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Field-controlled flow and shape of a magnetorheological fluid annulus
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We investigate the behavior of a magnetorheological (MR) fluid annulus, bounded by a nonmagnetic fluid and
confined in a Hele-Shaw cell, under the simultaneous effect of in-plane, external radial and azimuthal magnetic
fields. A second-order mode-coupling theory is used to study the early nonlinear stage of the pattern-forming
dynamics. We examine changes in the morphology of the MR fluid annular structure as a function of its
magnetic-field-tunable rheological properties, as well as the combined magnetic field’s intensities, and thickness
of the ring. Our weakly nonlinear perturbative results show that, depending on the system control parameters,
the MR fluid annulus adopts various stationary shapes. These equilibrium annular structures present slightly
bent, asymmetric fingered protrusions which may emerge on the inner, outer, or even on both boundaries of the
magnetic fluid ring. On top of these morphological changes, we find that the resulting permanent shape patterns
rotate with a well defined angular velocity. We focus on analyzing how the overall shape of the fingered patterns,
in particular their sharpness and asymmetric form, as well as the number of resulting fingers are impacted by
the magnetic-field-dependent yield stress of the MR fluid annulus. The influence of the magnetically controlled
rheological properties of the MR fluid on the angular velocity of the rotating annulus is also scrutinized.
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I. INTRODUCTION

Smart fluid materials such as ferrofluids and magne-
torheological (MR) fluids have the distinguishing feature of
associating magnetic adjustable properties of solids, with
usual fluidity behaviors of liquids. Ferrofluids are stable col-
loidal suspensions of monodomain, nanometer-size magnetic
particles suspended in a nonmagnetic solvent. In ferrofluids,
the tiny magnetic particles show no tendency to form chains,
and consequently most ferrofluids are Newtonian fluids
[1–3]. Differently, MR fluids are suspensions of multidomain,
micrometer-size magnetic particles in a nonmagnetic carrier
fluid. In MR fluids, the magnetic particles tend to aggre-
gate into chainlike structures, inducing significant changes
in their physical properties. A particularly interesting facet
of MR fluids is the abrupt modification in their viscoelastic
attributes upon the action of an external magnetic field, al-
lowing them to change from a liquid to a solidlike state very
quickly. As a result, unlike ferrofluids, MR fluids are markedly
non-Newtonian [4–6], being characterized by a magnetic-
field-dependent yield stress behavior [7,8].

Because of their special physical properties and ability
to be manipulated and shaped by external magnetic fields,
these magnetic fluids have attracted increasing interest in sev-
eral areas ranging from physics, chemistry, engineering, and
robotics, through biology and medicine [9–18]. In particular,
the easy and versatile handling of the ferrofluids’ flow and
shape via magnetic means has motivated researchers to use
them as multitask, magnetically activated agents in microflu-
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idics, micromixing, and in the dynamics and manipulation
of soft robots [19–25]. In these studies, investigators utilized
magnetic fields to actuate and control ferrofluid droplets as
shape-programmable magnetic fluid objects, which can nav-
igate through very narrow channels, carrying liquid samples
and fragile objects, or mixing chemicals in spatially confined
environments. A particularly interesting ability of these fer-
rofluid manageable tools has been studied in Refs. [24,25]
where ferrofluid droplets are configured into a ring shape,
and used to collect, transport, and release multiple delicate
items quite effectively. As mentioned in Refs. [24,25], the
magnetic controllability of ferrofluid annular ring structures
potentially permits the development of innovative function-
alities in lab-on-a-chip, microfluidics, bioengineering, and
biomedical applications.

Despite the considerably large number of recent studies
on ferrofluid soft robot systems and related topics (see, for
instance, Refs. [19–25] and references therein), equivalent in-
vestigations utilizing MR fluid-based robots have not received
much attention in the literature. One noteworthy exception is
the very recent work by Sun et al. [26,27] who considered
magnetic soft-bodied robots made of a MR fluid (the so-
called magnetic slime robot). As discussed in Ref. [26], MR
fluids present some advantages over ferrofluids when one de-
sires navigation through narrow channels, and highly spatially
restricted environments. For instance, most ferrofluid-based
droplet robots require relatively demanding operating condi-
tions, such as hydrophilic surfaces surrounded by water-based
solutions, to keep their original shape, as well as to prevent
them from adhering to the substrate. Conversely, as demon-
strated in Ref. [26], MR fluid soft robots can easily move on
various types of substrates, including hydrogel, glass, metal-
lic, and plastic surfaces.
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Another advantage of using MR fluids noted in Ref. [26]
is connected to the response of magnetic fluid droplets to ap-
plied magnetic fields. For example, although the deformability
of ferrofluid droplet robots is the best under low magnetic
field magnitudes, as the applied magnetic field strength in-
creases, the ferrofluid droplet shape becomes increasingly
unstable, and it is difficult to keep the drop intact. On the
other hand, due to their non-Newtonian nature, MR fluid
droplets exhibit a tunable stiffness under applied magnetic
fields. Therefore, MR fluid-based droplet robots are capable of
entering and moving through confined spaces in a controllable
way while maintaining their integrity, even at high magnetic
field strengths. In other words, even at large applied field
conditions, the MR fluid droplet robots can deform without
breaking up into smaller secondary droplets.

The magnetic-field-controlled deformation and stiffness of
MR fluid droplets give them a considerable advantage over
their ferrofluid counterparts. This is particularly valid for the
useful ring-shaped robots [24,25] which can keep their an-
nular conformation intact while they move, maintaining their
cargo contents inside the ring and not letting them escape
to the external environment. The broadly applicable working
environment of the MR fluid-based robots under a wide range
of magnetic field strengths as well as their largely deformable,
reconfigurable, and magnetically tuned viscoelastic properties
make them promising for future applications in many fields,
including controlled drug delivery [28], microfluidics [29],
and micromixing [30]. Therefore, these propitious applica-
tions are not restricted to ferrofluids, and can even become
more effective if MR fluids are utilized [26].

Since ferrofluids and MR fluids can move through con-
strained, effectively two-dimensional channels, exhibiting
various magnetically regulated, complex shape-morphing
behaviors, they are natural candidates for the study of the dy-
namics of pattern-forming structures in the confined geometry
of Hele-Shaw cells (i.e., between two closely spaced parallel
glass plates) [31,32]. As a matter of fact, the Hele-Shaw cell
apparatus, assisted by proper magnetic field arrangements,
can be used as an ideal laboratory system, and as a testing
ground for a number of possible applications involving mag-
netic fluid-based soft robots. However, most existing studies
[19–26] consider ferrofluid and MR fluid droplets moving
through relatively complex terrains such as intricate tubes,
complicated mazes, and uneven substrates. Furthermore, the
majority of these investigations examine situations in which
the controlling magnetic fields are significantly convoluted
as the ones produced by electromagnet arrays, or permanent
magnets of various shapes, either in translational or rotational
movements.

The consideration of the motion of ferrofluid or MR fluid
droplets in the simpler geometry of a Hele-Shaw cell, and
under the influence of substantially less complicated mag-
netic field configurations, would help one to model and try
to better understand the fundamental physical processes lead-
ing the appealing behaviors of the magnetic fluid droplets
reported in Refs. [19–26]. An example of such a simplified
theoretical study has been recently performed in Ref. [33],
where the authors, inspired by Refs. [24,25], analyzed the
pattern-forming dynamics of a ferrofluid annulus surrounded
by nonmagnetic fluids, confined in a Hele-Shaw cell, and

subjected to an in-plane, crossed magnetic field arrangement.
External magnetic field effects are induced by the concurrent
action of both radial and azimuthal applied magnetic fields.
This particular magnetic field setup was proposed in the lit-
erature not long ago [34], and is fairly simple: the azimuthal
magnetic field is produced by a current-carrying wire which
is normal to the Hele-Shaw cell plates and passes through its
center [35,36], while the radial field is produced by a pair of
identical Helmholtz coils whose electric currents are equal,
and flow in opposite directions [37,38]. The utilization of
these crossed magnetic fields adds ample versatility into the
system, allowing separate bidirectional magnetic control of
the inner and outer interfaces of the magnetic fluid annular
ring. In this way, both inhibition and promotion of interfacial
instabilities are possible by properly tuning the strength of
azimuthal and radial fields. In addition, as demonstrated in
Refs. [33,34,39], the crossed magnetic fields induce rotation
of the magnetic fluid sample, which achieves a stable profile
shape, spinning with a prescribed, magnetically controllable
angular velocity.

We note that there are well justified reasons to consider
magnetic fluids of annular ring shape under crossed mag-
netic fields. First, as commented earlier in this work, it has
been shown in Refs. [24–26] that ring-shaped magnetic fluid
droplets driven by permanent magnets can be useful control-
ling tools in the sense that they can be used to trap, transport,
and deliver multiple delicate objects efficiently in confined
spaces. As previously observed, this opens up potential func-
tionalities in many technological and medical applications.
Therefore, it is of considerable practical interest to investigate
the magnetic manipulation of such smart-fluid annular struc-
tures in Hele-Shaw cells, under the simpler crossed magnetic
field setup which is more amenable to theoretical analysis. On
top of this, recall that the crossed magnetic fields can make the
magnetic liquid ring rotate, so it could also be used to promote
efficient fluid mixing at low Reynolds numbers in narrow
channels, something of great current interest [30]. On a more
academic side, the magnetic fluid annulus setup is of relevance
due to its own doubly connected character which comprises
the nontrivial interaction between two separate interfaces (the
inner and outer boundaries of the annular ring structure). This
allows one to seek still unexplored pattern-forming behaviors,
and dynamical responses not exhibited in simply connected
situations in which only a single interface separates the mag-
netic and nonmagnetic fluids.

The theoretical study performed in Ref. [33] has shown
that by adjusting the radial and azimuthal components of the
applied crossed magnetic field, and by changing the thickness
of the ferrofluid annulus, one finds a number of different
steady state annular-shaped patterns, typically presenting a
polygonal-like appearance. These ring-shaped structures have
skewed fingered protuberances having relatively sharp peaks
that may arise on the inner, outer, or even on both boundaries
of the ferrofluid ring. Moreover, it has been found that of on
top of these magnetically tuned morphological changes, the
crossed magnetic fields can be utilized to regulate both the
magnitude and direction of the annulus rotational motion.

It should be pointed out that an investigation similar to
the one performed in Ref. [33], but considering a MR fluid
annulus, still needs to be performed. Taking this fact into
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FIG. 1. Schematic of the MR fluid annulus confined flow prob-
lem subjected to a combined (radial plus azimuthal) magnetic field H
[Eq. (3)]. Initially, the MR fluid annular structure of viscosity η2 has
circular boundaries, of radii R1 and R2 (dashed circles). The inner
and outer fluids are nonmagnetic and Newtonian, having viscosi-
ties η1 and η3, respectively. The magnetic field H may distort the
inner and outer perimeters of the MR fluid annulus (solid curves).
The perturbed inner interface of the MR fluid ring is described
by R1(θ, t ) = R1 + ζ (θ, t ), where ζ = ζ (θ, t ) is a time-varying
interfacial perturbation amplitude, and θ is the azimuthal angle.
Similarly, the perturbed outer interface of the annulus is expressed
as R2(θ, t ) = R2 + ε(θ, t ).

consideration, and motivated by the compelling findings
reported by Sun and collaborators [26,27] who studied
magnetically reconfigurable MR fluid-based soft robots, we
anticipate that the problem of magnetic-field-manipulated MR
fluid annular ring structures in a simple spatially confined
geometry is of interest, and worth investigating. Therefore,
in this work we examine the flow dynamics and interfacial
pattern formation phenomena that arise when a MR fluid
ring bounded by a nonmagnetic fluid is subjected to crossed
magnetic fields in a Hele-Shaw cell.

By using a modified Darcy’s law approach which incor-
porates a magnetic-field-dependent yield stress behavior of
the MR fluid annulus, we employ a second-order mode-
coupling theory to investigate the initial nonlinear regime
of the system, and to obtain perturbative solutions for the
shape of the confined MR fluid annular patterns. We identify
the formation of permanent profile, stationary state, spinning
annular shapes, showing slightly curved fingers. We focus
on examining how the magnetic-field-dependent yield stress
of the non-Newtonian MR fluid annulus affects the overall
morphology and stability of the ring-shaped patterns, and the
number of resulting fingered structures. We also analyze how
the magnetic-field-dependent yield stress impacts the angular
velocity of the rotating MR fluid annulus, as well as the
sharpness and asymmetric form of the internal and external
interfaces of the ring. All this is done for various thicknesses
of the MR fluid ring, and also for different relative magnitudes
of the radial and azimuthal magnetic field components.

II. PROBLEM FORMULATION AND BASIC EQUATIONS

The geometry of the physical system is shown schemati-
cally in Fig. 1. A Hele-Shaw cell of gap thickness b contains
a MR fluid annular structure of viscosity η2 under the in-

fluence of in-plane, crossed magnetic fields. The MR fluid
annulus is surrounded by two nonmagnetic Newtonian fluids
of viscosities η1 and η3. All three fluids are immiscible and
incompressible, with the surface tension between the MR fluid
and the inner (outer) nonmagnetic fluid denoted by σ12 (σ23).
Initially, due to surface tension forces, the MR fluid annular
ring has circular boundaries of radii R1 and R2. Nevertheless,
the action of the applied magnetic fields may deform the inner
and outer borders of the MR fluid annulus, delimiting it by
the perturbed, time-dependent interfaces R1 = R1(θ, t ) and
R2 = R2(θ, t ), where θ is the azimuthal angle. In this section,
our main goal is to describe the time evolution of the inner and
outer interfaces of the deformed MR fluid annulus at early
nonlinear stages of the dynamics.

Under the spatially constrained conditions of Hele-Shaw
flows in the presence of external applied magnetic fields,
and using the Bingham model for yield-stress fluids [40],
the quasi-two-dimensional dynamics of the MR fluid inter-
faces is described by a gap-averaged, modified Darcy’s law
[7,8,39,41–46]

v j |r=R1 = − b2

12η j

{
∇� j − 3σy(H )

b
êr

}
, (1)

for the inner interface (with j = 1, 2), and

v j |r=R2 = − b2

12η j

{
∇� j + 3σy(H )

b
êr

}
, (2)

for the outer interface (with j = 2, 3), where the labels j = 1,
2, and 3 refer to the inner, intermediate (annulus), and outer
fluids, respectively. In Eqs. (1) and (2), � j is a generalized
pressure, σy(H ) is a magnetic-field-dependent yield stress,
H = |H| denotes the combined magnetic field intensity, and
êr represents a unit vector in the radial direction. The deriva-
tions of Eqs. (1) and (2) assume the regime where magnetic
and viscous forces prevail over the stabilizing role of the
yield stress. In addition, based on the fact that both radial
and azimuthal magnetic fields produce magnetic body forces
directed radially [1,35,37], it is also assumed that the prevalent
yielding occurs along the radial direction.

The applied magnetic field is given by [34,39]

H = H0r êr + I

2πr
êθ , (3)

where the first (second) term on the right-hand side of Eq. (3)
expresses the applied radial (azimuthal) field, H0 is a constant,
I is a time-independent electric current, and êθ represents
the unit vector along the azimuthal direction. This combined
applied field relates to the shear yield stress by [4–8]

σy(H ) = σy0 + αH2, (4)

where σy0 is a small yield stress present in the absence of
magnetic field, and α is a constant that depends on the material
properties of the MR fluid, being proportional to the particle
volume fraction [6].

In Eqs. (1) and (2), the gap-averaged generalized pressure
is defined as [42–44]

� j = 1

b

∫ +b/2

−b/2
[Pj − 
]dz, (5)
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where Pj is the three-dimensional fluid pressure, and


 = μ0χH2

2
(6)

represents a scalar potential accounting for the magnetic body
force [1,2], where μ0 is the magnetic permeability of free
space, and χ the magnetic susceptibility. A magnetization M
linear with the applied field [1,2,47] is assumed, such that
M = χH. Note that for the nonmagnetic fluids surrounding
the MR fluid annulus we have that χ = 
 = 0.

As the field-dependent yield-stress terms [second terms
in curly brackets of Eqs. (1) and (2)] can be expressed as
gradients of some scalar functions, and since the velocity
fields are irrotational in the bulk, we can conveniently ex-
press the velocities in terms of velocity potentials, such that
v j = −∇φ j . Moreover, using this fact and the incompress-
ibility condition ∇ · vj = 0, one concludes that the velocity
potentials obey Laplace’s equation ∇2φ j = 0. Therefore, to
fully describe the problem at the fluid-fluid interfaces, two
fundamental boundary conditions for each interface of the
MR fluid annulus are needed. The first pair comes from the
discontinuity of the pressure field across the interfaces, given
by modified Young-Laplace equations [1,2]

(p1 − p2)|r=R1 = [
σ12κ12 + 1

2μ0(M · n̂)2
]∣∣

r=R1
(7)

and

(p2 − p3)|r=R2 = [
σ23κ23 − 1

2μ0(M · n̂)2
]∣∣

r=R2
, (8)

where κ12 and κ23 are the interfacial curvatures of the inner
and outer interfaces in the plane of the Hele-Shaw cell, respec-
tively. The second terms on the right-hand sides of Eqs. (7)
and (8) express magnetic traction effects [1,2] arising from the
influence of the normal component of the MR fluid magneti-
zation at the inner and outer interfaces of the annulus, where
the unit normal vector at each interface is represented by
n̂|r=R1,2 . We point out that the contribution of such magnetic
normal stresses is an intrinsically nonlinear concern, and is not
required in the purely linear stability analysis of the problem.
In fact, this particular magnetic normal traction term has a
key role in determining the shape of the emergent interfacial
patterns in a magnetic fluid annulus [33,34,39].

The second pair of boundary conditions arises from the
continuity of the normal components of the flow velocities
at the inner and outer boundaries of the MR fluid annulus,
expressed by the so-called kinematic boundary conditions
[31,32]

∂R1

∂t
=

(
1

r2

∂R1

∂θ

∂φ j

∂θ

)∣∣∣∣
r=R1

−
(

∂φ j

∂r

)∣∣∣∣
r=R1

(9)

for the inner interface (with j = 1, 2), and

∂R2

∂t
=

(
1

r2

∂R2

∂θ

∂φ j

∂θ

)∣∣∣∣
r=R2

−
(

∂φ j

∂r

)∣∣∣∣
r=R2

(10)

for the outer interface (with j = 2, 3).
With the Darcy’s law expressions (1) and (2), and the

related boundary conditions given by Eqs. (7)–(10), we have
all elements needed to develop a perturbative, second-order
mode-coupling theory for our problem [39,48]. In the re-
mainder of this work, for the sake of simplicity, we set the

two nonmagnetic fluids to be the same, yielding η3 = η1 and
σ12 = σ23 = σ , where here σ denotes the surface tension be-
tween the MR fluid and the nonmagnetic fluid. Additionally,
we consider that the MR fluid is much more viscous than the
nonmagnetic fluid (η2 � η1). In this context, recall that the
inner fluid-fluid interface is given by R1(θ, t ) = R1 + ζ (θ, t ),
where now the interfacial perturbation is written in the form
of a Fourier series

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) einθ , (11)

where ζn(t ) denotes the complex Fourier amplitudes, with in-
teger wave numbers n. Analogously, for the outer interface of
the MR fluid annular ring, we write R2(θ, t ) = R2 + ε(θ, t ),
with

ε(θ, t ) =
+∞∑

n=−∞
εn(t ) einθ . (12)

Mass conservation dictates that the zeroth mode
is cast in terms of the other modes as ζ0 =
−(1/2R1)

∑∞
n=1[|ζn(t )|2 + |ζ−n(t )|2] [33,48]. Likewise,

we have ε0 = −(1/2R2)
∑∞

n=1[|εn(t )|2 + |ε−n(t )|2].
Instead of being limited to a simple linear stability analysis

of the problem, we employ a second-order mode-coupling
approach which allows us to explore and gain insight into
key aspects of the MR fluid annulus’s morphology at the
onset of nonlinear effects. Since we are interested in the
early nonlinear behavior of the system, we want to obtain a
set of mode-coupling nonlinear differential equations which
describe the time evolution of the perturbation amplitudes
ζn(t ) and εn(t ), accurate to second order. To accomplish
this, we follow steps similar to those performed in previous
weakly nonlinear studies in Hele-Shaw flows [48,49]: First,
we Fourier expand the velocity potentials, and use the kine-
matic conditions [Eqs. (9) and (10)] to express the Fourier
coefficients of velocity potentials in terms of the perturba-
tion amplitudes ζn(t ) and εn(t ). Substituting these resulting
relations, together with the pressure conditions [Eqs. (7) and
(8)], into Darcy’s law [Eqs. (1) and (2)], and consistently
keeping terms up to second order, we find the dimensionless
equations of motion for the perturbation amplitudes ζn = ζn(t )
and εn = εn(t ) (for n �= 0),

ζ̇n = f1 �(n)ζn + f2 �(n)εn

+ f1

∑
p�=0

[F (n, p)ζpζn−p + G(n, p)ζ̇pζn−p]

+ f2

∑
p�=0

[H (n, p)εpεn−p + I (n, p)ε̇pεn−p

+ J (n, p)ε̇pζn−p] (13)

and

ε̇n = f3 �(n)ζn + f4 �(n)εn

+ f4

∑
p�=0

[F (n, p)εpεn−p + G(n, p)ε̇pεn−p]

+ f3

∑
p�=0

[H(n, p)ζpζn−p + I (n, p)ζ̇pζn−p

+J (n, p)ζ̇pεn−p], (14)
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where the overdot represents a total time derivative. In
Eqs. (13) and (14) lengths and time are rescaled by L = r0 and
T = 12(η1 + η2)r3

0/σb2, respectively, where r0 is a character-
istic length being on the order of the unperturbed radii R1 and
R2. From this point onward, except as otherwise indicated, we
use a dimensionless version of the equations.

The time-independent first-order functions �(n) and �(n)
are given by

�(n) = |n|
{
χ

NBa

R4
1

− χ (1 + χ )NBr − 1

R3
1

(n2 − 1)

− 1

R1

[
S0 + 3ϒ

(
NBa

R2
1

+ NBr R
2
1

)]

+ inχ2sgn(I )

√
NBrNBa

R2
1

}
(15)

and

�(n) = |n|
{

− χ
NBa

R4
2

+ χ (1 + χ )NBr − 1

R3
2

(n2 − 1)

− 1

R2

[
S0 + 3ϒ

(
NBa

R2
2

+ NBr R
2
2

)]

− inχ2sgn(I )

√
NBrNBa

R2
2

}
, (16)

where the sgn function equals ±1 according to the sign of
its argument. We assume that sgn(I ) = 1 for an azimuthal
magnetic field encircling the current-carrying wire in the
counterclockwise direction. In Eqs. (15) and (16) one can
identify the contributions from the azimuthal [∝NBa] and
radial [∝NBr] magnetic fields, surface tension [∝(n2 − 1)],
zero-field [∝S0] and magnetic-field-dependent yield stress
[∝ϒ], as well as from a complex term that couples the two
magnetic field strengths [∝√

NBrNBa]. The expressions for the
second-order mode-coupling functions F , G, H , I , J , F , G, H,
I, and J are given in the Appendix [Eqs. (A1)–(A11)].

The system is characterized by several dimensionless pa-
rameters:

NBr = μ0H2
0 r0

σ
, NBa = μ0I2

4π2σ r0
, χ,

S0 = 3σy0r2
0

σb
, ϒ = αr0

bμ0
, R = R1

R2
.

The parameters NBr and NBa are magnetic Bond numbers that
quantify the relative strengths of the radial and azimuthal
magnetic field effects to capillary ones, while S0 refers to the
yield stress contributions at zero magnetic field conditions. In
addition, ϒ characterizes the material properties of the MR
fluid being related to the magnetic-field-dependent yield stress
[39,45,50]. Finally, R measures the coupling strength between
the interfaces of the MR fluid annular ring system: In the
limit of a thin (thick) annulus R → 1 (R → 0), the coupling
between the inner and outer interfaces is strong (weak). Of
course, the annulus cannot be arbitrarily thin, since the ef-
fectively two-dimensional Darcy’s law approach requires that
the Hele-Shaw cell gap thickness b is smaller than any other
length scale in the problem [31,32].

The functions

f1 = 1 + R2|n|

1 − R2|n| , f2 = 2R|n|−1

1 − R2|n| ,

f3 = 2R|n|+1

1 − R2|n| , f4 = f1,

that appear in Eqs. (13) and (14) play an important role in
the analysis of the physics at play. Note that, as discussed in
Ref. [33], under general circumstances (i.e, for 0 < R < 1),
Eqs. (15) and (16) do not express the linear growth rates of
the disjoint interfaces. However, in the thick annulus limit
(R → 0), f1 → 1, f2 → 0, f3 → 0, and f4 → 1, and thus
Eqs. (13) and (14) decouple. Therefore, only in this weak-
coupling limit the functions �(n) and �(n) denote the usual,
time-independent linear growth rates of the disturbances for
the inner and outer interfaces of the MR fluid ring, respec-
tively.

Although our main focus in this work is on nonlinear
effects, it is worth pointing out a few important facts that
can be extracted at the linear level, in the limit in which
the interfaces decoupled: First, note that the azimuthal field
destabilizes the inner interface of the annulus, while it stabi-
lizes the outer one. On the other hand, the radial field does
just the opposite. Furthermore, the yield-stress contributions
act to stabilize both the interfaces. Also, the decoupled linear
phase velocities for which mode n, V1 = −Im[�(n)]/n and
V2 = −Im[�(n)]/n, where Im[z] stands for the imaginary part
of a complex number z, are not dependent on the yield-stress
parameters S0 and ϒ . The wave propagation associated to
these phase velocities is manifested as rotation of the MR
fluid annular droplet. Such a rotational motion is caused by the
magnetic normal stresses arising from the combined action of
radial and azimuthal magnetic fields [34,39].

Through a linearization process, Livera et al. [33] has
obtained the time-dependent linear growth rates for both in-
terfaces of a magnetic fluid annulus, yielding

λ1(n, t ) ≡ ζ̇n

ζn
= f1 �(n) + f2 �(n)

εn(t )

ζn(t )
(17)

and

λ2(n, t ) ≡ ε̇n

εn
= f1 �(n) + f3 �(n)

ζn(t )

εn(t )
. (18)

It is worth noting that, in the limit of a thick annulus (R →
0), from Eqs. (17) and (18), we consistently recover the
expressions for the linear growth rates derived in previous
single-interface studies involving MR fluids in Hele-Shaw
cells, subjected to either radial or azimuthal fields, e.g., when
a MR fluid that is the outer fluid encircling an inner nonmag-
netic fluid drop is perturbed by an applied azimuthal magnetic
field [50], and if a MR fluid droplet is surrounded by a non-
magnetic fluid in the presence of a radial field [51,52]. This
brief discussion of the linear stability behaviors and related
basic equations will help us to better understand the intricacies
of the weakly nonlinear results that arise from the solutions
of the full-bodied mode-coupling equations (13) and (14),
assisted by the auxiliary equations (A1)–(A11).

Equations (13) and (14) constitute one of the central results
of this work, offering the time evolution of the perturbation
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amplitudes ζn(t ) and εn(t ) accurate to second order, for the
problem of a confined MR fluid annulus enveloped by a non-
magnetic fluid, under the action of crossed magnetic fields.
As we will verify during the rest of this work, by solving
Eqs. (13) and (14) one can get access to key, intrinsically
nonlinear behaviors of the MR fluid annular ring, already
at the lowest nonlinear, perturbative order. In this way, we
will be able to seek various morphological features of in-
terest of the MR annulus, exploring the effects of changes
in the dimensionless magnetic yield stress parameter ϒ , as
well as in the field intensities NBa and NBr , and the coupling
strength R.

III. EARLY NONLINEAR BEHAVIOR OF THE
MR FLUID ANNULUS

For both simply and doubly connected fluid-fluid bound-
aries involving magnetic-field-induced displacements of fer-
rofluids and MR fluids in Hele-Shaw cells, usual linear
stability analyses fundamentally provide information about
the stability of the evolving interfaces with respect to small
perturbations [1,32]. Another useful linear input is the predic-
tion of the typical number of interfacial fingered deformations.
It is known that, in the linear regime, different interfacial
Fourier modes that describe the shape of the perturbed inter-
faces grow independently of each other, commonly increasing
or decaying exponentially as time progresses [33,34,39]. In
this purely linear scenario, due to the noninteracting nature
of the participating modes, nothing unexpected happens re-
garding the shape of the resulting fingering structures, and
reasonably unstructured fingers are formed. Essentially, the
morphology of the linear fingers is merely sinusoidal, and
basically determined by the growth of the fastest growing
mode.

On the other hand, perturbative mode-coupling analyses
show that the consideration of weakly nonlinear contributions
introduces nontrivial couplings among the various different
interfacial Fourier modes [34,48,49,53–59]. These couplings
drive the growth of modes that are not dynamically active in
the linear stage. Such emergent modes are in turn responsible
for the development of distinctive morphological features of
the produced nonlinear patterns. As a consequence of mode
coupling, the resulting interfacial lobes can assume a variety
of shapes, leading to a much more diverse pattern-forming
scheme. Moreover, it has been found that, after a transient
purely linear regime, and due to nonlinear effects, the mode
amplitudes stop increasing exponentially and eventually satu-
rate [33,34,39]. These nonlinear effects lead to the formation
of weakly nonlinear patterns that reach a stationary configu-
ration. As will become clear during the course of this paper,
our second-order mode-coupling method offers the possibil-
ity to assess various morphological nonlinear features of the
confined MR fluid annulus under crossed magnetic fields,
including the establishment of stationary patterns.

In this section, we make use of Eqs. (13) and (14), and
apply our weakly nonlinear theory to investigate how the
magnetic-field-induced rheological properties of the MR fluid
annulus impact the shape of the emerging fingering patterns.
The main objective of our weakly nonlinear, mode-coupling
study is to extract useful physical information about the

complicated pattern-forming dynamics of the system, already
at the lowest nonlinear order [i.e., at second order in ζn(t ) and
εn(t )].

Throughout this work, we consider the nonlinear coupling
of a finite number N (N = 40) of participating Fourier modes:
the fundamental mode n, and its harmonics 2n, 3n, . . . , 40n.
This large number of modes is used to produce annular ring
structures having very smooth interfaces. We take the funda-
mental mode n as given by the closest integer to the fastest
growing mode nmax, i.e., the mode of maximum linear growth
rate at the final time of the evolution t = t f , obtained by
the condition {dRe[λk (n, t f )]/dn}|n=nmax = 0, where Re[z] de-
notes the real part of a complex number z, and λk are given in
Eqs. (17) and (18). Note that, since the growth rates λ1(n, t )
and λ2(n, t ) coincide very quickly for times much smaller than
the final times t f considered, in calculating n = nmax one can
use either k = 1 or k = 2 [33].

To generate the nonlinear shapes, we rewrite the complex
perturbations ζ (θ, t ) [ε(θ, t )] in terms of the real-valued
cosine an(t ) = ζn(t ) + ζ−n(t ) [ān(t ) = εn(t ) + ε−n(t )], and
sine bn(t ) = i(ζn(t ) − ζ−n(t )) [b̄n(t ) = i(εn(t ) − ε−n(t ))]
amplitudes. With no loss of generality, we set the phase
of the fundamental mode so that an > 0, ān > 0, and take
the initial conditions an(0) = ān(0) = a2n(0) = ā2n(0) =
· · · = a40n(0) = ā40n(0) = 10−5. Similarly, we consider
that bn(0) = b̄n(0) = b2n(0) = b̄2n(0) = · · · = b40n(0) =
b̄40n(0) = 0. The time evolution of all these mode amplitudes
is then obtained by numerically solving the corresponding
coupled nonlinear differential equations, given by expressions
(13) and (14).

We emphasize that our numerical solutions respect the
restrictions imposed by the Darcy-law-based theoretical
modeling of the system [31,32]: It does not handle self-
intersections of the inner and outer interfaces of the ring (b
must be the smallest length scale of the problem), and it obeys
conservation of MR fluid annular ring area as time progresses
(all fluids involved are incompressible).

A. Dominant radial field

In the framework of this study, it is crucial to figure out how
the dimensionless parameters of the problem (NBr , NBa, χ ,
S0, ϒ , and R) affect the shape and nonlinear responses of the
fingered MR fluid ring-shaped patterns. For the sake of clarity
and understanding of the main physical effects involved, and
without affecting the validity and relevance of our theoretical
analysis, we concentrate our attention on the most influential
parameters of the system. Thus, since we are dealing with a
MR fluid annulus, we focus on scrutinizing how the material
rheological properties of this magnetic fluid (represented by
ϒ), and the nontrivial coupling between the disjoint, inner and
outer interfaces of the annular layer (expressed by R) impact
the overall morphology and dynamic behavior of the annular
structures. In conjunction with this, we study how the external
radial and azimuthal magnetic fields (described by NBr and
NBa) influence the system. This is done for representative val-
ues of the remaining dimensionless parameters of the problem
(χ and S0). We stress that, while presenting our theoretical
results, we make sure that the values of all relevant dimension-
less quantities we utilize are consistent with realistic physical
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TABLE I. Summary of key dimensionless parameters.

Parameter Symbol Definition Typical values

Radial magnetic Bond number NBr μ0H 2
0 r0/σ 0 � NBr � 60

Azimuthal magnetic Bond number NBa μ0I2/(4π 2σ r0) 0 � NBa � 100
Magnetic susceptibility χ χ 0.4 � χ � 2
Yield stress at zero magnetic field S0 3σy0r2

0/(σb) 0 � S0 � 10
Magnetic-field-dependent yield stress ϒ αr0/(bμ0) 0 � ϒ � 1
Interfacial coupling strength R R1/R2 0 � R � 0.95

parameters related to existing Hele-Shaw cell experiments
[31,32], magnetic field arrangements [36,38], and material
properties of MR fluids [4,5,8,60,61]. Table I summarizes
all of the relevant key dimensionless parameters used in our
study.

We start our discussion by analyzing how the produced
interfacial patterns depend on the leading controlling param-
eters of the MR fluid annular-ring system: ϒ and R. Initially,
we focus on cases in which the applied radial magnetic field
component is dominant. This is done in Figs. 2–6. In Sec. III B
we address the cases in which the azimuthal magnetic field is
more intense than its radial counterpart. The reason for con-
centrating our attention on these two important situations in
Secs. III A and III B is the fact that under such circumstances
we have been able to find stationary-state MR fluid annular
patterns.

Figure 2 displays a typical set of weakly nonlinear MR
fluid annular patterns for which NBr = 56 and NBa = 20. In
the columns of Fig. 2 the resulting shapes are disposed for
three increasing values of the magnetic yield stress parameter:
ϒ = 0 [Figs. 2(a), 2(d), and 2(g)]; ϒ = 0.3 [Figs. 2(b), 2(e),
and 2(h)]; and ϒ = 0.5 [Figs. 2(c), 2(f), and 2(i)]. In the
rows of Fig. 2 the pattern-forming structures are arranged
for three values of the coupling strength parameter: R = 0.6
[Figs. 2(a)–2(c)]; R = 0.8 [Figs. 2(d)–2(f)], and R = 0.88
[Figs. 2(g)–2(i)]. We point out that in Fig. 2, as well as in all
other figures of this paper that display annular-shaped struc-
tures, the patterns shown have already reached a stationary
shape for the final times t f chosen to depict them. In order to
give the reader an immediate idea of how the applied magnetic
fields relate to the patterns, we also plot a few magnetic field
lines (thin lines in Fig. 2).

The final times t f and fundamental modes n = nmax for
the structures portrayed in Fig. 2 are t f = 0.012, n = 8
[Fig. 2(a)]; t f = 0.022, n = 6 [Fig. 2(b)]; t f = 0.05, n = 5
[Fig. 2(c)]; t f = 0.013, n = 8 [Fig. 2(d)]; t f = 0.03, n =
6 [Fig. 2(e)]; t f = 0.08, n = 5 [Fig. 2(f)]; t f = 0.014, n = 7
[Fig. 2(g)]; t f = 0.047, n = 6 [Fig. 2(h)]; and t f = 1.7, n = 2
[Fig. 2(i)]. In all situations of Fig. 2, R2 = 1 and χ = 1.5.
Moreover, notice that in Fig. 2, while plotting the various
patterns, we keep the outer radius R2 of the MR fluid annulus
fixed. Finally, throughout this work we set the parameter S0

that expresses the yield-stress contribution in the absence of
an applied magnetic field as being zero (S0 = 0). This is done
without any loss of generality, since S0 is usually very small,
and only appears at the linear level of the dynamics [see
Eqs. (13)-(16) and (A1)–(A11)].

Figures 2(a)–2(c) show how ϒ influences the morphology
of the annular structures for smaller values of R (R = 0.6),

i.e., for situations involving thick annuli. In Fig. 2(a) since
ϒ = 0 and S0 = 0 all yield stress effects vanish, and one has a
Newtonian magnetic fluid behavior, leading to the formation
of an eightfold polygonal-like annular pattern (n = nmax = 8),
having a deformed outer boundary, and an almost perfectly
circular inner interface. At the outer border of the annulus,
one observes the rising of skewed fingers having relatively
sharp tips. These peripheral fingers are bent in the direction
of the external combined magnetic field H (counterclockwise
direction), assuming an asymmetric profile. The morpholog-
ical features of the MR fluid annulus illustrated in Fig. 2(a)
for ϒ = 0 are analogous to the ones shown by equivalent
annular ferrofluid shapes studied in Ref. [33]. The asymmetry
of the fingers located at the outer interface of the annulus, as
identified in Fig. 2(a), is due to the magnetic normal stress
associated with the magnetic traction term proportional to
(M · n̂)2 present in the pressure jump boundary conditions
[Eqs. (7) and (8)]. This intrinsically nonlinear magnetic trac-
tion term induces unequal normal stress on either side of the
finger tip profile, breaking its symmetry, and making it bend
in the direction of H.

Another important magnetically induced feature of the MR
fluid annular patterns depicted in Fig. 2 is the fact that these
shapes perform a rigid rotational motion. As a matter of fact,
we have found that all MR fluid annular structures presented
in this section rotate in the counterclockwise direction (i.e., in
the direction of the combined field H) with a predetermined
angular velocity regulated by magnetic effects. Additionally,
since all these MR fluid annular morphologies have reached
a stationary state, their shapes do remain invariant while they
rotate. We refer the reader to the videos provided in the Sup-
plemental Material [62] which clearly illustrate the rotational
motion of the patterns displayed in Figs. 2 and 7.

After analyzing Fig. 2(a) for ϒ = 0, we turn our attention
to the action of the parameter ϒ > 0 on the shape of the MR
fluid annular patterns for R = 0.6 [Figs. 2(b) and 2(c)]. The
most evident shape modification is related to a decrease in
the number of fingers arising at the periphery of the annulus
when ϒ is augmented: while it is n = nmax = 8 for ϒ = 0
in Fig. 2(a), it is reduced to n = nmax = 6 (n = nmax = 5) for
ϒ = 0.3 (ϒ = 0.5) in Fig. 2(b) [Fig. 2(c)]. This happens while
the shapes of the inner interfaces of the rings in Figs. 2(a)–2(c)
remain essentially circular, something that makes sense since
the annuli are thick and their interfaces weakly coupled.

Another noteworthy morphological aspect associated with
the increase of ϒ in Figs. 2(a)–2(c) refers to the shape
of the fingered protrusions appearing at the outer interfaces
of the annuli: Fig. 2(a) shows an outer boundary crowned by
bent spikes, defining fingers that are clearly asymmetric, and
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FIG. 2. Representative weakly nonlinear patterns for a confined MR fluid annulus in a crossed magnetic field, where the radial field is
dominant. The patterns are obtained for [(a), (d), (g)] ϒ = 0, [(b), (e), (h)] ϒ = 0.3, and [(c), (f), (i)] ϒ = 0.5. In addition, we take [(a)–(c)]
R = 0.6, [(d)–(f)] R = 0.8, and [(g)–(i)] R = 0.88. Moreover, R2 = 1, χ = 1.5, S0 = 0, NBr = 56, and NBa = 20. In this figure, and in the rest
of this work, all depicted annular-ring weakly nonlinear patterns are stationary shapes. To better guide the eye regarding the way the applied
magnetic fields relate to the patterns, a few magnetic field lines are also shown.

relatively sharp at their tips. However, for larger ϒ [Figs. 2(b)
and 2(c)] one observes the formation of fingers that become
more and more symmetric, and blunt at their ends. In sum-
mary, from the analysis of Figs. 2(a)–2(c) for thick annuli
(R = 0.6), by increasing the magnetic yield stress parameter
ϒ one reduces the number of emergent fingers, making them
more symmetric in shape, and progressively rounded at their
extremities.

Nevertheless, we still have to examine how the basic
pattern-forming responses identified in Figs. 2(a)–2(c) stand
if one considers thinner MR fluid annuli, and ϒ is increased.
These behaviors are illustrated in Figs. 2(d)–2(f) for R = 0.8,
and in Figs. 2(g)–2(i) for R = 0.88. The most noticeable
feature of these thinner annuli structures is the fact that not
only the outer interfaces but also the inner boundaries of the
annular ring structures deform. This is due to the stronger
coupling between the interfaces for these larger values of the

coupling parameter R. Irrespective of the values of R used,
by inspecting Figs. 2(d)–2(f) and Figs. 2(g)–2(i), one finds
that the main conclusions reached in Figs. 2(a)–2(c) regarding
the role played by increasing ϒ remain valid. That is, patterns
having a diminished number of more symmetric and less sharp
fingers are generated for R = 0.8 and R = 0.88. It is worth
noting the peculiar oval-like shape of the pattern displayed
in Fig. 2(i) for the largest values of ϒ and R considered in
Fig. 2. Actually, we have verified that for yet larger values of
ϒ and R both the outer and inner interfaces of the MR fluid
annulus acquire perfectly circular shapes. It is also pertinent
to note the effect of the coupling strength parameter in the
sixfold patterns obtained for ϒ = 0.3 in Figs. 2(b), 2(e), and
2(h) where it is clear that, for a fixed number of fingers
(n = nmax = 6), larger R increases the bluntness of the fingers.
Moreover, by comparing the patterns in Figs. 2(a) and 2(c)
with those in Figs. 2(g) and 2(i), we conclude that for a given
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FIG. 3. Normalized interfacial perimeter Lk (t f ) [Eq. (19)] with respect to variations in ϒ , for three values of R, corresponding to the
situations leading to the patterns illustrated in Fig. 2. The perimeters for the outer interfaces (k = 2) of the MR fluid annuli are shown in (a),
while the corresponding perimeter values for the inner interfaces (k = 1) are plotted in (b). All physical parameters used here are identical to
those utilized in Fig. 2. To better guide the eye, in addition to just considering ϒ = 0, 0.3, and 0.5 as in Fig. 2, a few extra values of ϒ have
been included. The values of the fundamental modes n = nmax for each case are also indicated.

FIG. 4. Variation of the phase velocity vp(nmax, t f ) with the magnetic yield stress parameter ϒ , for (a) nmax = 7 and (b) nmax = 6. The
linear (dashed lines) and weakly nonlinear (solid lines) cases are considered, by taking R = 0.6, 0.8, and 0.88. The other physical parameters
utilized in this figure are identical to the ones used in Fig. 2.

FIG. 5. Asymmetry function As(t ) [Eq. (22)] evaluated at the final time t = t f , plotted in terms of ϒ for three values of the azimuthal
magnetic Bond number NBa. This is done for the (a) outer and (b) inner interfaces of a MR fluid annulus for which nmax = 7 and R = 0.88.
The weakly nonlinear annular ring shapes corresponding to points I, II, and III given by the intersection of the vertical dashed lines at ϒ = 0.1
with the curves for the three NBa considered are presented in Fig. 6. The remaining physical parameters used in this figure are equal to those
set in Fig. 2.
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FIG. 6. Close-up view of representative weakly nonlinear inter-
facial annular structures for the outer and inner boundaries of the
MR fluid patterns that arise at points I, II, and III in Fig. 5 for
ϒ = 0.1. The angular sector delimited by the dashed lines is given by
ϕ = 2π/7. Moreover, in I, α = 58.9% of ϕ, in II, β = 58.5% of ϕ,
and in III, γ = 56.7% of ϕ. This indicates that the fingers located at
the outer interface of the annulus become less asymmetric for larger
values of NBa.

value of ϒ , larger values of R provoke a reduction in the
number of fingers. In summary, the results displayed in Fig. 2
demonstrate that by manipulating the material properties of
the MR fluid (ϒ) and the thickness of the annuli (R) one
can conveniently adjust and design the shape of the resulting
patterns.

After discussing the most characteristic morphological
properties of the MR fluid annular patterns presented in Fig. 2,
we continue our investigation by performing a more quan-
titative evaluation of the stability behavior of the inner and
outer boundaries of the annular ring structures, when ϒ and R
are varied. A convenient and simple way to assess the degree
of stability (or instability) of the inner and outer boundaries
of the annuli is provided by examining the behavior of the
perimeter of such interfaces as a function of ϒ , for a few
values of R. This is shown in Fig. 3 which plots the normalized
perimeter of the limiting interfaces of the MR fluid annulus at
the final time,

Lk (t f ) = 1

2πRk

∫ 2π

0

√
R2

k (t f ) +
[

dRk (t f )

dθ

]2

dθ, (19)

where the subscript k = 1 (k = 2) labels the inner (outer)
interface of the annular ring structure. The results shown
in Fig. 3 use the same parameters used to get the patterns
exhibited in Fig. 2, and also include a few additional values
of ϒ . More specifically, Fig. 3 illustrates how the normalized
perimeter Lk (t f ) varies as a function of ϒ , for the three values
of R utilized in Fig. 2, for the outer k = 2 [Fig. 3(a)] and inner
k = 1 [Fig. 3(b)] interfaces of the MR fluid annular structures.

The more quantitative results presented in Fig. 3 confirm
some of the visually based conclusions we have reached from
our discussion of Fig. 2. By examining Fig. 3 it is apparent
that, for given values of R and n = nmax, larger values of
ϒ tend to produce more stable inner and outer annular ring
interfaces, that have smaller perimeters and a reduced number
of fingers. It is also evident that variations of the perimeters
with ϒ are more intense for the outer interfaces of the MR
fluid annulus [note the different ranges in the vertical axes of
Figs. 3(a) and 3(b)]. This makes sense, since the more preva-
lent effects come from the radial magnetic field component
which tends to make the outer interface more unstable than
the inner one.

At this point, we examine how the parameters ϒ and R
influence the phase velocity vp(n, t ) associated with the rota-
tional motion of the MR fluid annulus caused by the crossed
magnetic field. Figure 4 plots the weakly nonlinear (WNL)
phase velocities of the fundamental mode n = nmax at the final
time t = t f (solid lines),

vp(n, t ) = −1

n
Im

[
ζ̇n(t )

ζn(t )

]
= −1

n
Im

[
ε̇n(t )

εn(t )

]
, (20)

which are numerically evaluated by using Eqs. (13) and (14).
Figure 4 also depicts the linear phase velocities for n = nmax

at t = t f (dashed lines),

vp(n, t ) = −1

n
Im [λ1(n, t )] = −1

n
Im [λ2(n, t )], (21)

where λ1(n, t ) [λ2(n, t )] is given by Eq. (17) [Eq. (18)].
The coupled-interface, linear phase velocities expressed in
Eq. (21) should not be confused with the decoupled phase ve-
locities V1 = −Im[�(n)]/n and V2 = −Im[�(n)]/n presented
in Sec. II when we discussed the thick annulus limit (R → 0)
in which the inner and outer interfaces do not interact. Equa-
tions (20) and (21) express the fact that, after the pattern
reaching a stationary state, both the inner and the outer in-
terfaces of the MR fluid ring have the same phase velocities
(i.e., the shape of the MR fluid annulus remains immutable
during its rotation).

Figure 4 displays the variation of the linear and weakly
nonlinear phase velocities vp(nmax, t f ) for a few values of
magnetic yield stress parameter ϒ , for the same values of
the coupling parameter R used in Fig. 2 (R = 0.6, 0.8, and
0.88), and for two representative values of the fundamental
mode, nmax = 7 [Fig. 4(a)] and nmax = 6 [Fig. 4(b)]. The
remaining parameters are identical to those used in Fig. 2.
Among the data shown in Fig. 4 one can find the behaviors
of the sixfold and sevenfold patterns portrayed in Fig. 2. First
of all, observe that the values of the phase velocities shown
are positive, indicating that all MR fluid annular patterns
rotate in the same direction as the external combined magnetic
field H (i.e., in the counterclockwise direction). Additionally,
by going through the data presented in Figs. 4(a) and 4(b),
one readily notices that the solid lines always lie below the
dashed ones. This means that nonlinear mode-coupling effects
introduce a correction in the values of the phase velocities pre-
dicted by the linear theory, decreasing their magnitudes. From
Figs. 4(a) and 4(b) is its also apparent that for lower values
of R (R = 0.6 and R = 0.8), while the linear phase velocities
remain unchanged as ϒ is varied, the WNL phase veloci-
ties decrease as ϒ assumes larger values. Nonetheless, for a
higher value of the coupling parameter R (R = 0.88), both the
linear and WNL velocities diminish as ϒ is increased. For
R = 0.88 one can also notice that the WNL prediction results
in stronger variations of the phase velocity as ϒ is augmented
than the ones predicted by the linear theory. These results
strengthen the relevance of performing a weakly nonlinear
mode-coupling analysis for the MR fluid annular problem
under crossed magnetic fields. After all, from Fig. 4 one can
verify that the WNL approach offers important corrections
to the purely linear prediction for phase velocity vp as the
controlling parameters ϒ and R are modified.
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FIG. 7. Typical examples of weakly nonlinear, stationary patterns for a confined MR fluid annular ring in a crossed magnetic field, when
the azimuthal magnetic field is dominant. The patterns are produced for [(a), (d), (g)] ϒ = 0, [(b), (e), (h)] ϒ = 0.05, and [(c), (f), (i)]
ϒ = 0.12. The values of the coupling strength parameter are [(a)–(c)] R = 0.6, [(d)–(f)] R = 0.75, and [(g)–(i)] R = 0.835. Additionally,
R1 = 1, χ = 0.75, S0 = 0, NBa = 100, and NBr = 5. As we did in Fig. 2, a few applied magnetic field lines are also plotted.

As commented earlier in this work, one of the most con-
spicuous behaviors of magnetic fluid annular systems under
the action of the combined magnetic field H [Eq. (3)] is the
fact that the ring-shaped structures rotate in the direction H,
making the emergent fingers turn also in the direction of H.
This leads to the formation of bent interfacial fingered lobes
having asymmetric profiles. We close our analysis of the situa-
tion in which the radial field is dominant by discussing Figs. 5
and 6. In Fig. 5 we examine how the asymmetric shape of the
fingers that arise in the outer [Fig. 5(a)] and inner [Fig. 5(b)]
interfaces of the MR fluid annulus responds to variations on
the magnetic yield stress parameter ϒ . This is investigated
by considering three values of the azimuthal Bond number,
NBa = 10, 20, and 30, whereas the radial Bond number is
kept fixed. As in Fig. 2 we take NBr = 56. The representative
situations shown in Fig. 5 concentrate on the behavior of
the fingers for thin (R = 0.88), sevenfold (n = nmax = 7) MR
fluid annular patterns, like the one depicted in Fig. 2(g).

To quantify the asymmetry of the fingers, we
follow Refs. [34,63,64] and introduce the asymmetry
function

As(t ) = 〈H[ξ ]3〉
〈ξ 2〉3/2

, (22)

where 〈·〉 = 1
2π

∫ 2π

0 (·)dθ , H[·] is the Hilbert transform, and
ξ = ζ (θ, t ) [ξ = ε(θ, t )] for the inner (outer) interface of the
annular ring structure. The fingers tilt in the counterclockwise
(clockwise) direction if As(t ) > 0 [As(t ) < 0]. Figure 5 shows
how the asymmetry function evaluated at the final time t = t f ,
As(t f ), varies with ϒ for three values of NBa, for the outer
[Fig. 5(a)] and inner [Fig. 5(b)] interfaces of the MR fluid
annulus. It is considered that nmax = 7 and R = 0.88.

From the data illustrated in Fig. 5(a) for the outer interface
of the MR fluid annulus, one can verify that for a given ϒ , the
larger the azimuthal magnetic Bond number NBa the smaller
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the finger asymmetry. This is exemplified by the points I, II,
and III given by the intersections of the vertical dashed line
for ϒ = 0.1 with the curves of As(t f ) for the three chosen
values of NBa. On the other hand, for a specific NBa and as ϒ

is increased, one can also see that the function As(t f ) behaves
nonmonotonically with ϒ : after an initial increase, the func-
tion reaches a maximum, and then falls off. This indicates that
for a given NBa one can conveniently tune ϒ in such a way that
the finger asymmetry is maximized, or minimized. It should
be mentioned that these conclusions are valid for the whole
interval 10 � NBa � 30. On the other hand, for smaller values
of NBa (i.e., for 0 � NBa � 10), not shown in Fig. 5, we have
also identified other possible behaviors: For example, when
NBa = 0 the fingers emerging at the outer interface of the
annulus are perfectly symmetric, whereas for 0 < NBa � 10
the asymmetry function As(t f ) increases with increasing ϒ .

The analysis of the asymmetry of the fingers that arise in
the inner interface of the MR fluid annulus is not as simple as
for the outer interface fingers. First, by inspecting the vertical
axes of Figs. 5(a) and 5(b) one realizes that magnitudes of the
asymmetry function As(t f ) for the outer interface are consid-
erably larger than the ones obtained for the inner boundary
of the MR fluid ring. This means that for the cases we are
currently investigating, finger asymmetry effects are much
more easily observable at the outer interface. Although these
asymmetry effects are less intense, they are still of interest, as
displayed in Fig. 5(b). The most remarkable feature detected
in Fig. 5(b) is the fact that for NBa = 20 and 30 the function
As(t f ) changes sign as ϒ is increased. Thus, in these cases,
even though the MR fluid annulus rotates in the counterclock-
wise direction (i.e., in the direction of H), depending on the
value of ϒ , the fingers can tilt either in the clockwise [for
As(t f ) < 0] or in the counterclockwise direction [for As(t f ) >

0]. However, as it will become evident in Fig. 6, this appealing
behavior is very hard to be pictorially observed at the weakly
nonlinear level.

To illustrate a bit more vividly some of the aspects about
the asymmetry of the fingers described in Fig. 5, we present
Fig. 6. In Fig. 6 we portray the interfacial annular patterns
that arise at points I, II, and III indicated in Fig. 5. In or-
der to facilitate the visualization of the morphological details
of the resulting fingering structures, instead of plotting the
entire annular pattern, we show a close-up view of part of the
annulus, focusing on an angular sector of aperture ϕ = 2π/7
(delimited by dashed lines), near one of the fingered projec-
tions. For the reasons pointed out above, we aim attention at
the fingers located at the outer interface of the annulus. Notice
that in Fig. 6 the aforementioned angular sector is limited by
two dashed lines connecting the center of the annulus to the
two local minima of the outer interface. On the other hand, the
solid line joins the center of the ring to the local maximum of
the outer interface. For a perfectly symmetric finger, the angle
defined by the solid line and one of the dashed lines would
be 50% of ϕ, or simply π/7. However, for the structures
depicted in Fig. 6 we have that in I, α = 58.9% of ϕ, in II,
β = 58.5% of ϕ, and in III, γ = 56.7% of ϕ. These more
visually evident findings are consistent with the data points
I, II, and III indicated in Fig. 5(a) for ϒ = 0.1, implying that
the fingers of the outer interface become less asymmetric as
NBa is increased. These results are also compatible with the

fact that the azimuthal magnetic field tends to stabilize the
outer interface of the the magnetic fluid annulus, as discussed
in Sec. II.

Performing similar measurements for the inner interfaces
yields in I, α = 50.28% of ϕ, in II, β = 50.98% of ϕ, and in
III, γ = 50.77% of ϕ, being also in line with the data points
I, II, and III portrayed in Fig. 5(b) for ϒ = 0.1. Therefore,
for fixed values of ϒ and NBr , the azimuthal magnetic field
component can be used to control the asymmetry of the fingers
formed at the outer and inner borders of the MR fluid annulus.

B. Dominant azimuthal field

In this section, we direct our attention to cases in which
the effect of the azimuthal magnetic field component of the
crossed magnetic field H dominates over the one provoked by
the radial component of H. This is done in Figs. 7–11.

We initiate our analysis by presenting in Fig. 7 a character-
istic collection of possible MR fluid annular patterns for which
NBa = 100 and NBr = 5. In addition, we have that R1 = 1 and
χ = 0.75. As in Sec. III A, for all situations studied in this
section we set S0 = 0. In the columns of Fig. 7 the patterns
are exhibited for three increasing values of the magnetic yield
stress parameter: ϒ = 0 [Figs. 7(a), 7(d), and 7(g)], ϒ = 0.05
[Figs. 7(b), 7(e), and 7(h)], and ϒ = 0.12 [Figs. 7(c), 7(f),
and 7(i)]. In the rows of Fig. 7 the ring-shaped structures
are arranged for three magnitudes of the coupling strength
parameter: R = 0.6 [Figs. 7(a)–7(c)]; R = 0.75 [Figs. 7(d)–
7(f)], and R = 0.835 [Figs. 7(g)–7(i)]. The stationary shapes
depicted in Fig. 7 are taken for the final times t f , and funda-
mental modes n = nmax given by t f = 0.06, n = 5 [Fig. 7(a)];
t f = 0.09, n = 4 [Fig. 7(b)]; t f = 0.22, n = 3 [Fig. 7(a)];
t f = 0.08, n = 4 [Fig. 7(d)]; t f = 0.10, n = 4 [Fig. 7(e)];
t f = 0.23, n = 3 [Fig. 7(f)]; t f = 0.10, n = 4 [Fig. 7(g)];
t f = 0.11, n = 4 [Fig. 7(h)]; and t f = 0.48, n = 3 [Fig. 7(i)].
Note that while plotting Fig. 7, we keep the inner radius R1

fixed, so when we increase the value of R = R1/R2, the outer
radius R2 becomes smaller. This is the reason why the annular
patterns shown in Fig. 7 look smaller when larger R are taken.

The essential features of the patterns in Fig. 7 can be
classified as follows. The most evident aspect of the annular
structures generated under dominant azimuthal field condi-
tions is the fact that the strongest interfacial perturbations
occur at the inner boundary of the ring. Such a weakly
nonlinear observation is in consonance with our discussion
performed in Sec. II, where we have seen that the azimuthal
magnetic field component tends to destabilize (stabilize) the
inner (outer) interface of the MR fluid annulus. By the way,
note that such a nonlinear feature exhibited in Fig. 7 is true
irrespective of the values of ϒ and R considered. This em-
blematic visual facet of the patterns in Fig. 7 is clearly in
contrast to what has been seen in Fig. 2, when the radial
field is the prevalent one. In the situations depicted in Fig. 2,
the more intense deformations take place at the outer bor-
der of the annulus. Another particularity of the annular-ring
shapes illustrated in Fig. 7 refers to the conformation of the
structures formed at the inner boundary: one observes the
rising of polygonal-like, n-fold patterns having tips (vertices)
and edges of different formats. An additional characteristic
of the inner interfaces is that, for a given R, and as ϒ is in-
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FIG. 8. Normalized interfacial perimeter Lk (t f ) [Eq. (19)] plotted as a function of ϒ , for three values of R, corresponding to cases associated
with the annular shapes portrayed in Fig. 7. The perimeters for the outer interfaces (k = 2) of the MR fluid annuli are depicted in (a), while the
equivalent perimeter values for the inner interfaces (k = 1) are shown in (b). All physical parameters utilized here are equal to those used in
Fig. 7. To facilitate visualization of the data, in addition to just including ϒ = 0, 0.05, and 0.12 as in Fig. 7, a few additional values of ϒ are
provided. The values of the fundamental modes n = nmax for each case are also given.

FIG. 9. Behavior of the phase velocity vp(nmax, t f ) of the fundamental mode n = nmax at time t = t f as the magnetic yield stress parameter
ϒ is modified, for (a) nmax = 4, and (b) nmax = 3. The linear (dashed lines) and weakly nonlinear (solid lines) cases are displayed, by
considering three values of the coupling strength parameter R = 0.6, 0.75, and 0.835. The remaining physical parameters used in this figure are
equal to those employed in Fig. 7.

FIG. 10. Asymmetry function As(t ) [Eq. (22)] at the final time t = t f , plotted as a function of ϒ for increasing values of the radial magnetic
Bond number NBr : 0, 1, 3, and 8. The data for the (a) outer and (b) inner interfaces of the annulus are shown considering that nmax = 4 and
R = 0.75. The weakly nonlinear annular patterns corresponding to points I, II, III, and IV given by the intersection of the vertical dashed lines
at ϒ = 0.03 with the curves for the four NBr of interest are displayed in Fig. 11. The other physical parameters utilized in this figure are the
same as the ones used in Fig. 7.
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FIG. 11. Representative weakly nonlinear MR fluid annular pat-
terns that arise at points I, II, III, and IV in Fig. 10 for ϒ = 0.03.

creased, one identifies an enhanced stabilization of the internal
polygonal structures, and a tendency toward a reduction on
the number of generated fingers. Under such circumstances,
the vertices tend to change from thin and sharp to wide and
blunt, and edges vary from concave to convex. Furthermore,
it is quite clear that the outer interfaces become progressively
deformed for higher values of R due to the stronger coupling
with the inner boundaries of the annuli. It is also worthwhile
to note that as ϒ and R are modified, the annular structures
can reveal some degree of misalignment between the inner and
outer interfaces, signaling the presence of interfacial asymme-
try. For instance, by inspecting Figs. 7(b), 7(e), and 7(h) for
ϒ = 0.05, one can see that the outer interfaces become more
asymmetric for larger values of R. Therefore, from Fig. 7 one
can verify that by appropriately adjusting the values of the
controlling parameters ϒ and R one can construct a variety
of MR fluid annular patterns having different shapes, thick-
nesses, and symmetry properties.

Similar to what we did in Sec. III A, after the presenta-
tion of the characteristic pattern-forming structures that arise
under the condition in which the azimuthal magnetic field
component is dominant (Fig. 7), we proceed by exploiting
in a more quantitative fashion some of their most important
behaviors. More specifically, we are interested in examining
how the morphology of the patterns, their stability, number of
fingers, phase velocities, and asymmetry properties respond to
variations in the most important governing parameters of the
system, namely, ϒ and R.

Figure 8 shows how the normalized interfacial perime-
ter Lk (t f ) [Eq. (19)] varies with ϒ , for the three values of
the coupling strength parameter R used in Fig. 7: 0.6, 0.75,
and 0.835. Lk (t f ) is measured both for the outer (k = 2)
[Fig. 8(a)], and inner (k = 1) [Fig. 8(b)] interfaces of the
annular ring structures. The results illustrated in Fig. 8 utilize
the same parameters used to generate the patterns exhibited

in Fig. 7, but also include data for a few additional values
of ϒ .

By observing Fig. 8 one readily notices that regardless of
the values of n = nmax and R, and both for the outer [Fig. 8(a)]
and inner [Fig. 8(b)] interfaces, Lk (t f ) decreases as ϒ in-
creases. Furthermore, in contrast to what we have seen in
Fig. 3, note that in Fig. 8 the perimeters of the inner interfaces
are larger than the perimeters of the corresponding outer in-
terfaces. In general, for the outer interfaces [Fig. 8(a)], which
tend to become increasingly unstable when the coupling be-
tween the interfaces of the annuli is more intense, it makes
sense that higher values of R tend to lead to larger perimeters
[see, for example, the curves for n = 4 in Fig. 8(a)]. How-
ever, a different behavior can also be observed: For instance,
for the curves related to n = 3 in Fig. 8(a), this is not true.
As the instabilities on the outer interface are mostly induced
by the coupling with the inner one, a more stable inner inter-
face will lead to a more stable outer interface. For example,
by examining Fig. 7 one can see that the inner interface for
R = 0.835 [Fig. 7(i)] is less deformed than the inner one for
R = 0.75 [Fig. 7(f)]. Therefore, even though the coupling is
larger, the outer interface in Fig. 7(i) is less deformed than the
outer interface in Fig. 7(f). Finally, from Fig. 8(b) one verifies
that the behavior of the perimeters of the inner interfaces with
R is quite robust, and for all n = nmax one can see that larger
values of R consistently lead to smaller Lk (t f ). This can be
justified as follows. As the inner interface couples with the
outer one to destabilize it, the outer interface interacts back,
but trying stabilize the inner one (recall that larger azimuthal
fields tend to stabilize the outer border of the annulus). This
finding from Fig. 8(b) agrees with the behavior of the inner
interfaces seen in Figs. 7(b), 7(e), and 7(h) for n = 4, and
Figs. 7(c), 7(f), and 7(i) for n = 3.

We advance by examining how the phase velocity
vp(nmax, t f ) behaves as ϒ is varied, for R = 0.6, 0.75, and
0.835 (Fig. 9). This is done for nmax = 4 [Fig. 9(a)] and
nmax = 3 [Fig. 9(b)]. The solid lines represent the WNL phase
velocities given by Eq. (20), while the dashed lines express
the linear phase velocities calculated by Eq. (21). The rest of
the physical parameters used to plot Fig. 9 are the same as the
ones used in Fig. 7.

One remarkable point about Fig. 9 refers to the sign
of phase velocity. By scrutinizing Fig. 9, one immediately
verifies that vp(nmax, t f ) is negative for all values of the pa-
rameters. This means that under the circumstances studied
in this section, i.e., dominant azimuthal magnetic field, the
stationary state MR fluid annular patterns pictured in Fig. 7
rotate in the clockwise direction (see the Supplemental Ma-
terial [62]), in opposition to the (counterclockwise) direction
of the combined magnetic field H. This should be contrasted
with the behaviors of the patterns shown in Fig. 2 for the case
in which the radial magnetic field component is dominant,
whose patterns rotate in the counterclockwise direction, as
demonstrated in Fig. 4 where vp(nmax, t f ) > 0. Therefore, as
it was the case for ferrofluid annular rings in crossed magnetic
fields [33], by changing the relative intensity of radial and
azimuthal magnetic field components, one is able to control
the direction of rotation of the MR fluid structures. On top of
this, in the case of MR fluid annular structures, we found an
extra capability: in addition to the direction of rotation, one
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can tune the magnitude of the phase velocities by properly
adjusting the values of the controlling parameters ϒ and R.
This is clearly seen in Figs. 9(a) and 9(b). By paying attention
to the solid lines (WNL results), one notices that for a given
ϒ the phase velocities increase with growing R. On the other
hand, for a given R the phase velocities can either increase or
decrease as ϒ assumes larger values. Thus, in the case of MR
fluid annulus under crossed magnetic fields, by changing the
strength of the applied field components, as well as the values
of the magnetic yield stress ϒ and the coupling parameter R,
one is able to control the direction and magnitude of the phase
velocity (or, equivalently, the angular velocity) of the station-
ary patterns. Another noteworthy point revealed by Fig. 9 is
the fact that in most of the situations outlined, there is a con-
siderable difference between the WNL (solid lines) and linear
(dashed lines) predictions for the phase velocities, indicating
that in general the WNL approach predicts phase velocities
whose magnitudes are smaller than the values estimated by
the purely linear theory.

We close this section by analyzing Figs. 10 and 11. Fig-
ure 10 illustrates how the asymmetry function As(t ) [Eq. (22)]
at the final time t = t f varies with ϒ for growing values of
the radial magnetic Bond number NBr : 0, 1, 3, and 8. We set
nmax = 4, R = 0.75, and describe the behavior of As(t ) for the
outer [Fig. 10(a)] and inner [Fig. 10(b)] boundaries of the MR
fluid annular ring. The rest of the physical parameters used in
Figs. 10 and 11 are the identical to those applied in Fig. 7.

First, from the inspection of Figs. 10(a) and 10(b) it is
apparent that when NBr = 0, both the outer and the inner
interfaces are entirely symmetric, meaning that As(t f ) = 0 for
all values of the magnetic yield stress parameter ϒ . This is
reasonable, since interfacial asymmetry only arises if both
azimuthal and radial fields are nonzero (see Sec. II). It is also
clear from Fig. 10(a) that for the outer interface and for NBr �
1, asymmetry tends to increase as ϒ is increased. However, for
larger values of ϒ the asymmetry function eventually reaches
a maximum, and then starts to decrease. Moreover, for a fixed
value of ϒ in Fig. 10(a) (e.g., for ϒ = 0.03, identified by a
vertical dashed line), the asymmetry tends to decrease as NBr

is augmented [see points II, III, and IV indicated in Fig. 10(a)].
A more pictorial account about this last observation can be
seen by examining the outer interfaces of the patterns I, II,
III, and IV portrayed in Fig. 11, which are the resulting
annular structures corresponding to points I, II, III, and IV
shown in Figs. 10(a) and 10(b). Note that in Fig. 11, pattern I
(for NBr = 0) is quite symmetric, while the outer interface of
pattern II (for NBr = 1) is evidently asymmetric (it is rotated
with respect to the orientation of the inner interface), pattern
III (for NBr = 3) shows a bit less asymmetric outer interface,
and finally pattern IV (for NBr = 8) displays a pattern having
a fairly more symmetric outer interface. On the other hand, by
analyzing Fig. 11 the asymmetry of the inner interfaces is not
as evident as those unveiled by the outer borders of the annuli.

It turns out that the asymmetry behaviors of the inner
interfaces are a bit different from the ones discussed above
for the outer boundaries. This can be verified by examin-
ing Fig. 10(b). Contrary to what happens in Fig. 10(a), in
Fig. 10(b) one can see that for NBr � 1 the asymmetry tends
to decrease as ϒ is increased. Another interesting aspect re-
vealed by the data in Fig. 10(b) is that, depending on the

value of ϒ , the asymmetry can either increase or decrease
as NBr is enlarged. It is also interesting to point out that in
both Figs. 10(a) and 10(b) the asymmetry function As(t ) can
change sign (from negative to positive) as the parameters
ϒ and NBr are changed. Therefore, from the discussion of
Figs. 10 and 11, we conclude that for given values of ϒ and
NBa, proper manipulation of the radial magnetic field compo-
nent (via NBr) can be instrumental to determine the asymmetry
properties of the outer and inner boundaries of the MR fluid
annular patterns.

IV. CONCLUSION

In this work, we have studied the early nonlinear dynamics
of a MR fluid annulus, bordered by a nonmagnetic fluid, in
a Hele-Shaw cell. The annular ring structure is under the
influence of an in-plane magnetic field which is a combi-
nation of a radial and an azimuthal external magnetic field.
A perturbative, second-order mode-coupling theory has been
employed to study the distinctive interfacial pattern formation
resulting from the interaction of hydrodynamic, magnetic, and
yield-stress effects.

Our early nonlinear results revealed the development of
rotating, stationary state annular shapes presenting fingered
protrusions that may arise on the inner, outer, or even on
both boundaries of the MR fluid ring. Our theoretical scheme
allows one to probe a number of key morphological fea-
tures and dynamical responses of such annular patterns: in
particular, those related to the symmetry properties of the
deformed interfaces, and the rotation velocities of the result-
ing permanent profile shapes. We have found that many of
these important features of the ring-shaped patterns can be
controlled by tuning the magnitudes of the radial and az-
imuthal applied magnetic field components (NBr and NBa), the
magnetic yield stress properties of the MR fluid (ϒ), and the
coupling strength between the internal and external interfaces
of the annulus (R). Representative collections of possible MR
fluid annular shapes have been provided to highlight these
various findings.

The possibility of properly adjusting both the shape and
nonlinear dynamical responses of such confined MR fluid
annuli may find diverse future applications. As discussed in
the introduction of this work, very recent studies have in-
vestigated the potential usefulness of both ferrofluid [19–25]
and MR fluid [26] simply and doubly connected droplets to
serve as magnetically controllable, fluid-based soft robots.
These investigations have argued that owing to their unique
controllability, deformability, and adaptability, magnetic fluid
annular structures could be used in a wide range of ap-
plications including organ-on-a-chip, microfluidics, control
drug delivery, and enhanced mixing in restricted spaces. We
hope that our current theoretical study on magnetic-field-
manageable MR fluid annuli in the Hele-Shaw cell apparatus
offers an additional tool for exploring and testing some of
these practical applications under a well controlled, spatially
confined environment.
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APPENDIX: SECOND-ORDER MODE-COUPLING
FUNCTIONS

In this Appendix we give the expressions for the second-
order mode-coupling functions which have been presented in
Sec. II.

The second-order functions appearing in Eq. (13) are writ-
ten as

F (n, p) = −|n|
R1
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In addition,
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I (n, p) = −|n|
R2

, (A5)

and

J (n, p) = |n|
R1

{
(−R2|n| + 1)R|p|−|n|

1 − R2|p| sgn(np)

}
. (A6)

The second-order expressions in Eq. (14) are given by

F (n, p) = H (n, p), (A7)

G(n, p) = − 1

R2
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, (A8)

H(n, p) = F (n, p), (A9)

I (n, p) = |n|
R1

, (A10)

and

J (n, p) = |n|
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