the particle
is distributed according to D(Q). It is only assumed here that
D(Q) is dimensionless and that it is piece-wise continuous. In
theory, there is no reason that D(Q) could not be negative, or
even complex valued7; if D(Q) is negative or complex, then it

7While this paper only considers particles with a single real-valued
statistical weight, some transport problems require that particles
carry a complex weight [7,9].
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might not be possible to sample it directly, but such a situation
might be treated using, e.g., importance sampling [4]. Finally,
we note that for the choice of D(Q) = 1 the case of uniform
cancellation is retrieved.

F. Fission emission density function
with delta tracking schemes

In the above derivations, we have often made use of the
nonhomogeneous exponential distribution

�t (r + d�̂, E ) exp

[
−

∫ d

0
�t (r + s�̂, E )ds

]
, (41)

which occurs in the flight kernel T (P′ → P) and in the tran-
sition kernel ζ (P′ → P). This distribution is sampled when
trying to determine the distance d a particle will travel from
initial position r along direction �̂, before undergoing a
collision. For the case of piece-wise constant macroscopic
cross sections, this distribution is straightforward to sam-
ple for d . However, when the macroscopic cross section is
not piece-wise constant, more sophisticated methods than di-
rect sampling are often employed [10]. delta tracking and
negative-weighted delta tracking are two such methods that
sample the distance to collision using a sampling cross section
�smp(E ), and then sample whether a real or virtual collision
has occurred with a specific criterion [19–21]; in the distinct
case of negative-weighted delta tracking, a weight modifier
may be additionally applied to the particle’s weight, which
could potentially be negative [20,21].8 In a real collision, the
particle undergoes a reaction as normal. In a virtual collision,
the particle’s energy and direction do not change; this event
is usually known as delta scattering. The particle continues to
sample new flight distances and to move to the new location,
until a real collision is sampled. Coleman [25] and Legrady
et al. [21] have previously provided evidence as to why such
sampling methods are unbiased.

It is possible to include virtual collisions in the transport
equations by modifying the flight kernel to be

TDT(P′ → P) = �smp(E ′) exp (−�smp(E ′)|r − r′|)
|r − r′|2

× δ

(
�̂ − r − r′

|r − r′|
)

δ(�̂
′ − �̂)δ(E − E ′),

(42)

and the collision kernel to be

CDT(P′ → P) = �t (r′, E ′)
�smp(E ′)

C(P′ → P) +
[

1 − �t (r′, E ′)
�smp(E ′)

]

× δ(E − E ′)δ(�̂ − �̂
′
)δ(r − r′). (43)

8Using negative weights can be advantageous in some cases, as
it allows �smp(E ) to be less than �t (r, E ). In delta tracking, it is
required that �smp(E ) � �t (r, E ) everywhere in the problem do-
main: because of this requirement, it could be difficult to determine
�smp(E ) for delta tracking, when considering spatially continuous
cross sections [10].

These equations are valid for both delta tracking and negative-
weighted delta tracking. From Eq. (42), the PDF for leaving a
collision site at r′ and flying to r and inducing a fission (given
that we are flying in the direction of r, i.e., �̂

′ = r−r′
|r−r′| ) is

� f (r, E ′) exp (−�smp(E ′)|r − r′|), (44)

which is exactly the form presented in Eq. (1). Thus, delta-
tracking-like algorithms provide the large advantage of not
requiring the integration of the total cross section along the
flight path. This makes them interesting for the purpose of
performing exact regional cancellation.

The form of Eq. (42) is valid regardless of whether the
collision at r′ was real or virtual. Equation (43) shows that
the angular distribution for virtual collisions is singular, be-
cause it is described by a delta distribution. As discussed in
Sec. III D, channels with singular distributions are not allowed
to partake in cancellation, i.e., we need to set β = 0 for all
such channels. For the particular case of virtual collisions,
however, another treatment is possible. At the site where the
virtual collision took place, there was a probability that the
particle could have instead undergone a real collision. We can
therefore imagine “splitting” the particle before the collision.
A weight w[1 − �t (r, E ′)/�smp(E ′)] is considered to undergo
a virtual collision, and have its next collision at P3; this vir-
tual collision portion cannot be used in cancellation, as the
angular distribution was a delta distribution, and the uniform
component is then always zero, as explained in Sec. III D.
The rest of the particle weight, namely, w�t (r, E ′)/�smp(E ′),
is considered to undergo a real collision and have its next
collision at P3, like the virtual part. However, this part can also
partake in cancellation. The point-wise fission particle weight
which must remain at the sampled fission particle site is then

w

[
1 − �t (r, E ′)

�smp(E ′)

]
+ w

�t (r, E ′)
�smp(E ′)

[
1 − β

ζ (P′ → P)

]

= w

[
1 − β

ζ (P′ → P)

�t (r, E ′)
�smp(E ′)

]

= w

[
1 − β ′

ζ (P′ → P)

]
, (45)

where we have set β ′ = β�t/�smp. Thus, splitting shows that
all collisions can be assumed to partake in cancellation as
if they were real, because the presence of virtual collisions
only affects the choice of β. Since the estimator is unbiased
for any β, the factor �t (r, E ′)/�smp(E ′) is not necessary.
However, note that this approach is only unbiased so long as
at the virtual collision site the real component of the scatter-
ing kernel for forward scattering with no energy change is
not zero [i.e., C(P → P) �= 0]. Otherwise, the real collision
component could not reach P3, as it would be impossible to
have a real collision with forward scattering and no change in
energy. This was possible in our previous multigroup exam-
ple, because in-group scattering was always allowed and all
scattering was assumed to be isotropic; however, this might
not be as trivial in a continuous-energy setting.
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IV. OPTIMIZATION OF CANCELLATION EFFICIENCY

We now turn our attention to the optimal choice of the free
parameter β of the cancellation estimator, used to calculate the
weight that can be uniformly distributed over the cancellation
region. In Booth and Gubernatis’s seminal paper [23] and in
our previous work [22], β was chosen to be the minimum
of the expected fission density over the cancellation region.
This choice has the advantage of being relatively easy to
evaluate, but it is not necessarily the most efficient one. In this
section we attempt to introduce a better strategy to determine
the cancellation parameter β for each particle partaking in
cancellation.

To optimize for the cancellation efficiency, one must first
properly define the quantity to be optimized. As we men-
tioned in Sec. II, the maximum amount of cancellation will
occur when the sum of the absolute value of all the weights
remaining after cancellation in the region has been minimized.
For N particles which initially land in a cancellation region,
we define the absolute value of all weight in a region after
cancellation as

�1 =
N∑

k=1

|wk,p| +
∣∣∣∣∣

N∑
k=1

wk,u

∣∣∣∣∣, (46)

with wk,p being the point-wise weight of particle k, and wk,u

the uniform weight portion of particle k.9 Equation (46) is the
total post-cancellation weight discussed in Sec. II, Eq. (7).
As each particle has a different value for the cancellation
parameter β, we then may substitute to obtain

�1 =
N∑

k=1

∣∣∣∣ζk − βk

ζk
wk

∣∣∣∣ +
∣∣∣∣∣

N∑
k=1

βk

ζk
wk

∣∣∣∣∣, (47)

where wk and βk are, respectively, the precancellation weight
and the cancellation parameter of the kth particle, and ζk =
ζ (P′

k → Pk ) is the expected fission density of the kth particle,
which is assumed to have had its previous collision in P′

k and
its fission event in Pk (note that we have simplified the notation
here compared to Sec. III; for a given particle, P′

k and Pk ,
respectively, correspond to P1 and P4).

Due to the presence of the absolute values, it is quite
difficult to optimize the expression for �1 analytically with
respect to βk . We instead define a modified quantity �2, which
shares a minimum with �1:

�2 =
N∑

k=1

(
ζk − βk

ζk
wk

)2

+
(

N∑
k=1

βk

ζk
wk

)2

. (48)

We now wish to obtain the set of optimal values βk that
minimize �2. To remain unbiased, we are not allowed to
calculate βk based on the phase space coordinates Pk where
the particle k landed in the cancellation region [this was made
evident in Eq. (30)]. As ζk = ζ (P′

k → Pk ), we cannot directly
minimize Eq. (48). In the two subsequent sections, we will

9While there are N particles in the cancellation region before the
cancellation operations have been carried out, there will be more than
N particles after cancellation, due to the new uniform particles which
are created during the cancellation process.

present two reasonable options to avoid this problem, both
possibly giving way to a method of optimizing the regional
cancellation algorithm. We go through the optimization for
each case, obtaining two different formulations for calculating
the set of optimal values for βk .

A. Replacing ζk with 〈ζk〉
The first approach consists in averaging ζk over the entire

phase space of the region R, such that

〈ζk〉 =
∫
R ζ (P′

k → Pk )dPk∫
R dPk

. (49)

We may then replace ζk with 〈ζk〉 in Eq. (48) and optimize the
new approximate form

�∗
2 =

N∑
k=1

( 〈ζk〉 − βk

〈ζk〉 wk

)2

+
(

N∑
k=1

βk

〈ζk〉wk

)2

, (50)

which is now independent of Pk . The detailed derivation for
this approach is presented in Appendix A, and the resulting
equation for the cancellation parameter βk is found to be

βk = 〈ζk〉
(

1 − S∗

wk

)
, (51)

where we make use of the definition

S∗ = W

N + 1
, (52)

and

W =
N∑

k=1

wk, (53)

W being the net weight in the region R before cancellation. It
should also be mentioned that Eq. (51) would also be obtained
if we first minimized Eq. (48) with respect to βk and then
averaged over Pk .

B. Optimization of 〈�2〉
The second approach consists in averaging �2 over the

phase space of the region R, obtaining

〈�2〉 =
∫
R �2

∏N
k=1 ζkdPk∫

R
∏N

k=1 ζkdPk

. (54)

We may then optimize 〈�2〉 instead of �2. The complete
derivation is provided in Appendix B, and leads to a different
equation for βk:

βk = 〈ζk〉ck

(
1 − S

wk

)
. (55)

Here, we have made use of the two following definitions:

ck =
(

2〈ζk〉
〈

1

ζk

〉
− 1

)−1

, (56)
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where the angle brackets have the same meaning as in
Eq. (49), and

S =
∑N

k=1 ckwk

1 + ∑N
k=1 ck

. (57)

C. Small region limit

For the two possible methods that we have outlined to
minimize the weight after cancellation, we are left with two
different possibilities for the value of βk . At first glance, these
two choices of βk look quite different. Upon closer inspection
of the definition of ck in Eq. (56), we notice that ck = 1
only if 1/〈ζk〉 = 〈1/ζk〉. When this is the case, it then follows
from Eq. (57) that S = S∗. This then indicates that the two
definitions of βk given by Eqs. (51) and (55) are equivalent
only when 1/〈ζk〉 = 〈1/ζk〉. In general, however, Jensen’s in-
equality implies 1/〈ζk〉 � 〈1/ζk〉 [26]. If a cancellation region
were defined such that it is small enough that one could
reasonably assume that ζ (P′

k → Pk ) is nearly constant within
the region, then ck ≈ 1, leading to the two methods being
equivalent. However, this would likely require such a small
region that it is very unlikely that any other particles would be
located within the region, which will make cancellation very
ineffective.

V. MONTE CARLO IMPLEMENTATION

A. Cancellation with distributed memory simulations

Most production Monte Carlo codes make use of
distributed-memory parallel computing techniques such as
message passing interface (MPI), although the exact algo-
rithm used varies from code to code [14–17]. Generally
speaking, distributed-memory parallelization can pose a prob-
lem for cancellation, which is by construction more efficient
when there are more particles in each cancellation region.
With distributed-memory parallelization, the fission particles
within a given cancellation region will be distributed amongst
several nodes. To ensure the highest possible efficiency, can-
cellation must be performed on the entire fission source. One
method to do this is to send all of the fission particles to
the master node between power iteration generations, and
then perform cancellation only on the master node. Another
option would be to use a method inspired by domain decom-
position [27], where certain nodes perform cancellation for
certain regions, and fission particles would need to be sent to
the node which corresponds to their cancellation region. This
method is certainly possible, but likely much more difficult
to implement in production Monte Carlo codes. For the proof
of concept presented in this paper, we have chosen to use the
former method, sending all fission particles to the master node
for cancellation.

B. Calculation of 〈ζk〉 and 〈1/ζk〉
To evaluate βk according to Eq. (51), we must have knowl-

edge of 〈ζk〉. For Eq. (55), we additionally need knowledge of
〈1/ζk〉. In general, it is not possible to analytically calculate
either of these quantities for particle k, born with phase space
coordinates Pk located within cancellation region R. However,
it is possible to estimate both of these quantities with a Monte

Carlo sampling approach. For each particle k, we know the
phase space coordinates P′

k of its previous collision, and we
know the bounds of the outgoing phase space coordinates Pk

which define the cancellation region R.
Assume that a set of nonoverlapping, hypercuboid cancel-

lation regions are imposed on top of the problem domain.
Then, between each generation of power iteration, the fission
particles (having stored their parent’s previous phase space
coordinates P′

k) may be sorted into the cancellation regions,
based on their phase space coordinates Pk . Once this is ac-
complished for a given cancellation region R, we may iterate
over all particles in R, and estimate their values of 〈ζk〉 and ad-
ditionally 〈1/ζk〉, depending on which optimisation algorithm
is chosen. The estimates for these quantities may be obtained
using

〈ζk〉 ≈ 1

Ns

Ns∑
i=1

ζ (P′
k → P̃i ) (58)

and 〈
1

ζk

〉
≈ 1

Ns

Ns∑
i=1

1

ζ (P′
k → P̃i )

, (59)

respectively, where Ns is the number of samples to be used in
the estimation, and the outgoing phase space coordinates P̃i

are pseudorandomly sampled so that P̃i ∈ R and P̃i ∼ U (R).
This is straightforward to accomplish with cuboid regions.

With this approach, a better estimate of 〈ζk〉 and 〈1/ζk〉
may be obtained by augmenting the number of samples. As
Ns is increased, the error on the estimate of the two ex-
pectation values will decrease according to O(1/

√
Ns) [28].

This indicates that a large Ns may be required to obtain a
suitable estimate of 〈ζk〉 and 〈1/ζk〉. Even more problematic
is the fact that evaluating ζ (P′

k → P̃i ) could be quite costly;
this is especially true in the case of continuous-energy neu-
tron transport problems, where many evaluations of scattering
distributions would be necessary. To reduce Ns, while still
obtaining adequate estimates for 〈ζk〉 and 〈1/ζk〉, we propose
the use of a quasirandom technique, using a Sobol sequence
[28] to sample the outgoing phase space coordinates P̃i. This
approach generally has a better convergence rate than using a
pseudorandom number generator to sample P̃i, as it leads to
a more uniform exploration of the phase space [28]. At any
rate, we stress that statistical uncertainties on the estimation
of 〈ζk〉 and 〈1/ζk〉 only affect the efficiency of the cancellation
method, as we have proven that the method is unbiased for any
values of the free parameters βk .

C. Heterogeneous cancellation regions

In this work, we have proposed two possible approaches
to selecting an optimal value of β, to optimize the amount
of weight which is canceled. Neither of these approaches
requires the minimum value of the fission emission density
within the cancellation region R. Hence, it is no longer neces-
sary to restrict the cancellation regions to be cuboids, as we
were required to do in Ref. [22]. In light of our proposed
sampling methods to estimate 〈ζk〉 and 〈1/ζk〉 to obtain the
optimized cancellation parameter βk , it is evident that a re-
jection technique may be applied to isolate different material
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regions within a given cuboid cancellation region. If we have a
cancellation region with fuel and water, then all of the fission
particles are of course only born inside the fuel portion, and
the fission density everywhere in the water should be zero.
When sampling the random phase space coordinates P̃i, we
must now add the requirement that P̃i have spatial coordinates
that are located inside of the fuel material.

Other special cases can be handled using this approach. For
example, cancellation can also be performed when there are
two nonconnected fuel regions within the same cancellation
mesh region. We may also have cancellation regions which
contain multiple different fuel regions. Using rejection sam-
pling to determine cancellation regions makes it easy to apply
regional cancellation to complex geometries encountered in
realistic reactor physics problems. Of course, the rejection
procedure must also be applied to the sampling of the phase
space coordinates of the uniformly distributed particles.

D. Monte Carlo implementation in the open-source
code MGMC

For our previous work on regional cancellation, a multi-
group Monte Carlo mini-app called MGMC was used to
test cancellation on a well-known reactor physics benchmark.
MGMC has been developed to facilitate the fast and easy im-
plementation and testing of new transport algorithms. Being
only ≈13 k lines of code, it is much faster to test new ideas in
MGMC than it would be in a large industrial code. General 3D
geometries are supported using a standard constructive solid
geometry formalism based on surfaces, universes, and lattices,
familiar to any user of other well-known Monte Carlo codes
[14–17]. Different mesh tallies are available for flux or reac-
tion rates, with track-length or collision estimators. MGMC
can solve fixed-source, k-eigenvalue, and neutron noise prob-
lems, using both shared and distributed memory parallelism.
Shared memory parallelism is implemented with OpenMP,
while the distributed memory parallelism is implemented us-
ing MPI. Different transport methods such as surface tracking,
delta tracking, and negative-weighted delta tracking are also
available. All of the outlined cancellation algorithms have
been implemented in MGMC, which was used to run the
simulations presented in the next section. MGMC has been
make publicly available as free software under the CeCILL
v2.1 license [29].

VI. SIMULATION RESULTS

For our numerical simulations, in this section we will make
use of the modified C5G7 benchmark which we introduced in
our previous work [22]. The C5G7 is a multigroup neutron
transport benchmark which comes from the nuclear reactor
physics community, for the purpose of validating different
codes [30]. Our modified version makes use of square profile
fuel pins with side lengths of 0.756 cm, in lieu of cylindrical
pins of radius 0.54 cm as proposed in the original specifi-
cations. This modification allows a regular 170 × 170 × 765
mesh to be imposed on top of the geometry over the fuel
assemblies to act as cancellation regions, and guarantees that
each cancellation region contains a unique material. For con-
tinuity, we make use of the same cancellation mesh. For

transport, we again use the negative-weighted delta tracking
variant proposed by Carter et al. [20], and identical sampling
cross sections to the previous study: the sampling cross sec-
tion for the first group is 90% of the majorant cross section,
while all other sampling cross sections were taken to be the
majorant. This means that the sampling cross section under-
estimates the total cross section in the first energy group for
all fuel pins in the problem. Whenever a virtual collision
occurs for a particle in the first energy group, inside a fuel
pin, its weight will then change sign. Once a particle leaves
the first group, it is impossible for the sign to change at a colli-
sion (although signs can possibly change during cancellation).
Virtual collisions lead to the presence of negative weights
in the system, and we have shown that weight cancellation
is mandatory for k-eigenvalue power iteration problems to
converge when using negative-weighted delta tracking [22].
All simulations were initiated with 106 particles and ran for
2500 generations, with the first 500 being discarded to allow
for source convergence.

As we have shown in Ref. [22], the total weight of all the
fission particles between two generations increases without
bound if weight cancellation is not applied. This increase in
total weight is accompanied by an increase in the number of
particles and large statistical fluctuations in estimated quanti-
ties, making it nearly impossible to estimate the multiplication
factor and static flux for the system. The effect of cancellation
is to limit the growth of Wtot to a saturation value; the more
efficient cancellation is, the lower the saturation value will be.
Thus, we have chosen to assess the efficiency of cancellation
by using the saturation value of Wtot, which is calculated
immediately after applying the cancellation procedure. Note
that Wtot has a lower theoretical limit of Wnet, which is kept
constant by normalizing all particle weights between genera-
tions [22].

A. Comparison of optimization strategies

To determine which method of choosing βk leads to the
most efficient cancellation of positive and negative weights,
the optimization techniques described in Secs. IV A and IV B
were compared against the original implementation using the
minimum value of the fission density within the region. Both
optimization options utilized Ns = 100 samples for estimat-
ing 〈ζk〉 and 〈1/ζk〉. The values of Wtot are plotted against
the number of generations in Fig. 2. For comparison, curves
corresponding to no cancellation and approximate cancel-
lation have also been presented. Approximate cancellation
imposes a mesh on top of the geometry, and sorts fission
particle into this mesh. The average weight of all particles
in each mesh element can then be calculated and assigned to
the particles [31,32]. This method is quite efficient, but is not
exact, and imposes a bias on the fission source and on the
eigenvalue (though the bias can be made arbitrarily small by
using a sufficiently fine mesh).

If no cancellation technique is used, the total weight
increases exponentially, without bound. This phenomenon
is expected when using negative-weighted delta tracking
with k-eigenvalue power iteration, as described previously
[22]. When taking βk = minR(ζk ), an asymptotic value of
Wtot ≈ 4.9 × 106 was seen. The most efficient method of
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FIG. 2. Behavior of Wtot as a function of generation, for different
cancellation methods, including no cancellation and approximate
cancellation.

determining βk was that obtained from optimizing 〈�2〉 in
Eq. (55), resulting in Wtot ≈ 2.7 × 106, almost half the amount
of total weight obtained with the minimum strategy. Calculat-
ing βk from Eq. (51) for the case of replacing ζk with 〈ζk〉
is less efficient than using the minimum value of ζk within
the cancellation region, resulting in Wtot ≈ 8.0 × 106. It is not
known why this approximation does not perform as well as
using the minimum of ζk , and this intriguing question calls
for future investigations.

Approximate cancellation yielded the lowest total weight
(and therefore the highest cancellation efficiency), with Wtot ≈
1.4 × 106, but is not an exact approach. Currently, we do not
know of any way to estimate, or to put a limit on the bias
imposed by this method without running several realizations,
each with a different mesh size.

B. Strategies for evaluating the average fission
emission densities

The analysis in Sec. VI A shows that the optimal choice for
determining βk for the C5G7 benchmark is Eq. (55), from the
optimization of 〈�2〉. We now consider the optimal strategy
for estimating the requisite values of 〈ζk〉 and 〈1/ζk〉 for each
particle. Figure 3 depicts the behavior of Wtot where points P̃i

[from Eqs. (58) and (59)] are sampled with either a pseudo-
random number generator (PRNG) or a Sobol sequence.

First of all, the spread among the different strategies for
estimating 〈ζk〉 and 〈1/ζk〉 is much smaller than the spread
among the different minimization strategies of Fig. 2. It is
observed that in general, when Ns < 50, using Sobol points
leads to more efficient weight cancellation. This effect is
most apparent for Ns = 3, where the Sobol sequence leads
to approximately 9.2% less total weight being transported,
compared to the PRNG estimation strategy. The increased ef-
ficiency observed in the Sobol points diminishes however with
increasing Ns. Sobol estimation gives a 2.8% improvement for
Ns = 5, 1.8% improvement for Ns = 10, and only a 0.5% im-
provement for Ns = 50. This would indicate that the estimated
values for 〈ζk〉 and 〈1/ζk〉 start to become independent of the
evaluation strategy at around Ns = 50.

FIG. 3. Behavior of Wtot as a function of generation, for different
cancellation parameters. For all curves, βk is determined from the
optimization of 〈�2〉, Eq. (55). The estimated values of 〈ζk〉 and
〈1/ζk〉 are determined with a varying number of points, using either
a pseudorandom number generator (PRNG) or a Sobol sequence.

In addition to achieving more weight cancellation, the
Sobol points also have the added benefit of being slightly eas-
ier to compute, as the quasirandom numbers used the compute
the points can be tabulated in advance, and written in the code.
All that is then needed is a table lookup to get a Sobol value,
whereas several mathematical operations must be performed
to calculate each value generated from a PRNG. However, a
drawback with the use of Sobol points is that one does not
necessarily know in advance how many points will be needed,
when considering heterogeneous cancellation regions.

C. Demonstration of heterogeneous cancellation regions
on the C5G7 benchmark

We also tested the rejection-based sampling technique de-
scribed in Sec. V C, for performing regional cancellation in
cuboid regions which contain multiple materials. Instead of
using our modified version of the C5G7 benchmark, we have
opted to use the original version with cylindrical fuel pins
[30], in combination with the same 170 × 170 × 765 mesh
as used in our previous simulations. A reference calculation
was performed using standard delta tracking and obtained a
multiplication factor of keff = 1.18383 ± 0.00003, which is
in agreement with the reference solution for the 3D version
of the benchmark [30]. Cancellation used the method for
calculating β proposed in Sec. IV B, with Ns = 10 samples
being used to estimate 〈ζk〉 and 〈1/ζk〉.

When running the same simulation with negative-weighted
delta tracking, using the same sampling cross sections as
before, and exact cancellation, a multiplication factor of keff =
1.18382 ± 0.00009 was obtained, which is in agreement with
the delta-tracking value. A comparison of the two estimations
of the flux were also made, looking at the Student t variable,
which is defined as

ti = ϕi,A − ϕi,B√
σ 2

i,A + σ 2
i,B

, (60)
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FIG. 4. Histogram distribution of the Student t variable, compar-
ing the flux computed from delta tracking to the flux computed with
negative weighted delta tracking. A normal distribution is plotted on
top of the histogram for a reference.

where ϕi,x is the average value of the flux in the ith bin for
calculation x, and σi,x is its standard error. A corresponds
to the results from the delta tracking simulation without
weight cancellation, and B corresponds to the results from
the negative-weighted delta tracking simulation with cancel-
lation. For independent, normally distributed variables with a
large number of degrees of freedom, the distribution of the t
variable should approach a normal distribution. A plot of the
empirical distribution of the t variable is provided in Fig. 4.
We excluded from the comparison all the bins where the flux
was estimated to be zero, or where the relative standard error
was greater than 20%. This was done in an effort to ensure
that each bin was approximately normally distributed, for the
Student t-variable distribution assumptions to be reasonable.
It is clear from Fig. 4 that the two flux estimates are in
good agreement. The t-variable distribution is not perfectly
normal, which is to be expected, as there are correlations
between the scores in different flux bins. In general, this is
a very strong indication that our cancellation method has not
imposed any bias on the fission source, and that the method
is still exact when applied to heterogeneous cancellation
regions.

The behavior of the total weight is shown in Fig. 5. While
Wtot is larger than in the case of square fuel pins with homoge-
neous cancellation regions presented in Fig. 2, the behavior
is in general similar. A large Wtot indicates that there are
more negative particles, which will increase the variance in
scores. This is indeed the case, as our previous work obtained
an uncertainty for keff of only 5 × 10−5 (albeit for a slightly
different problem) [22], while an uncertainty of 9 × 10−5 was
obtained for this problem.

VII. CONCLUSIONS

This work has leveraged the integral form of the Boltzmann
transport equation to provide a more in-depth mathematical
analysis of the exact regional weight cancellation technique,
considerably expanding on previous works on the subject
[22,23]. Not only has this formal approach given a much better

FIG. 5. Plots of the positive, negative, net, and total weights as a
function of generation, for the original C5G7 benchmark. Exact re-
gional cancellation with heterogeneous regions was used to perform
the simulation.

understanding as to the mechanics of regional cancellation in
simplified isotropic multigroup problems, but it has illumi-
nated the nontrivial path to performing exact cancellation in
more complex problems, where scattering is anisotropic, and
the fission spectrum may depend on the incident energy of a
particle. The analysis highlights the fact that the implementa-
tion of exact regional cancellation is rather straightforward in
a multigroup Monte Carlo code, but will be more difficult in
a continuous-energy code, as one will need access to condi-
tional scattering distributions in the laboratory frame, which
are not always available for all reactions. The implementation
of exact regional cancellation in a continuous-energy code is
thus a subject which will require further research.

Additionally, a strategy to determine an optimal value of
the cancellation parameter β for each particle undergoing
cancellation has been conceived. For each particle k within a
cancellation region, its optimal cancellation parameter βk can
be computed if both the average value of the fission emission
density in the region and the average value of the inverse of the
fission emission density in the region are known. Our previous
implementation required that cancellation regions be homoge-
neous and cubical, which restricted its applicability to simple
problems. Thanks to the improvements in the optimization
technique proposed in this work, both requirements have been
relaxed.

On a modified version of the C5G7 benchmark, our tech-
nique to optimize weight cancellation was demonstrated to
reduce the total weight in the simulation by approximately
45%, when compared to using the minimum value of the
fission emission density in the region for β, as previously
suggested in the literature. To estimate the average fission
emission density and the average inverse of the fission emis-
sion density, a sampling approach has been proposed, where
the averages are estimated using the values of the fission
emission density at pseudorandom or quasirandom points. It
was demonstrated that the quasirandom Sobol sequence re-
quires slightly fewer points than the pseudorandom sequence
to reach the asymptotic limit of the optimized cancellation

025302-14



UNBIASEDNESS AND OPTIMIZATION OF REGIONAL … PHYSICAL REVIEW E 106, 025302 (2022)

algorithm. As a comparison, the use of 3 Sobol points had
very similar performance to the use of 5 pseudorandom points
for the modified version of the C5G7 benchmark examined
here. However, such results are likely to be highly problem-
dependent, and more systems should be analyzed to ascertain
what sort of performance improvements could be expected in
general. We also tested the use of heterogeneous cancellation
regions on the original C5G7 benchmark, with cylindrical
fuel pins. No bias was observed in the resulting fundamental
eigenvalue or flux tally.

APPENDIX A: OPTIMIZATION OF �∗
2

We remind the reader of the definition of �∗
2 :

�∗
2 =

N∑
k=1

( 〈ζk〉 − βk

〈ζk〉 wk

)2

+
( N∑

k=1

βk

〈ζk〉wk

)2

. (A1)

We optimize �∗
2 simultaneously for all particles by differenti-

ating with respect to β j , and setting the partial derivative equal
to zero:

∂�∗
2

∂β j
= −2

〈ζ j〉 − β j

〈ζ j〉2
w2

j + 2
w j

〈ζ j〉
N∑

k=1

βkwk

〈ζk〉 = 0. (A2)

This may be simplified to

−w j + β jw j

〈ζ j〉 +
N∑

k=1

βkwk

〈ζk〉 = 0. (A3)

On the left-hand side, the second term matches the argument
of the sum in the third term. Summing over index j, we see
that

−W +
N∑

j=1

β jw j

〈ζ j〉 + N
N∑

k=1

βkwk

〈ζk〉 = 0. (A4)

Here, we used the definition provided in Eq. (53). This allows
us to isolate the sum

N∑
k=1

βkwk

〈ζk〉 = S∗ = W

N + 1
. (A5)

Applying this substitution to Eq. (A3) while also using
Eqs. (52) and (53), we find that the optimized value of β j is

β j = 〈ζ j〉
(

1 − W

(N + 1)w j

)
= 〈ζ j〉

(
1 − S∗

w j

)
. (A6)

APPENDIX B: OPTIMIZATION OF 〈�2〉
Substituting Eq. (48) into Eq. (54), and partially expanding

the squared terms, we see that

〈�2〉 =
∫
R

[∑N
k=1

(
1 − 2βk

ζk
+ β2

k

ζ 2
k

)
w2

k + ∑N
k=1

∑N
l=1

βk

ζk

βl

ζl
wkwl

] ∏N
m=1 ζmdPm∫

R
∏N

n=1 ζndn

(B1)

=
∫
R

[∑N
k=1

(
1 − 2βk

ζk
+ β2

k

ζ 2
k

)
w2

k + ∑N
k=1

∑N
l=1
l �=k

βk

ζk

βl

ζl
wkwl + ∑N

k=1
β2

k

ζ 2
k
w2

k

]∏N
m=1 ζmdPm∏N

n=1〈ζn〉
(B2)

=
N∑

k=1

(
1 − 2βk

〈ζk〉 + β2
k

〈ζk〉
〈

1

ζk

〉)
w2

k +
N∑

k=1

N∑
l=1
l �=k

βk

〈ζk〉
βl

〈ζl〉wkwl +
N∑

k=1

β2
k

〈ζk〉
〈

1

ζk

〉
w2

k (B3)

=
N∑

k=1

(
w2

k − 2βkw
2
k

〈ζk〉
)

+
N∑

k=1

β2
k w2

k

〈ζk〉
(

2

〈
1

ζk

〉
− 1

〈ζk〉
)

+
N∑

k=1

N∑
l=1

βk

〈ζk〉
βl

〈ζl〉wkwl . (B4)

It is convenient to use the constant ck , defined by Eq. (56),
which may be substituted into Eq. (B4) to produce

〈�2〉 =
N∑

k=1

(
w2

k − 2βkw
2
k

〈ζk〉
)

+
N∑

k=1

β2
k w2

k

ck〈ζk〉2

+
N∑

k=1

N∑
l=1

βk

〈ζk〉
βl

〈ζl〉wkwl . (B5)

Now that all of the integrals have been simplified, we
are left with 〈�2〉 as a function of βk , 〈ζk〉, and 〈 1

ζk
〉

∀k = 1, . . . , N . We now optimize 〈�2〉 with respect to the
cancellation parameter β j by solving for

∂〈�2〉
∂β j

= 0. (B6)

From Eq. (B5), one may then proceed by solving

∂〈�2〉
∂β j

= −2w2
j

〈ζ j〉 + 2β jw
2
j

c j〈ζ j〉2
+ 2w j

〈ζ j〉
N∑

k=1

βkwk

〈ζk〉 = 0. (B7)
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Upon a division by 2w j/〈ζ j〉 on both sides, we are left with

−w j + β jw j

c j〈ζ j〉 +
N∑

k=1

βkwk

〈ζk〉 = 0. (B8)

It is possible to isolate the sum in the third term on the left-
hand side by multiplying by c j , and then summing over j:

−
N∑

j=1

c jw j +
N∑

j=1

β jw j

〈ζk〉 +
N∑

j=1

c j

N∑
k=1

βkwk

〈ζk〉 = 0. (B9)

We will now define

S =
N∑

k=1

βkwk

〈ζk〉 , (B10)

and substitute Eq. (B10) into Eq. (B9), allowing one to solve
for S. Doing so, one may obtain the result provided by
Eq. (57). Now that the summation term, S, can be computed
without knowledge of β j , we may substitute Eqs. (57) and
(B10) into Eq. (B8), and solve for β j , producing

β j = 〈ζ j〉c j

(
1 − S

w j

)
. (B11)
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