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Systematic lowering of the scaling of Monte Carlo calculations by partitioning and subsampling
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We propose to compute physical properties by Monte Carlo calculations using conditional expectation
values. The latter are obtained on top of the usual Monte Carlo sampling by partitioning the physical space
in several subspaces or fragments, and subsampling each fragment (i.e., performing side walks) while freezing
the environment. No bias is introduced and a zero-variance principle holds in the limit of separability, i.e.,
when the fragments are independent. In practice, the usual bottleneck of Monte Carlo calculations—the scaling
of the statistical fluctuations as a function of the number of particles N—is relieved for extensive observables.
We illustrate the method in variational Monte Carlo on the two-dimensional Hubbard model and on metallic
hydrogen chains using Jastrow-Slater wave functions. A factor O(N ) is gained in numerical efficiency.
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I. INTRODUCTION

Many domains of physics involve large dimensional inte-
grals which can be computed efficiently with Monte Carlo
methods, e.g., statistical physics [1], quantum physics applied
to molecules and solids [2], or nuclear physics [3]. Monte
Carlo methods reinterpret the energy or other properties as the
expectation value of a random variable O over a probability
distribution π on a configuration space �,

E(O) =
∫

x∈�

O(x)π (x)dx. (1)

Typically, the configuration x corresponds to the 3N coor-
dinates of the particles in physical space, but it can also
correspond to the N trajectories of the particles in the path-
integral formulation of quantum mechanics. The probability
distribution π depends on the context. For example, in equi-
librium statistical physics, π is the Gibbs distribution. In
variational Monte Carlo (VMC), π = �2 is the probability
density of a wave function �, and if O = (H�)/� is the local
energy for a given Hamiltonian H , then E(O) is the variational
energy. Expectation values are computed using the ergodic
theorem which states that the integral can be written as a
time average, E(O) = limM→∞(1/M )

∑M
i=1 O(xi ), where the

sequence of M configurations (xi) is built from a π -invariant
ergodic stochastic process (usually a Markov chain). The se-
quence (xi ) is called a sample of the distribution π .

A bottleneck of Monte Carlo methods comes from the
statistical fluctuations which usually grow with the system
size, as measured by the number of particles N . For a sample
of sufficiently large size M, the statistical uncertainty σ on the
estimation of E(O) is

σ =
√

V (O)c

M
, (2)
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where V (O) = E(O2) − E(O)2 is the variance of O and c > 1
is a correlation factor which takes into account that the con-
figurations are not fully independent. According to Eq. (2),
reaching a given precision σ requires a CPU time tM = Mt1
proportional to both the time t1 of performing one step of the
sampling and to the variance V (O). The numerical efficiency
of the method can then be measured by the asymptotically
M-independent quantity

σ 2tM = V (O)ct1, (3)

which should be as small as possible for maximal efficiency.
In the present paper, we will not be concerned about the
correlation factor c which sometimes diverges with N (e.g.,
near criticality). A large corpus of work is devoted to reducing
its scaling as a function of N , such as parallel tempering based
methods (see, e.g., Refs. [4,5]). Equation (3) indicates a more
crucial double penalty of Monte Carlo methods for large sys-
tems: Both t1 and V (O) grow with system size N . This double
penalty is for example at the origin of the main bottleneck
in computing the VMC energy of a fermionic system in real
space [2,6]. Evaluating the wave function involves indeed cal-
culating a Slater determinant of order O(N×N ) which costs
t1 = O(N3) while the variance is typically extensive, V (O) ∝
N , thus raising the scaling of the overall cost to O(N4). This
scaling is still larger than some deterministic methods such
as the celebrated Kohn-Sham density-functional theory which
scales as O(N3) for a spatially delocalized (i.e., metallic)
system [7].

The extensivity of the variance has a physical origin. A
large system can in general be approximated by a collection
of independent fragments. This ideal case corresponds to the
separability limit where the random variable O is the sum of
independent variables Ok on each fragment indexed by k, i.e.,
O = ∑

k Ok , and the variance is then V (O) = ∑
k V (Ok ) ∝

N . It is possible to reduce considerably the variance using an
improved estimator Õ built from the approximate solution of a
partial differential equation [8–10]. But this type of improved
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estimator is still a sum of independent random variables in
the separability limit, i.e., Õ = ∑

k Õk , and thus does not
change the scaling with respect to N but only reduces the
prefactor [11].

To reduce the global computational scaling, a common
and obvious strategy is to reduce the cost of the sampling.
Some distributions π can be sampled with a linear-scaling
algorithm, i.e., t1 = O(N ), reducing the overall cost to an
ideal scaling O(N2). One can for example try to use the
sparsity of the Slater matrix when localized Wannier func-
tions are used [12]. But such sparsity is highly dependent on
the physics of the system, and does not hold for a metallic
system. In addition, this linear scaling is only theoretical be-
cause of a memory-access slowdown as N increases. Another
strategy consists in using a stable-versus-chaos stochastic dy-
namics [13], but finding such a stochastic dynamic is not
straightforward [14].

Here, we propose to reduce the global computational scal-
ing by using the locality of physical observables. The idea of
using the locality of information to reduce the variance is not
new: The strong locality in time of the Schrödinger equation (a
first-order partial differential equation in time) has for exam-
ple been exploited to remove the dynamical sign problem for
bosonic systems [15]. Recently, a method was proposed [16]
to exploit the low correlation between different core regions
in a molecule, resulting in a reduced scaling as a function of
the atomic charge Z . The present paper exploits the fact that
in an extended physical system (including a metallic system)
correlations between large fragments are small. We construct
an improved estimator Õ with a variance having a reduced
scaling with respect to N , without changing the scaling of t1,
therefore achieving a reduction of the overall computational
scaling. The present paper shares the same general philosophy
as other fragment-based methods (see, e.g., Refs. [17–19]).
However, while the latter methods are systematic techniques
to find a good compromise between a smaller computational
time and a larger systematic error, in the present method
the reduction of the computational scaling is done without
introducing any systematic error.

II. THEORY

A configuration of particles is written as x = (x j ) j∈J ,
where x j is the jth coordinate and J is the list of coordi-
nate indexes. For a given configuration x = (x j ) j∈J , we define
a partition of J as p disjoint sublists Jk (x) ⊂ J such that⋃p

k=1 Jk (x) = J . We then define p fragments as subsets �k (x)
of the configuration space � such that for all x′ ∈ �k (x), (i)
x′ differ from x only by the coordinates indexed by Jk , and
(ii) �k (x′) = �k (x). In short, �k can be seen as a parameter
which specifies the positions of the frozen particles in the
environment of a fragment. We then introduce the following
improved estimator,

Õ ≡ O +
p∑

k=1

λk (E(O|�k ) − O), (4)

where λk are constants (or more generally functions of �k)
and E(O|�k ) is the conditional expectation value of the
random variable O with respect to �k , defined as the random

variable obtained by partial averaging of O over only config-
urations x′ ∈ �k ,

E(O|�k ) ≡
∫

x′∈�k
O(x′)π (x′)dx′∫

x′∈�k
π (x′)dx′ . (5)

The estimator Õ in Eq. (4) is always not biased, i.e.,
E(Õ) = E(O). Indeed E(O|�k ) − O has a zero expectation
value because of the well-known law of total expectation
E[E(O|�k )] = E(O). This law can be proven starting from
Eq. (1), i.e., E[E(O|�k )] = ∫

E(O|�k )π (x)dx, and decom-
posing the integral over x as an integral over the environment
variable �k and an integral over x′ ∈ �k . Let us prove now
that the estimator Õ has a zero-variance property in the sepa-
rability limit when we choose λk = 1 ∀k. In this limit, O is a
sum of p independent contributions on each fragment, O =∑p

k=1 Ok[(x j ) j∈Jk ]. Independence implies that E(Ok|�k ) =
E(Ok ) and E(Ol |�k ) = Ol if l 
= k, therefore E(O|�k ) −
O = E(Ok ) − Ok and

Õ =
p∑

k=1

E(Ok ) = E(O). (6)

In this limit Õ is a constant, only one parent configuration
x is sufficient for sampling Õ, and the algorithm becomes
equivalent to p independent Monte Carlo simulations of the p
subsystems as we have to compute p (conditional) expectation
values E(O|�k ).

We can sample E(O|�k ) from the marginal distribution
π (·|�k ). This is done through a side walk which samples
only �k , i.e., moving the coordinates indexed by Jk in a given
fragment while the other coordinates are frozen. From now on
we will use the practical definition of the improved estimator

Õ ≡ O +
p∑

k=1

λk

mk

mk∑
i=1

(
Oi

k − O
)
, (7)

where Oi
k is the value of the random variable O at the ith step

of the kth side walk (moving only the coordinates indexed
by Jk) of length mk . A direct way to see that the estimator in
Eq. (7) is not biased is to note that E(Oi

k − O) = 0 as Oi
k and

O share the same distribution π , since the side walk and the
main walk both sample π . We expect this scheme that we call
the partition Monte Carlo (PMC) method to reduce the vari-
ance with a low numerical cost because the p subsamplings
correspond to handling p = O(N ) low-dimensional problems.
The practical formula in Eq. (7) is equivalent to the theoretical
definition in Eq. (4) in the limit mk → ∞ owing to the ergodic
theorem. In practice, the parameters λk and mk have to be
adjusted to lower the variance of Õ for a given CPU time.
Also, for optimal efficiency, we can generalize the estimator
Õ in Eq. (7) using instead of Oi

k − O the control variate
Gi

k − Gk provided it converges to the former in the separa-
bility limit. Gk can be obtained from O by neglecting terms
outside of the fragment k, reducing the computational cost
while retaining the unbiasedness and the zero-variance prop-
erty in the separability limit. For example, when computing
the variational energy of a molecule, i.e., O = (H�)/�, we
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FIG. 1. Variance gain VVMC/VPMC, time increase tPMC/tVMC, and uncorrelated efficiency gain (VVMCtVMC)/(VPMCtPMC) of the PMC method
over the standard VMC method as a function of the side-walk length m for (a) the 20×20 square Hubbard model (half filling) and (b) the
H320 metallic hydrogen chain. The real efficiency gain (σ 2

VMCtVMC)/(σ 2
PMCtPMC) differs from the uncorrelated efficiency gain only for hydrogen

chains.

take Gk = (Hk�)/� where Hk is the truncated Hamiltonian

Hk =
nk∑

i=1

(
−1

2
∇2

i −
∑

A

ZA

riA
+

∑
j

1

ri j

)
, (8)

where the index i runs over the nk electrons in the fragment
k. The first term is the kinetic-energy operator and the last
two terms are the Coulomb interactions of the electrons of the
fragment with the nuclei A (charges ZA) and electrons j lying
in a given neighborhood of the fragment.

Let us see now how the PMC method relieves the variance
bottleneck. As an example, we consider VMC calculations
using Jastrow-Slater wave functions

�(x) = eJ (x)�(x), (9)

where J (x) is any real symmetric function of the electron
configuration x, and �(x) = det(A) with the Slater matrix
A = XC, where X is a rectangular matrix of localized atomic
orbitals (Kronecker functions in the case of a lattice model)
and C is the rectangular matrix of the orbital coefficients. For
one fragment of the system we introduce now the matrix P
which selects the lines corresponding to the electrons of that
fragment. For a side walk in that fragment, X takes different
values X ′ such that only the lines PX might differ from the
lines PX ′. The new determinant is [20,21]

�(x′) = det(X ′C)

= det(A) det(X ′CA−1)

= det(A) det(PX ′QT QCA−1PT ), (10)

where we have used the determinant lemma. We inserted the
projector QT Q where QT selects on the right of PX ′ only the
few columns which may differ from zero for this fragment.
These columns are very few because the atomic orbitals are
localized. In conclusion, updating the determinant along the
side walk is equivalent to multiplying it by a low-order effec-
tive Slater determinant

�(x′) = det(A) det(X̄C̄), (11)

where X̄ = PX ′QT and C̄ = QCA−1PT . The matrix C̄ rep-
resents effective orbitals for the fragment and is computed
only once at each step of the usual main walk, at a total
O(N3) numerical cost for the p subsystems. Once C̄ has been

built and stored, the side walk costs only O(n3) where n is
the number of electrons in the fragment. The local energy
of the subsystem involves a truncated Hamiltonian and can
be computed with the same cost O(n3) [20,21]. The cost of
subsampling O(N ) fragments is thus O(N ) for an extended
system with a finite correlation length. This allows us to
perform up to

∑
k mk = O(N3) total steps in the side walks

without modifying the scaling of the main walk. Therefore,
we can perform mk = O(N2) steps in each fragment and the
improved estimator in Eq. (7) will have consequently a vari-
ance reduced by a factor up to O(N2), which is achieved in
the separability limit.

III. RESULTS

We now illustrate the PMC method on the calculation of
the ground-state energy of the two-dimensional (2D) Hubbard
model and of metallic hydrogen chains.

The Hubbard systems that we employ consist in 2D square
grids of L×L sites with periodic boundary conditions, filled
to half capacity with N ≈ L2 electrons evenly distributed
between the spins. Designating by c†

iσ and ciσ the creation
and annihilation operators of site i with spin σ ∈ {↑,↓},
and by niσ = c†

iσ ciσ the corresponding number operators, the

FIG. 2. Optimal real efficiency gain (σ 2
VMCtVMC)/(σ 2

PMCtPMC) as a
function of electron number N for the Hubbard model and metallic
hydrogen chains.
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FIG. 3. Variance of the local energy in standard VMC and in PMC (for optimal m) as a function of electron number N for (a) the Hubbard
model (PMC variance multiplied by 10 on the plot) and (b) metallic hydrogen chains.

Hamiltonian takes the form [22]

H = −
∑
i 
= j,σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (12)

where ti j = 1 if i and j are adjacent, and ti j = 0 otherwise, and
U = 1 is the on-site interaction parameter. We have chosen
the trial ground-state wave function to be a Slater determinant
of plane waves without any Jastrow factor. We choose the
subsystems as adjacent squares of l×l sites. The number of
iterations of the main walk is kept constant at M = 500.

As an example of a simple system with a continuum con-
figuration space, we consider metallic hydrogen chains with
a regular interatomic distance of 1.4a0. The Hamiltonian is
given by Eq. (8) except of course that there is no restriction in
the sums for the full system. For the trial ground-state wave
function, we use a simple Jastrow function [16] multiplied
by the Hartree-Fock Slater determinant obtained from a basis
made of the exact hydrogen 1s orbital on each atom. We
choose the subsystems as consisting in n adjacent hydrogen
atoms.

The first parameter of the PMC method whose impact is
to be explored is the side-walk length m (chosen to be the
same for all subsystems). Figure 1 reports the variance gain
VVMC/VPMC, the CPU time increase tPMC/tVMC, and the un-
correlated efficiency gain (VVMCtVMC)/(VPMCtPMC) (efficiency
gain assuming a correlation factor c = 1) of the PMC method
over the standard variational Monte Carlo (VMC) method.
The efficiency gain is plotted as a function of the side-walk
length m for the 2D Hubbard model with total size L =
20 and subsystem size l = 5, and for hydrogen chains with
N = 320 total atoms and n = 12 atoms in the subsystems.
Two regimes are clearly visible. For small m, the variance
gain increases linearly with m while the CPU time is almost
constant (the cost of a side-walk step is very small com-
pared to that of a main-walk step). This leads to a linear
increase of the uncorrelated efficiency gain. For large m, the
variance gain saturates while the CPU time ratio increases
linearly, driving the uncorrelated efficiency gain down. Be-
tween these two regimes, there is a plateau corresponding
to optimal values of the side-walk length m. The saturation
of the variance gain originates from the correlation between
subsystems. Indeed, if the subsystems were independent, the
variance would converge to zero as m increases (zero-variance

principle in the separability limit) and the variance gain to
infinity.

One may ask the role of the correlation factor c in Eq. (2).
For the Hubbard model, c has been found to be very close
to 1, leading to a real efficiency gain almost identical to the
uncorrelated efficiency gain. For the hydrogen chains c �
2.5 for m = 0 (VMC) and c is reduced for small m (about
40% less for H320 and m ∈ [5, 40]) before increasing slowly
for larger values of m. This explains the difference between
the uncorrelated efficiency gain and the real efficiency gain
(σ 2

VMCtVMC)/(σ 2
PMCtPMC) in Fig. 1. In particular, the optimal

real efficiency gain is 40% higher than the optimal uncorre-
lated efficiency gain. We now consider systems of increasing
sizes. For the Hubbard model, the optimal subsystem size
has been found to be l ≈ √

L, and similarly for the metallic
hydrogen chains we find n ≈ √

N/2. The fact that the op-
timal subsystem size does not saturate to a finite value as
the system size increases is an indication of the nonsepa-
rability of the system. The optimal side-walk length m also
increases with system size since larger systems result in more
decorrelated subsystems and cheaper side walks compared
to the main walk. Figure 2 reports the real efficiency gain
as a function of the electron number N for the Hubbard
model and the hydrogen chains up to N of the order of 103.
Both metallic systems present a real efficiency gain scaling
linearly with N , which hovers around 0.075N for the Hub-
bard model and 0.025N for the hydrogen chains. This real
efficiency gain is almost entirely achieved by decreasing the
variance of the local energy from O(N ) to a behavior close to
O(1), as shown in Fig. 3. Of course, we have checked that
computing E(O) and E(Õ) always gives the same answer
within the error bars, in agreement with the unbiasedness
of Õ.

IV. CONCLUSIONS

We introduced a general and simple method to reduce
the scaling of Monte Carlo calculations of extensive prop-
erties. It only requires to have an explicit formula [Eq. (1)]
for the integral to be computed, and therefore can be
used in any Markov chain Monte Carlo application. The
method was illustrated on VMC calculations of metallic sys-
tems of N particles, providing an efficiency gain of order
O(N ). The present idea can be applied in many contexts,
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including fixed-node path-integral Monte Carlo approaches
[23,24] since these schemes sample explicit probability dis-
tributions. Finally, the method can in principle be extended

to derivatives of extensive properties to reduce the scaling for
calculating response properties or optimizing variational wave
functions.
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