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Instability analysis of spin-electron-acoustic waves and the appearance of separated spin
electron cyclotron mode in spin-polarized magnetized quantum plasma
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Linear and nonlinear characteristics of electrostatic waves are studied in a magnetized plasma consisting of
spin-up (n↑) and spin-down (n↓) state populations with uniformly distributed static ions in the background.
The linear analysis shows the existence of four modes. One of these modes, termed the separated spin electron
cyclotron wave, is found to be due to the separated spin populations. The Zakharov-Kuznetsov equation is derived
by the reductive perturbation technique. The instability growth rate γ is obtained from the same equation. It
is observed that the magnetized spin quantum plasma admits rarefactive soliton with constant amplitude but
increasing width with the increasing strength of the applied magnetic field. It has also been observed that
the amplitude of soliton decreases and its width increases with the increasing values of polarization ratio κ .
The unstable region expands with the increase in polarization ratio and contracts with the increased plasma
number density and magnetic-field strength. The (growth rate) γ of instability reduces by increasing the κ

and is increasing when the density of the plasma and the strength of the magnetic field increasing. The model
developed in this work finds its scope in studying degenerate electron gas and astrophysical systems such as
pulsar magnetosphere and neutron stars.
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I. INTRODUCTION

Quantum effects in plasma is a topic of interest among the
plasma physics community for over six decades now [1,2].
It is commonly described as a multicomponent system of
charged particles in which at least one of the constituent com-
ponents (in many cases the electrons) exhibits degeneracy.
The degeneracy of particles means that the Pauli exclusion
principle is important in such systems and that the spin and ex-
change effect must be considered. The spin effect is significant
if the energy difference between the two spin states is greater
than the thermal or Fermi energy [i.e., ( μBB0

KBT ) � 1 or ( μBB0

KBTF
) �

1] [3–5] here, μB is the magnetic moment and TF is the Fermi
temperature of electron. Thus, for spin effects to be important,
we need low temperatures or extremely high magnetic fields.
For example, in laboratory plasma, where magnetic fields
B0 ≈ 10–20 T, we need low-temperature plasmas for the spin
effects to influence the properties of plasma. However, we
have B0 ≈ 108–1013 Gs in the vicinity of pulsars and magne-
tars [6]. Spin effects can be significant in such systems, even
in a high-temperature (high density) plasma [7]. The external
magnetic field influences the occupancy of quantum states by
spin-up and spin-down electrons. In high-density plasma the
spin-up and spin-down polarization degree is defined through
relation κ = ( μBB0

KBTF
) [8]. The effect of Coulomb exchange in-

teraction in quantum plasma was studied in Refs. [9,10]. In
these references the constituent of plasma was considered as
spin-less particles. The additional contribution due to the spin-
spin interaction was later incorporated in Refs. [11–13] by
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considering the plasma consisting of spin-1/2 particles. Mark-
lund and Brodin demonstrated significant alteration in the
low-frequency modes provided the matching conditions for
spin-plasma were met [7,14]. The inclusion of the spin effect
was also shown to have modified the dispersion of linear wave
propagation in an electron-ion plasma [14]. When the spins in
a strongly magnetized plasma are aligned with the magnetic
field, a relatively small spin force becomes important, caus-
ing the weakly nonlinear shear Alfv’en waves governed by
the modified Korteweg–de Vries equation leading to soliton
formation [15]. Obliquely propagating magnetosonic waves
were investigated in the paper [16] by considering the spin
effects and Bohm potential. Misra et al. have observed that
the inclusion of spin influenced the dispersion while studying
the propagation of circularly polarized electromagnetic waves
through a magnetized spin plasma [17]. They also observed
a new high-frequency eigenmode (circularly polarized) [17].
This influence was found to be very high when the magnetic
field is large and density is the high relativistic case. Even
in the nonrelativistic cases, when the magnetic field is not
so high (B0 < BQ ≡ 4.4138 × 109 T) but the plasma density
is high (n0 � nc � 1032 m−3), the influence of spin inclu-
sion was found to be substantial. In the presence of intrinsic
magnetization, a novel type of instability was observed in
plasmas [18] using the quantum hydrodynamic (QHD) model.
It was shown that Alf’ven waves make a crucial contribution
in causing this instability when the number density of plasma
and electron temperature varies along the external magnetic
field [18].

Separated spin development of electrons in plasmas results
in the appearance of new interesting wave modes, for exam-
ple, the electron quantum states of different spin densities
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correspond to separated spin states equations, which further
plays an essential role in plasma waves dispersion [19–23].
Furthermore, it was demonstrated that taking into account
the different spin electron populations state resulted in the
discovery of a novel longitudinal wave [20]. Detailed quan-
tum hydrodynamics of separated spin population reveals the
occurrence of electron acoustic waves with separated spin in
Ref. [21]. Electrostatic as well as nonlinear solitary waves
having both types of electrons states in quantum plasma were
explored in Refs. [23–26]. The different electrons populations
alter the Columbic exchange interaction. Recently, interest
is growing in dynamics of spin particles and exchange in-
teractions, see Refs. [13,27–32]. These works are concerned
with the lengthy histories of the Coulomb exchange interac-
tion [33–35], and applying exchange interaction to several
plasma processes [36,37].

In this paper, the previous work of Andreev [21] is ex-
tended to explore properties of electrostatic solitary pulses
in plasma containing degenerate spin population of electrons.
For simplicity, taking into account the spin-exchange force
in spin-down electrons only. The reductive perturbation tech-
nique (RPT) is implemented to derive a nonlinear Zakharov-
Kuznetsov (ZK) type equation for solitary waves profiles.
According to the work of Allen and Rowlands [38,39], it is
demonstrated that the ZK equation admits the unstable pulse
solitary solution under oblique perturbations. The growth rate
instability depends on several parameters that are analytically
explored.

The structure of this article goes as follows: In Sec. II
of this paper, the hydrodynamic model of separated spin
electrons in magnetized quantum plasma having electrostatic
excitations are described. The nonlinear analysis of spin sep-
tated acoustic-wave is performed in Sec. III and derives a
ZK-type equation. In its section, solitary waves solution is
presented. The results are parametrically displayed and ex-
plained in terms of several plasma properties. The analysis
of the stability of waves resulting from the ZK equation is
investigated in Sec. V. The conclusion of the work is added in
Sec. VI.

II. MATHEMATICAL MODEL

The development of the QHD model of quantum plasmas
containing spinning particles has a long history. Various meth-
ods for generating QHD equations have been reported [40,41]
and have also been utilized for quantum plasmas containing
spinning particles [42,43]. An attempt was made to construct
the quantum hydrodynamic model of particles with spin-up
and spin-down concentrations [44], this approach has found a
variety of applications [4,18,45–49]. In an other approach the
quantum hydrodynamic for separated spins model is obtained
directly from the Pauli equation [21]. The Pauli equation con-
tains the development of two wave functions: one for an
electron’s spin-up state and another for its spin-down state,
the spin-up and spin-down states being treated as two different
species of an electron. Therefore this model is known as
the separated-spin evolution quantum hydrodynamic model.
This many-particle quantum hydrodynamics can be simplified
by considering the Pauli equation for a single particle in
an external electromagnetic field, which approximately cor-

responds with the single-particle QHD [50]. However, the
many-particle formalism known as many-particle QHD has
been heavily used over the last decade, e.g., in Refs. [7,51].

The separated spin electron quantum-hydrodynamics
model (SSE-QHD) [21] is used to examine the dispersive
and solitary wave properties of magnetized quantum plasma
consisting electrons with spin-up (n↑) and spin-down (n↓);
two separate populations state. An external magnetic field is
applied along the z axis, i.e., B = B0ẑ. In the presence of an
electromagnetic wave propagating along the z direction, the
motion of charged particles generates an internal magnetic
field in Bx, By, and Bz. The SSE-QHD model consists of the
following number density conservation (continuity) equation:

∂ns

∂t
+ ∇ · (nsvs) = ±γe

h̄
(BySx − BxSy), (1)

where s represents the spin-up (↑) and spin-down (↓) electron
concentrations and ± on the right-hand side of Eq. (1) denotes
the spin-up and the spin-down electrons, respectively. γe is
the electron gyromagnetic ratio defined by γe = −g eh̄

2mc and
g � 1.00116 for electrons. e and m are the electron charge
and mass, c is the speed of light in free space, h̄ is the
Planck constant divided by 2π , and Sx, Sy are spin compo-
nents. According to the continuity equation (1), the number of
electrons in each state is not constant due to spin interaction
with the internal magnetic field of charged particles. However,
in this approach, the total number of electrons ne = n↑ + n↓ is
preserved in both states. The momentum equation of spin-up
and spin-down electrons is

msns

(
∂

∂t
+ vs · ∇

)
vs

= −ens

(
E + B0

c
vs × r̂

)
− ∇Ps + FExs ± γens∇Bz

+ γe

2
(Sx∇Bx + Sy∇By) ± mγe

h̄
(JmxBy − JmyBx )

∓ mvsγe

h̄
(BySx − BxSy). (2)

To close the above-mentioned set of equations, the following
Maxwell equations are required:

∇ · E = 4πe(n0i − n↓ − n↑), ∇ · B = 0,

∇ × E = −1

c

∂B
∂t

,

∇ × B = 1

c

∂E
∂t

+ 4π∇ × M − 4πe

c

∑
s

(nsvs), (3)

where ns and vs are the spin-up and spin-down state electron
number densities and electron fluid velocities, respectively.
The intensity of the electric field E is E = −∇φ, where φ is
the electrostatic scalar potential. The pressures terms for spin-
up and spin-down degenerate electrons are, respectively [21],

Ps = KBTFsn
5/3
s

5n2/3
0s

, where TFs = (6π2n0s )2/3 h̄2

2KBm is the Fermi scale tem-

peratures of electron and KB is the Boltzmann constant. M is
spin magnetization term of the electron in terms of compo-
nents [M = γeSx, γeSy, γe(n↑ − n↓)] For simplicity the term
FExs in Eq. (2) represents the spin interaction force of the
spin-down electrons only. This force are the resulting from
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the exchange of spin density, in terms of spin polarization
κ = ( n0↑−n0↓

n0↑+n0↓
), κ ∈ [0, 1] is given by

FEx,↓ = χe2n↓1/3∇n↓, (4)

where

χ = 24/3(3/π )1/3

(
1 − (1 − κ )4/3

(1 + κ )4/3

)
. (5)

The spin current elements Jmx and Jmy can define the following
explicit forms:

Jmx = 1

2
(v↑ + v↓)Sx − h̄

4m

(∇n↑
n↑

− ∇n↓
n↓

)
Sy, (6)

Jmy = 1

2
(v↑ + v↓)Sy + h̄

4m

(∇n↑
n↑

− ∇n↓
n↓

)
Sx. (7)

The spin current density Jmx, Jmy and magnetization current
density Mx, My are produced due to the internal magnetic
field of moving charged particles. The presented model is
a two-fluid model in which electrons are supposed to have
two different orientations with spin-up and spin-down states
with respect to uniform external magnetic field. When the
plasmas are characterized by a single electron population with
a background spin distribution approaching thermodynamic
equilibrium, the spin effects are constrained to some extent
whenever μBB0

KBT � 1. Thus, low temperatures or extremely high
magnetic fields are necessary for spin effects to be consid-
erable in the single electron fluid model [52]. On the other
hand, separated spin evolution of electrons may be impor-
tant in a weakly magnetized high-temperature plasma inside
the two-fluid electron model [4,18]. Two approaches were
developed: kinetic and fluid (bulk) to describe the dynamic
of spin quantum plasma. The kinetic model is considerably
simplified at macroscopic scale lengths greater than the typ-
ical de Broglie wavelength. References [18,52–55] provide
a concise summary of various different plasma models for
dealing with spin magnetization effects, spin coupling, and
spin-spin interaction in plasmas, with an emphasis on recent
advancements, and the link behind the conceptual transition
from kinetic to fluid models is discussed in detail.

In the absence of an internal magnetic field Bx = 0, By = 0,
and Bz = 0 the simplified and normalized dynamical equa-
tions for the spin-up and spin-down state populations of
electrons fluid when the external magnetic field is applied
along the z axis, i.e., B = B0ẑ, as in the following form:

∂n↑
∂t

+ ∇ · (n↑v↑) = 0, (8)

d

dt
v↑ = ∇φ − �cv↑ × ẑ − (2δ↑)

2
3

3
n↑− 1

3 ∇n↑, (9)

∂n↓
∂t

+ ∇ · (n↓v↓) = 0, (10)

d

dt
v↓ = ∇φ − �cv↓ × ẑ − (2δ↓)

2
3

3
n↓− 1

3 ∇n↓ + 
n↓−2/3∇n↓,

(11)

∇2φ = δ↑n↑ + δ↓n↓ − 1, (12)

where d/dt includes time and convective derivatives defined
as d/dt = (∂/∂t + v↑,↓ · ∇).

Here, δ↑ = n0↑/n0, δ↓ = n0↓/n0 are equilibrium density
ratio. �c(= ωce/ωpe) is the normalized cyclotron frequency
of electron, where ωce(= eB0

mec ) and ωpe [=(4πn0e2/me)1/2] are
the cyclotron and plasma frequencies of electrons, respec-
tively. The number densities n↑ and n↓ are scaled by their
corresponding equilibrium number densities, the velocities
of fluid v↑ and v↓ are normalized by the electron-acoustic
speed cs(=

√
2kBTF /me), and the scalar electrostatic potential

φ is normalized with 2kBTF /e. The space coordinates are
normalized with the electronic skin length λe (= cs

ωpe
) and time

is scaled with the inverse of the electron plasma frequency
ωpe. Here TF = (3π2n0)2/3h̄2/(2kBme) is the electron Fermi
temperature. We can write the spin density ratio δs in terms
of density polarization κ as δ↑ = n0↑/ni0 = (1 + κ )/2 and
δ↓ = n0↓/ni0 = (1 − κ )/2, the index s signifies the spin-up
and spin-down states of electrons. The last term in Eq. (11)
contains the normalized spin-density interaction of spin-down
electrons and is given by


 = χe2me

h̄2(2π2)3/2n1/3
0

(
1 + κ

2

)1/3

. (13)

The authors would like to refer to Fig. 1 of Refs. [23,31],
which provides a detailed description of the spin-density in-
teraction and its importance in the spin state.

A. Linear analysis and dispersion relation

By using Fourier analysis, we linearize the system of
Eqs. [(8)–(12)] by assuming variation of the dynamical vari-
ables of the form ∼ei(k·r−ωt ). Replace ∂/∂x with ikx, ∂/∂y with
iky, ∂/∂z with ikz, and ∂/∂t with −iω in Eqs. (8)–(12), and
then with some algebraic manipulation, we get the following
dispersion relations for longitudinal and transverse directions,
respectively:

1 = (1 + κ )

2
(
ω2 − k2(1+κ )2/3

3

) + (1 − κ )

2
(
ω2 − k2(1−κ )2/3

3 + k2

) , (14)

1 = (1 − κ )

2
(
ω2 − �2 − k2(1−κ )2/3

3 + k2

)

+ (1 + κ )

2
(
ω2 − �2 − k2(1+κ )2/3

3

) . (15)

Equation (14) indicates the dispersive properties of the
separated spin evolution plasma in the longitudinal direction.
Due to the separate spin electron evolution of the spin-up and
spin-down state, a new wave mode appears called separated
spin electron acoustic waves and has been treated in detail in
Ref. [21]. Equation (15) shows the dispersive properties of the
separated spin evolution plasma in the transverse direction.
The solution of Eq. (15) contains two roots relating to the
upper hybrid and the separated spin electron cyclotron modes.
The appearance of novel electron cyclotron waves is attributed
to the separate spin consideration of electrons populations.

Figure 1 shows the relationship between the normalized
wave frequency ω (scaled by ωpe) and the magnitude of
normalized propagation wave vector k (scaled by λe) for var-
ious plasma parameters. The plots in Fig. 1(a) are for fixed
values of the normalized cyclotron frequency of electron,
� = 0.6, spin-density polarization ratio κ = 0.1, and density
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FIG. 1. The dispersion curves of all four modes are depicted by
displaying the angular frequency ω (scaled by ωpe) versus the wave
vector k (scaled by λe), for the density of 1023 cm−3 (upper penal)
and 1030 cm−3 the (lower panel). The normalized electron cyclotron
frequency � is varied between 0 and 0.6 while the spin-density po-
larization κ is varied between 0.1 and 1.0. The solid curve represents
the SSEAWs, the dashed curve represents the LWs, the dotted curve
represents the SSECWs, and the dash-dotted curve represents the
UHWs.

n0 = 1023 cm−3; Fig. 1(b) � = 0.6, κ = 1, i.e., only one
kind of electron (either spin-up or spin-down), and n0 =
1023 cm−3; Fig. 1(c) � = 0, i.e., unmagnetized plasma,
κ = 0.1, and n0 = 1023 cm−3; Fig. 1(d) � = 0.6, κ =
0.1, and n0 = 1030 cm−3; Fig. 1(e) � = 0.6, κ = 1, and
n0 = 1030 cm−3; and Fig. 1(f) � = 0, κ = 0.1, and n0 =
1030 cm−3. According to Figs. 1(a) and 1(d), our spin polar-
ized magnetized quantum plasma exists four modes of waves.
The Langmuir waves (LWs) is the dashed curve that starts
at the electron plasma frequency (ωpe) is the Langmuir wave
(LW). The dash-dotted curve which is at the highest frequency
mode represent the upper hybrid waves (UHWs). The dot-
ted curve belongs to the separated spin electron cyclotron
waves (SSECWs). The separated spin electron-acoustic wave
is shown by the solid curve that begins at the lowest frequency
(SSEAW). Figures 1(b) and 1(e) indicate the plasma case with
the switch off-spin density polarization i.e. and contain only
one species of electrons (either spin-up or spin-down). We
can observe that in this case, the two modes associated with
the evolution of separated spin electrons, i.e., SSECWs and
SSEAWs, become oscillatory only, which make the confirma-
tion of existence and propagation of these modes only due to
spin polarization. When we turn off the external magnetic field
(� = 0), the two modes UHWs and SSECWs vanish, as seen
in Figs. 1(c) and 1(f).

Figure 2 shows the plots between ω and k for different
values of spin-density polarization ratio κ = 0.1, 0.3, 0.6 and
at a fixed value of � = 0.6. The subplots in the top row
show the dispersion of SSEAW by taking n0 as 1023, 1026,
1030 cm−3 in Figs. 2(a)–2(c), respectively, whereas the sub-
plots of the bottom row show the dispersion of SSECW for
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FIG. 2. Dispersion curves depicting the angular frequency ω

(scaled by ωpe) versus the wave vector k (scaled by λ), the upper
panel is for the SSEAW while the lower panel is for the SSECW,
both for a fixed value of � = 0.6. The solid curve is for κ = 0.1, the
dashed curve is for κ = 0.3, and the dotted curve is for κ = 0.6.

n0 as 1023, 1026, 1030 cm−3 in Figs. 2(d)–2(f), respectively.
We see from Fig. 2(a) that the phase velocity of SSEAW
decreases with the increasing values of κ for fixed value of
electron number density. This decrease in the phase velocity
is larger for the highest value of κ . When we increase the
value of n0, the difference in the phase velocity decreases as
shown in Fig. 2(b). The subplots in the lower panel Figs. 2(d)
and 2(f) show that the phase velocity of SSECW shows similar
decreasing dependence with the increasing values of κ for
different values of n0.
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FIG. 3. Dispersion curves depicting the angular frequency ω
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a fixed value of � = 0.6. The solid curve is for κ = 0.1, the dashed
curve is for κ = 0.3, and the dotted curve is for κ = 0.6.
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and (b) the UHW, at fixed values of κ = 0.6 and density n0 = 1023 cm−3. The solid curve is for � = 1.0, the dashed curve is for � = 0.8, and
the dotted curve is for � = 0.6.

Figure 3 shows the plots between ω and k for different
values of density polarization ratio κ = 0.1, 0.3, 0.6 and at
� = 0.6. The subplots in the top row show the dispersion of
LW by taking n0 as 1023, 1026, 1030 cm−3 in Figs. 3(a)–3(c),
respectively, whereas the subplots of the bottom row show
the dispersion of UHW for n0 as 1023, 1026, and 1030 cm−3

in Figs. 3(d)–3(f), respectively. We see from Fig. 3(a) that
the phase velocity of LW increases with the higher values of
κ at a given value of n0. The dispersion curves for LW do
not change with higher values of electron number density,
as can be seen in Figs. 3(b) and 3(c). The phase velocity
of UHW shows similar increasing behavior with the higher
values of κ but remains constant with increasing values of
n0, as can be seen in Figs. 3(d)–3(f), respectively. We also
observed that the phase velocity of the UHW is a little larger
compared with the phase velocity of LW. Figure 4 shows the
effect of external magnetic field through � on the dispersion
curves of SSECW and UHW. In both figures we have used
κ = 0.6 and n0 = 1023 cm−3. Figures 4(a) and 4(b) show that
the normalized frequency ω of SSECW and UHW increases
with the higher values of the external magnetic field.

III. NONLINEAR ANALYSIS

We use the standard reductive perturbation technique
(RPT) [56] to explore the nonlinear propagation of separated
spin electron acoustic waves in magnetized quantum plasma
with static ions in the background. We consider the plasma to
be three dimensional and suppose that the excitation evolves
and propagates in the xz plane, thus, ∇ = (∂x, 0, ∂z ). The
space and time variables are stretched as X = ε1/2x, Y =
ε1/2y, Z = ε1/2(z − vpt ), and T = ε3/2t , where ε is a small
parameter measuring the nonlinearity and vp is the normal-
ized phase velocity. The dynamical variables are defined as
follows:

φ = εφ(1) + ε2φ(2) + · · · , vz = εv(1)
z + ε2v(2)

z + · · · ,

vx,y = ε3/2v(1)
x,y + ε2v(2)

x,y + · · · ,

n = 1 + εn(1) + ε2n(2) + · · · . (16)

By using the stretching frame coordinates system along with
the expansions of Eq. (16) in the scalar equations, Eqs. (8)–

(12), and equating the terms in different powers of ε, we get
different equations. The following equations are obtained to
the lowest order in ε:

∂n(1)
↑

∂Z
= 3(

(1 + κ )2/3 − 3v2
p

) ∂φ(1)

∂Z
,

∂v
(1)
↑z

∂Z
= 3vp(

(1 + κ )2/3 − 3v2
p

) ∂φ(1)

∂Z
, (17)

∂n(1)
↓

∂Z
= 3(

(1 − κ )2/3 − 3
 − 3v2
p

) ∂φ(1)

∂Z
,

∂v
(1)
↓z

∂Z
= 3vp(

(1 − κ )2/3 − 3
 − 3v2
p

) ∂φ(1)

∂Z
, (18)

v
(1)
↑x = 3v2

p

�
(
(1 + κ )2/3 − 3v2

p

) ∂φ(1)

∂Y
,

v
(1)
↑y = − 3v2

p

�
(
(1 + κ )2/3 − 3v2

p

) ∂φ(1)

∂X
, (19)

v
(1)
↓x = 3v2

p

�
(
(1 − κ )2/3 − 3
 − 3v2

p

) ∂φ(1)

∂Y
,

v
(1)
↓y = − 3v2

p

�
(
(1 − κ )2/3 − 3
 − 3v2

p

) ∂φ(1)

∂X
, (20)

δ↑n(1)
↑ + δ↓n(1)

↓ = 0. (21)

From Eqs. (17), (18), and (21), we get the following expres-
sion for the phase velocity vp:

vp =
√

(1 − κ )(1 + κ )2/3 + (1 + κ )((1 − κ )2/3 − 3
)

6
.

(22)

Equation (22) demonstrates that the phase velocity is depen-
dent on the spin-density polarization κ and the spin interaction
force. Using first-order perturbed quantity and the next order
of ε, and using the first-order perturbed quantity, we derive a
nonlinear partial differential equation in the form of the ZK
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equation:

∂φ

∂T
+ Aφ

∂φ

∂Z
+ B

∂3φ

∂Z3
+ C

∂

∂Z

(
∂2φ

∂X 2
+ ∂2φ

∂Y 2

)
= 0. (23)

Here, we have used φ = φ(1) for convenience. The real co-
efficients A = b/a which accounting for nonlinearity, B =
1/(2a), and C = c/(2a) for dispersion are given by

a =
(

9vp(1 + κ )

2
(
(1 + κ )2/3 − 3v2

p

)2 + 9vp(1 − κ )

2
(
(1 − κ )2/3 − 3
 − 3v2

p

)2

)
,

(24)

b = 1

4

(
81v2

p(1 + κ )(
(1 + κ )2/3 − 3v2

p

)3 + 81v2
p(1 − κ )(

(1 − κ )2/3 − 3
 − 3v2
p

)3

− 3(1 + κ )5/3(
(1 + κ )2/3 − 3v2

p

)3 − 3(1 − κ )5/3(
(1 − κ )2/3 − 3
 − 3v2

p

)3

+ 36(1 − κ )
(
(1 − κ )2/3 − 3
 − 3v2

p

)3

)
, (25)

and

c =
(

1 + 9v2
p(1 + κ )

2�2
(
(1 + κ )2/3 − 3v2

p

)2

+ 9v2
p(1 − κ )

2�2
(
(1 − κ )2/3 − 3
 − 3v2

p

)2

)
. (26)

IV. SOLITARY WAVE SOLUTIONS OF
ZAKHAROV-KUZNETSOV EQUATION

To investigate the characteristics of the separated spin elec-
tron acoustic solitary waves propagation along a direction
that makes an angle θ with the Z axis, i.e., with the ambient
magnetic field, and lies in the XZ plane, the coordinate axes
X and Z are rotated through an angle θ , with the Y axis kept
fixed. Thus, our independent variables transform according
to [57–59] as

ξ = X sin θ + Z cos θ, τ = T,

ζ = X cos θ − Z sin θ, η = Y.

Using the preceding transformations, the transformed ZK
equation of Eq. (23) is obtained in the following form:

∂�

∂τ
+ δ1�

∂�

∂ξ
+ δ3φ

∂�

∂ζ
+ δ2

∂3�

∂ξ 3
+ δ4

∂3�

∂ζ 3
+ δ5

∂3�

∂ξ 2∂ζ

+ δ6
∂3�

∂ζ 2∂ξ
+ δ7

∂3�

∂ξ∂η2
+ δ8

∂3�

∂ζ∂η2
= 0, (27)

where

δ1 = A cos θ, δ2 = (B cos3 θ + C cos θ sin2 θ ),

δ3 = −A sin θ, δ4 = (−B sin3 θ − C cos2 θ sin θ ),

δ5 = a−1 sin θ

(
−3

2
cos2 θ − 1

2
c sin2 θ + c cos2 θ

)
,

δ6 = a−1 cos θ

(
3

2
sin2 θ + 1

2
c cos2 θ − c sin2 θ

)
,
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FIG. 5. Profiles of solitary waves displaying the amplitude �m

and width � of the soliton against the obliqueness angle θ for
three different spin-density polarization ratios κ = 0.1 (solid line),
κ = 0.3 (dashed line), and κ = 0.6 (dotted line), and for fixed values
of � = 0.6 and Mach No. M = 0.1.

δ7 = C cos θ, δ8 = −C sin θ. (28)

To obtain the stationary solution of the ZK equation (27),
we change the independent variables ξ and τ to a single frame
variable χ = ξ − Mτ , where M is the Mach number, i.e.,
normalized frame velocity. Then Eq. (27) becomes

−M
d�

dχ
+ δ1φ

d�

dχ
+ δ2

d3�

dχ3
= 0. (29)

Now, using the boundary conditions, at χ → ±∞, then
� → 0, d�/dχ → 0, d2�/dχ2 → 0, the Eq. (29) solitary
wave solution is provided by

φ = φm sec h2
( χ

�

)
, (30)

where φm (=3M/δ1) is the amplitude and � (=2
√

δ2/M) is
the width of the soliton.

The graph in Fig. 5 shows the amplitude �m and width �

of soliton versus the obliqueness angle θ for three different
values of spin-density polarization ratios κ = 0.1 (solid line),
κ = 0.3 (dashed line), and κ = 0.6 (dotted line). The upper
panel row of subplots illustrates the variation of the amplitude
of soliton �m with changing values of plasma number density
n0, using � = 0.6 and M = 0.1. According to Fig. 5(a), the
amplitude (�m) grows slowly at first with rising values of the
obliqueness angle θ up to θ = 60◦ and then exponentially,
reaching its maximum at around θ = 75◦. As we increase κ

values the amplitude decreases initially at smaller values of
θ , but the curves overlap at about θ = 75◦. From Figs. 5(b)
and 5(c), we see similar behavior of �m with θ for higher
number densities as well. The lower panel of Fig. 5 depicts the
width of soliton � for three different n0 values. Figure 5(d),
shows that, for a fixed constant value of κ , the width of soliton
� grows with the obliqueness angle θ , reaching a maximum at
around θ = 60◦ and then decreasing to a minimum at θ = 90◦.
By raising the values of κ , we can observe that the width
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FIG. 6. Plots demonstrating the influence of varying magnetic field via � on (a) the soliton profile � vs χ curve, (b) the width of soliton
� vs obliqueness angle θ , with constant values κ = 0.6, M = 0.1, θ = 30◦, and n0 = 1023 cm−3.

gradually increases and reaches a maximum at θ = 60◦ and
that beyond θ = 60◦ different curves overlap and decrease
at higher values of θ and almost vanish about θ = 90◦. The
width of soliton nearly exhibits the same behavior at greater
number densities, as seen in Figs. 5(e) and 5(f), respectively.
Figure 6 displays the impact of varying the magnetic-field
strength through � on the soliton profile � [Fig. 6(a)] and
the width of soliton � [Fig. 6(b)]. We see from Fig. 6(a)
that the amplitude does not depend on the magnetic field. It
is also obvious that our spin-polarized plasma permits only
rarefactive soliton. From Fig. 6(b), we observed that the width
of soliton � increases with increasing the strength of the
magnetic field.

V. INSTABILITY ANALYSIS

In this section, we examine the instability of obliquely
propagating separated spin electron acoustic solitary waves
using the small-k perturbation expansion of Refs. [48,60,61].
We begin by assuming that

φ(1) = φ0(Z ) + φ(Z, ζ , η, τ ). (31)

For long-wavelength small-k sinusoidal waves perturbations
having direction cosines (l, m, n), then the φ(Z, ζ , η, τ ) can
be written as follows:

φ(Z, ζ , η, τ ) = ϕ(Z )e[ik(lζ+mη+nZ )−iωτ ], (32)

where l2 + m2 + n2 = 1. The ϕ(Z ) and ω may be extended
for small k as

ϕ(Z ) = ϕ0(Z ) + kϕ1(Z ) + k2ϕ2(Z ) + · · · ,

ω = kω1 + k2ω2
2 + · · · . (33)

Now, by plugging Eq. (31) into Eq. (27) and linearizing with
regard to φ, then the linearized ZK equation may be written
as follows:

∂φ

∂τ
− M

∂φ

∂Z
+ δ1φ0

∂φ

∂Z
+ δ1φ

∂φ0

∂Z
+ δ3φ0

∂φ

∂ζ
+ δ2

∂3φ

∂Z3

+ δ4
∂3φ

∂ζ 3
+ δ5

∂3φ

∂Z2∂ζ
+ δ6

∂3φ

∂ζ 2∂Z
+ δ7

∂3φ

∂Z∂η2

+ δ8
∂3φ

∂ζ∂η2
= 0. (34)

Equation (34) may be expressed as follows after using equa-
tion (32):(

−iω − iMkn + iδ1kφ0n + δ1
∂φ0

∂Z
− ikδ2k3n3 + iδ3kφ0l

−iδ4k3l3 − iδ6k3nl2 − iδ7k3˜nm2 − iδ8k3lm2

)
ϕ(z)

+ (−M + δ1φ0 − 3δ2k2n2 − 2δ5k2nl − δ6k2l2 − δ7k2m2)

× ∂ϕ(Z )

∂Z
+ (i3δ2kn + iδ5kl )

∂2ϕ(Z )

∂Z2
+ δ2

∂3ϕ(Z )

∂Z3
= 0.

(35)

The following dispersion relation is derived by equating the
coefficients of k up to second order:

ω1 = �1 − nM +
√(

�2
1 − ϒ

)
, (36)

where

�1 = 2
3

(
φmμ1 − 2μ2

2�
2
)
, (37)

and

ϒ = 16
45

(
φ2

mμ2
1 − 3φmμ1μ2�

2 − 3μ2
2�

4 + 12δ2μ3�
4
)
. (38)

μ1, μ2, and μ3 are defined as

μ1 = (δ1n + δ3l ), μ2 = (3δ2n + δ5l ), (39)

μ3 = (3δ2n2 + 2δ5ln + δ6l2 + δ7m2). (40)

According to Eq. (36), plasma will be unstable if the following
conditions are met: (

ϒ − �2
1

)
> 0. (41)

Inserting Eqs. (37) and (38) into Eq. (41), we get

16
45

(
�2

mμ2
1 − 3�mμ1μ2�

2 − 3μ2
2�

4 + 12δ2μ3�
4
)

− (
2
3

(
�mμ1 − 2μ2

2�
2
))2

> 0. (42)

Using Eqs. (28) and(40), as well as �m and � values in
Eq. (42), we derive the instability criterion in its simplified
form, which is written as

S = m2(cos2 θ + C sin2 θ ) + l2(1 − 5
3C tan2 θ

)
> 0. (43)
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FIG. 7. The plot of Eq. (43) displaying S (instability region) vs
the obliqueness angle θ demonstrating the impact of spin-density
polarization ratio κ (upper panel), and the strength of external mag-
netic field through � (lower panel) for three distinct plasma number
densities.

Equation (43) gives us the information about the instability
region. We have a stable region when S < 0, while S > 0
gives us an unstable region.

Figure 7 depicts the relationship between S (the insta-
bility region) versus the propagation direction θ for various
spin-density polarization ratios κ = 0.1, 0.3, 0.6 and 1023,
1026, 1030 cm−3 [see Figs. 7(a)–7(c), respectively] and for
different values of the strength of applied magnetic field
� = 0.6, 0.8, 1 and 1023, 1026, 1030 cm−3 [see Figs. 7(d)–
7(f), respectively]. We see from Fig. 7(a) that increasing the
value of polarization ratio causes an increase in the range
of the obliqueness angle θ for which the plasma remains
unstable at a given value of plasma number density. An in-
crease in the value of n0 to 1026 cm−3 as in Fig. 7(b) results
in the reduction of the range of θ for which the plasma
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FIG. 8. Plots depicting the instability growth rate γ versus the
obliqueness angle θ showing the effect of variation of spin-density
ratio κ (upper panel), and the strength of external magnetic field via
� (lower panel) for three different plasma number densities.

remains unstable. A further increase in the number density
has a very small effect on the range of θ , as can be seen from
Fig. 7(c). We see from Fig. 7(d) that increasing the magnitude
of the magnetic field (higher values of �) decreases the range
of θ for which the plasma is unstable at a fixed value of n0.
It is clear from Fig. 7(e) that increasing the value of n0 to
1026 cm−3 reduces the range of θ for which the plasma re-
mains unstable. Further increase in the density does not affect
the plasma unstable region, as can be seen from Fig. 7(f).

If Eq. (43) is satisfied, i.e., S > 0, then the growth rate γ of
the unstable perturbation of the solitary-wave solution is given
by

γ =
√

ϒ − �1
2. (44)

Putting the values of ϒ and �1 in equation (44), we get

γ =
√

16

45

(
�2

mμ2
1 − 3�mμ1μ2�2 − 3μ2

2�
4 + 12δ2μ3�4

) −
(

2

3
(�mμ1 − 2μ2

2�
2)

)2

. (45)

A simplified form of the growth rate of the above equation is

γ = 2M√
15

√
C

[
m2(cos2 θ + C sin2 θ ) + l2

(
1 − 5

3C tan2 θ
)]

cos2 θ + C sin2 θ
.

(46)

Figure 8 displays the relation between the growth rate γ

and the obliqueness angle θ for three different values of spin
polarization κ = 0.1, 0.3, 0.6 and for 1023, 1026, 1030 cm−3

[see Figs. 8(a)–8(c), respectively], and for different values of
the magnitude of the applied magnetic field � = 0.6, 0.8, 1
and for 1023, 1026, 1030 cm−3 [see Figs. 8(d)–8(f), respec-
tively]. Figure 8(a) shows that there is an inverse relation
between the growth rate γ and the propagation direction θ

for a given values of the spin polarization κ . As we increase

the value of the spin polarization, the growth rate decreases
but extends over a larger range of θ at a fixed value of n0.
While increasing n0 to 1026 cm−3, the growth rate at different
values of κ increases but the range of θ for which the insta-
bility occurs decreases, as can be seen in Fig. 8(b). Further
increases in the value of n0 cause a very minute increases in
the growth rate, as can be seen in Fig. 8(c). The bottom row of
Fig. 8 shows that the growth rate increases with the increasing
strength of the applied magnetic field and plasma number
density, whereas the range of θ decreases very slightly.

VI. CONCLUSIONS

From the application point of view, our findings are rel-
atively general, with particular importance for the partially
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spin-polarized plasmas such as dilute magnetic semiconduc-
tors, magnetosphere, and as well as astrophysical plasmas.
However, we chose parameters that are typically seen from
degenerate electron-gas and astrophysical systems such as
pulsar magnetosphere and neutron stars n0 = 1023–1030 cm−3

corresponding Fermi temperature TFe = 104–109 K and ex-
ternal magnetic field B0 = 104–1013 Gs [6]. The separated
spin evolution quantum hydrodynamic (SSE-QH) model is
used in this study to investigate the linear and nonlinear char-
acteristics of a magnetized spin quantum plasma consisting
of electrons of both spin-up (ne ↑) and spin-down (ne ↓)
concentrations and static ions forming a uniform neutraliz-
ing background. For simplicity, the exchange interaction is
considered in the spin-down electrons population only. In
the linear analysis, four modes have been observed; UHW
(at the highest frequency), LW (starts at the plasma fre-
quency), SSECW, and SSEAW (at the lowest frequency).
It has been observed that the phase velocities of SSEAW

and SSECW decrease while that of LW and UHW increase
with higher values of polarization ratio. Furthermore, the
phase velocities of SSEAW and SSECW enhance while that
of LW and UHW remain constant with increasing values
of plasma number density. We used the reductive perturba-
tion technique (RPT) to obtain the ZK-type equation. It is
observed that our magnetized spin quantum plasma admits
rarefactive soliton whose amplitude remains constant while
whose width increases with the increasing strength of the
applied magnetic field. It has also been observed that the
amplitude of the soliton decreases while its width increases
with increasing values of polarization ratio. The unstable
region increases with the increase in polarization ratio and
decreases with increasing magnetic-field strength and plasma
number density. The instability growth rate γ decreases with
the increasing values of κ and increases with the increase
in the plasma number density and applied magnetic-field
strength.
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