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Exact relations for energy transfer in simple and active binary fluid turbulence
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Inertial range energy transfer in three-dimensional fully developed binary fluid turbulence is studied under
the assumption of statistical homogeneity. Using two-point statistics, exact relations corresponding to the energy
cascade are derived in terms of (i) two-point increments and (ii) two-point correlators. Despite having some
apparent resemblances, the exact relation in binary fluid turbulence is found to be different from that of the
incompressible magnetohydrodynamic turbulence [H. Politano and A. Pouquet, Geophys. Res. Lett. 25, 273
(1998)]. Besides the usual direct cascade of energy, under certain situations, an inverse cascade of energy is
also speculated depending upon the strength of the activity parameter and the interplay between the two-point
increments of the fluid velocity and the composition gradient fields. An alternative form of the exact relation is
also derived in terms of the “upsilon” variables and a subsequent phenomenology is proposed predicting a k−3/2

law for the turbulent energy spectrum.
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I. INTRODUCTION

Turbulence is a ubiquitous phenomenon in classical fluids,
typically characterized by its multiscale vortexlike structures
and a universal cascade of inviscid invariants (energy, helicity,
etc.) within the inertial range. For homogeneous and isotropic
turbulence of an incompressible fluid, the energy cascade
leads to a k−5/3 spectrum [1], whereas for isotropic magne-
tohydrodynamic (MHD) turbulence, a k−3/2 power spectrum
is predicted [2,3]. In real space, the universality of turbulence
can be understood in terms of exact scaling relations which
express the average flux rate (ε) of a cascading invariant
in terms of the statistical moments of two-point fluctuations
of the relevant field variables. Under the assumption of ho-
mogeneity and isotropy, a few algebraic exact relations are
obtained for incompressible hydrodynamic (HD) and MHD
turbulence [4–6]. However, for homogeneous (and not neces-
sarily isotropic) turbulent flows, differential exact laws have
been derived with the generic expression

∇r · F + S = −4ε, (1)

where F denotes the flux term involving the statistical mo-
ments of the two-point increments with r being the two-point
separation and S denotes the source term which cannot be ex-
pressed as a divergence of a function of two-point increments
in the differential form of the exact relations.

For incompressible HD and MHD turbulence, it has been
found [7,8] that S = 0, and

FHD = 〈(δu)2δu〉, (2)

FMHD = 〈[(δu)2 + (δb)2]δu − 2(δu · δb)δb〉, (3)

where u and b denote the fluid velocity and the magnetic field
(normalized to a velocity), respectively, and δa = a(x + r) −
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a(x) represents the two-point increment for the variable a. The
corresponding algebraic exact relations can finally be obtained
just by integrating the divergence term under spherical sym-
metry [9,10]. In addition to the above simple turbulent flows,
Eq. (1) represents the turbulent energy transfer for a broader
range of fluids including incompressible Hall-MHD plasma
and compressible fluids and plasmas where the source term is
nonvanishing and the derivation of isotropic algebraic forms
is not straightforward [11–16]. However, algebraic exact re-
lations for a large number of homogeneous turbulent flows
can be derived following an alternative formulation proposed
recently for incompressible HD and MHD (including Hall
MHD) turbulence [17,18] and then generalized to more com-
plicated systems, e.g., rotating fluid, compressible fluids, and
plasmas [19,20], and even ferrofluids [21]. Besides the vector
fields (velocity and magnetic fields), often it is interesting
to study the behavior of a scalar field φ in a turbulent flow.
In general, the scalar field is advected by the velocity field
usually satisfying the advection-diffusion equation. Further-
more, it can be passive (e.g., dust particles in a turbulent
flow) or active (e.g., stratified flows) depending on whether
it provides feedback to the momentum equation [22]. Incom-
pressible flows with a passive scalar possess two independent
quadratic inviscid invariants, i.e., the kinetic energy 1

2 〈u2〉 and
the scalar energy 1

2 〈φ2〉. While the first conservation leads to
an exact relation similar to incompressible HD turbulence, the
second one leads to a separate differential exact relation with
F = 〈(δφ)2δu〉 and S = 0 [23].

For active scalars, the kinetic energy is no longer con-
served. The simplest active scalar flow is represented by a
stably stratified fluid where the active scalar φ denotes the
density perturbation and provides a feedback force density
proportional to φẑ, with ẑ being the direction of stratification.
For such flows, 1

2 〈φ2〉 remains an inviscid invariant. However,
instead of the kinetic energy, the total energy 1

2 〈u2 + φ2/N2〉
is found to be an inviscid invariant and the correspond-
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ing sourceless differential exact relation is given by F =
〈[(δu)2 + (δφ/N )2]δu〉 [24], where N is the Brunt-Väisälä
frequency.

A more complex feedback force arises if we consider a sys-
tem of binary fluid mixtures. Binary fluid is a two-component
system ranging from a mixture of two simple fluids, e.g., oil
and water, to complex systems such as “active” binary fluids
[25–29]. For such systems, the active scalar φ represents the
local molecular composition of the binary mixture [27]. Sim-
ple binary fluids contain microstructures such as droplets or
domains of one fluid into the sea of the other, thus producing
interfaces or domain walls. Sharp variation in φ across the
interfaces generates diffusion currents which, in turn, drive
the velocity field by exerting feedback stress proportional to
κ (∇φ ⊗ ∇φ) [27,30], where κ is a positive constant. However
feedback stress does not necessarily take the same form if one
of the binary-fluid components is “active,” i.e., the constituent
particles are equipped with intrinsic mechanisms (e.g., self-
propulsion, body deformation [31,32], etc.) of transmuting
ambient free energy into directed motion thereby breaking
the time reversal symmetry at the scale of each constituent
[33]. Nevertheless, if the active particles are either spherically
symmetric or possess a weak orientational order (e.g., arti-
ficial active colloids, dilute bacterial suspensions, etc.), the
feedback stress due to the activity of the particles can be
written as η(∇φ ⊗ ∇φ), where η is the activity parameter
[34]. The total feedback stress is finally obtained by adding
the active stress to the stress due to the interfacial tension, and
is given by (κ + η)(∇φ ⊗ ∇φ) [27,28].

Although individual components of a binary fluid tend to
phase separate ( coarse graining) below a critical temperature
(Tc) [35], it is often useful to have them in the form of steady
emulsions, i.e., a homogeneous phase-mixed state [36]. This
can be achieved through the generation of turbulence which,
in effect, prevents the phase separation owing to its enhanced
mixing property [37–40]. In a physical system, turbulence
can be attained in two ways, i.e., either by large nonlinear
perturbations (e.g., MHD, stably stratified flows, etc.) or due
to the growth of linear instability (e.g., Rayleigh-Benárd con-
vection). Simple binary fluid and active fluid with extensile
stress (η > 0) belong to the former category [26,28], whereas
active fluid with contractile stress (η < 0) having large activ-
ity [i.e., ξ = (κ + η) < 0] belongs to the latter one [41,42].
Turbulence in an active binary fluid with ξ < 0 finds its ap-
plication in the study of bioconvective plumes, accumulation
of Dinoflagellates in turbulent flows, etc. [43]. Note that here
we are referring to high Reynolds number (Re) turbulence
in active fluids, which is different from the self-sustained
pattern formation by dense active fluids at low Re (∼10−5)
[44–51]. The effect of turbulence on domain growth, energy
spectra, etc. has been explored both for simple and active
binary fluids [26,28,40,52–54]. However, no exact relation has
been derived for such systems.

In this paper, using two-point statistics, we derive ex-
act relations for the inertial range energy transfer in binary
fluid turbulence (BFT). Under the assumption of statistical
homogeneity, first we derive a differential exact relation as
in Eq. (1) in terms of the two-point fluctuations of u and
∇φ. Then the same exact relation is also expressed in terms
of (i) two-point correlators and (ii) newly defined upsilon

variables. The derivation of the results is complemented by
comparative statements on incompressible MHD turbulence
which seems to have some interesting resemblances with our
system [26,55].

The paper is organized as follows: in Sec. II, we describe
the model and the basic equations of dynamics followed by
the derivation of total energy conservation in the inviscid
limit. Section III contains the detailed derivation of the exact
relation both in terms of the two-point increments and two-
point correlators. We then introduce a set of variables (ϒ±)
and express the inviscid invariant and the corresponding exact
relation in terms of those variables in Sec. III C. Finally, in
Sec. IV, we discuss our results and conclude.

II. MODEL AND GOVERNING EQUATIONS

A binary fluid, composed of two components A and B, is
usually defined in terms of their mean velocity field u(x, t ) =
(ρAuA + ρBuB)/(ρA + ρB) and the local molecular composi-
tion φ(x, t ) = (ρA − ρB)/(ρA + ρB), where (ρA, ρB) and (uA,
uB) are the densities and the velocities of the components A
and B, respectively [27]. Here we are considering systems
where the velocity fluctuations are much less than the sound
speed, thus justifying the assumption of incompressibility for
the resultant fluid [26]. The corresponding continuity and
momentum evolution equations are given by

∇ · u = 0, (4)

∂t u + (u · ∇)u = −∇p + ∇ · � + ν∇2u + f , (5)

where p is the fluid pressure, � the feedback stress tensor due
to the active scalar φ, ν the kinematic viscosity, and, finally,
f a large scale forcing. For a general phase-separating binary
fluid mixture, φ satisfies the Cahn-Hilliard equation given by

∂tφ + (u · ∇)φ = M∇2μ, (6)

μ = δF[φ]

δφ
= aφ + bφ3 − κ∇2φ, (7)

where M is the mobility coefficient, μ the chemical po-
tential (or exchange potential), and F = ∫

[ a
2φ2 + b

4φ4 +
κ (∇φ)2]dτ a free-energy functional, where a < 0, while b
and κ are positive constants and τ represents the volume
[25,27,56]. For a phase-mixed binary fluid, a > 0 and F =∫

[ a
2φ2 + κ (∇φ)2]dτ and Eq. (6) simply becomes

∂tφ + (u · ∇)φ = M∇2(aφ − κ∇2φ). (8)

In addition to the force equation (5), one can also force Eq. (6)
or Eq. (8) by an appropriate large scale forcing gφ [40]. The
corresponding evolution equation of φ(x, t ) is therefore given
by

∂tφ + (u · ∇)φ = M∇2μ + gφ. (9)

The final step is to express the feedback stress tensor �

in terms of the other field variables. Both for the phase-
separating and phase-mixed binary fluids, the thermodynamic
stress � is developed due to the departure of the interfacial
profile from the equilibrium. This local inhomogeneity in φ

leads to a feedback force density ∇ · � = −φ∇μ [27,30].

025104-2



EXACT RELATIONS FOR ENERGY TRANSFER IN SIMPLE … PHYSICAL REVIEW E 106, 025104 (2022)

Using the expressions of μ and following a few steps of
straightforward algebra, the feedback stress can be put in the
form given below,

� = −[κ (∇φ ⊗ ∇φ) + �I], (10)

where
√

κ is dimensionally homogeneous to the kinematic
viscosity [26] and

� =
(

φ
d

dφ
−  − κφ∇2φ − κ

(∇φ)2

2

)
, (11)

with  being the φ dependent part of the free-energy density.
Evidently, the term �I is proportional to the unit tensor and
can therefore be absorbed under a gradient in the force equa-
tion (5), which can now be expressed as

∂t u + (u · ∇)u = − ∇P∗ − κ∇ · (∇φ ⊗ ∇φ) + ν∇2u + f ,
(12)

where P∗ = p + � can be understood as an effective pressure.
The aforesaid equations of dynamics, often called “model
H,” provides us with a hydrodynamic description of a simple
binary fluid mixture.

When one of the binary fluid components is active, the ad-
ditional stress arises due to the intrinsic swimming mechanism
of the active particles [28,57]. Self-motility, i.e., the ability
of active particles to self-propel, produces a dipolar force
field which yields the additional stress for active fluids. If the
particles are either spherically symmetric or having negligible
orientational order, the active stress becomes proportional to
η(∇φ ⊗ ∇φ), where η can be both positive or negative [40].
Equation (12) now becomes

∂t u + (u · ∇)u = − ∇P∗ − ξ∇ · (∇φ ⊗ ∇φ) + ν∇2u + f ,
(13)

where ξ = κ + η. Note that unlike the feedback stress for
simple binary fluids, the additional “active” stress is not de-
rived from any free-energy functional [27]. For the sake of
algebraic manipulation, it is convenient to consider ∇φ as
a field variable rather than φ itself. The respective evolution
equation is given by

∂t (∇φ) + ∇(u · ∇φ) = M∇2(∇μ) + ∇gφ. (14)

In the current study, we are interested in the turbulent energy
transfer which necessarily involves the fluctuations with re-
spect to the mean fields. By choosing an appropriate Galilean
transformation, one can eliminate the mean velocity field.
However, the mean composition gradient field cannot be elim-
inated by such transformations. It is then useful to decompose
∇φ as

∇φ = Sẑ + ∇ψ = Sẑ + q, (15)

where Sẑ denotes the mean composition gradient field and
∇ψ or q denotes the corresponding fluctuating field. The
corresponding evolution equations of u and q will then be

given by

∂t u + (u · ∇)u = −∇P − ξ (Sẑ + q)∇ · q + ν∇2u + f ,
(16)

∂t q + ∇(Suz + u · q) = M∇2(∇μ) + g, (17)

where ∇ · u = 0, ∇ × q = 0, ∇gφ = g, P = P∗ + ξ (q2/2 +
Sqz ), and ∇ · [(Sẑ + q) ⊗ (Sẑ + q)] = (Sẑ + q)∇ · q +
∇(q2/2 + Sqz ). For such a system, the total turbulent energy
is composed of the kinetic and the active energy and can be
written as

E =
∫

1

2
(u2 + ξq2)dτ. (18)

In the following, we show E is an inviscid invariant of the flow.
For that, we simply neglect the large scale forcing and small
scale dissipation terms in Eqs. (16) and (17), which gives

∂t

(
u2

2

)
= u · ∂t u

= −∇ ·
(

P + u2

2

)
u − ξ (Suz + u · q)∇ · q, (19)

∂t

(
q2

2

)
= q · ∂t q = −ξq · ∇(Suz + u · q). (20)

Now combining Eqs. (18)–(20), we obtain

dt E =
∫

∂t

(
u2

2
+ ξ

q2

2

)
dτ

= −
∫

∇ ·
[

Pu + u2

2
u + ξ (Suz + u · q)q

]
dτ. (21)

Finally, using the Gauss-divergence theorem with periodic or
vanishing boundary conditions, one can show the total energy
to be an inviscid invariant of the flow.

III. DERIVATION OF EXACT RELATION

Here we derive the two-point exact relation corresponding
to the inertial range energy transfer in statistically homo-
geneous BFT. Following [10,17], one can first define the
two-point correlator associated with the total energy [Eq. (18)]
as

RE = R′
E =

〈
u · u′ + ξq · q′

2

〉
, (22)

where the unprimed and primed quantities represent the
corresponding field properties at point x and x′ = x + r, re-
spectively.

Now, we calculate the time evolution of the energy cor-
relators. Similar to Eq. (16), we can also write the evolution
equation for u′. Now combining u · ∂t u′ and u′ · ∂t u, we obtain

∂t 〈u · u′〉
= 〈u′ · [−(u · ∇)u − ∇P − ξ (Sẑ + q)∇ · q]

+u · [−(u′ · ∇′)u′ − ∇′P′ − ξ (Sẑ + q′)∇′ · q′]〉
+Du + Fu (23)

= −〈∇ · [(u · u′)u + ξ (Su′
zq + (u′ · q)q)]

+∇′ · [(u · u′)u′ + ξ (Suzq′ + (u · q′)q′)]〉 + Du + Fu

(24)
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= −∇r · 〈u′(u · u′) − u(u · u′) + ξSuzq′ − ξSu′
zq

+ (u · q′)q′ − (u′ · q)q〉 + Du + Fu, (25)

where Du = 〈u′ · ν∇2u + u · ν∇2u′〉 and Fu = 〈u′ · f + u ·
f ′〉 represent the effective dissipation and forcing contribu-
tions in ∂t 〈u · u′〉. To obtain Eq. (25), we also use the property
of statistical homogeneity,

∇ · 〈(·)〉 = −∇r · 〈(·)〉 = −∇′ · 〈(·)〉, (26)

and the following relations:

(i) u′ · q(∇ · q) = ∇ · [(u′ · q)q] − ∇ ·
(

u′ q
2

2

)
,

(ii) 〈u · ∇′P′〉 = −〈P′(∇ · u)〉 = 0,

(iii)

〈
∇ ·

(
u′ q

2

2

)〉
= −

〈
q2

2
(∇′ · u′)

〉
= 0.

Again, similar to Eq. (17), one can also obtain an evolution
equation for q′. Combining q · ∂t q′ and q′ · ∂t q, we get

∂t 〈q · q′〉
= 〈−q′ · ∇(Suz + u · q) − q · ∇′(Su′

z + u′ · q′)〉
+Dq + Fq (27)

= −〈∇ · [Suzq′ + (u · q)q′] + ∇′ · [Su′
zq + (u′ · q′)q]〉

+Dq + Fq (28)

= −∇r · 〈Su′
zq − Suzq′ + (u′ · q′)q − (u · q)q′〉

+Dq + Fq, (29)

where Dq = 〈q′ · M∇2(∇μ) + q · M∇′2(∇′μ′)〉 and Fq =
〈q′ · g + q · g′〉. In the following, we derive the exact relation
in two ways [58].

A. In terms of two-point increments

Adding Eqs. (25) and (29), we get

∂tR = − 1
2∇r · 〈(u · u′)δu + ξ [(u · q′)q′ − (u′ · q)q

+ (u′ · q′)q − (u · q)q′]〉 + D + F, (30)

where R = (RE + R′
E )/2, D = (Du + Dq)/2, and F =

(Fu + Fq)/2. Furthermore, under statistical homogeneity, we
obtain

∇r · 〈(u′ · q)q′〉 = −〈q′ · (u′ · ∇)q〉 = ∇r · 〈u′(q · q′)〉, (31)

where we use ∇ × q = 0 along with the identity ∇(A · B) =
(A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A). Now,
we consider a statistically stationary state where the left-hand
side of Eq. (30) vanishes. In the limit of infinite Reynolds
number, within the inertial range, the dissipative effects can
also be neglected and the corresponding energy flux rate ε can
be associated with the total energy injection rate as F = ε.
Finally, using Eq. (31) and following some straightforward
algebra, we can express the two-point correlations of Eq. (30)
in terms of the two-point increments whence the final exact
relation can be obtained as

∇r · 〈[(δu)2 − ξ (δq)2]δu + 2ξ (δu · δq)δq〉 = −4ε. (32)

Equation (32) is the main result of our paper. As mentioned in
Sec. I, here the exact relation is cast in a differential form with

F ≡ 〈[(δu)2 − ξ (δq)2]δu + 2ξ (δu · δq)δq〉. (33)

It expresses the inertial range energy flux rate ε purely in
terms of two-point increments of the field variables of BFT.
Therefore, ε remains unchanged if q is replaced by ∇φ in
Eq. (32). For all simple and active binary fluids with extensile
stress, ξ is positive and so the form of conserved energy
remains the same as Eq. (18),

E =
∫

1

2
(u2 + |ξ |q2)dτ, (34)

and the corresponding exact law is given by

∇r · 〈[(δu)2 − |ξ |(δq)2]δu + 2|ξ |(δu · δq)δq〉 = −4ε. (35)

However, active fluids with large contractile stress (η < 0 and
|η| > |κ|) have ξ to be negative. In that case, the total energy
becomes

E =
∫

1

2
(u2 − |ξ |q2)dτ, (36)

and the corresponding exact relation becomes

∇r · 〈[(δu)2 + |ξ |(δq)2]δu − 2|ξ |(δu · δq)δq〉 = −4ε. (37)

Surprisingly, Eq. (37) looks very similar to the exact relation
for energy transfer in incompressible MHD turbulence if one
replaces the field

√|ξ |q by the local magnetic field in Alfvén
units [8]. This can be a bit misleading as, for MHD, the same
substitution in Eq. (36) would actually correspond to the resid-
ual energy which is not an inviscid invariant of incompressible
MHD.

Passive scalar flow. In the limit where the activity coeffi-
cient ξ tends to zero, Eqs. (32) and (37) simply reduce to

∇r · 〈(δu)2δu〉 = −4ε, (38)

which represents the inertial range energy transfer in a passive
scalar flow and is identical to that in incompressible HD tur-
bulence. In fact, by putting ξ = 0, one turns off the feedback
force in the momentum evolution equation due to the scalar
field φ, thus leading to the individual conservation of kinetic
energy similar to the incompressible HD case.

Weakly correlated fluctuations. In case δu and δq are
weakly correlated, we have 〈(δu · δq)δq〉 � 0 and the exact
relation (32) practically becomes

∇r · 〈[(δu)2 − ξ (δq)2]δu〉 = −4ε. (39)

Further, if we assume |δu| ∼ |δq|, then we can encounter two
interesting situations. First, when ξ > 0 but very small (e.g.,
simple binary fluids [26]), then the flux F � 〈(δu)2δu〉 and
hence corresponds to the usual Kolmogorov case. However,
if ξ becomes sufficiently large, e.g., for active binary flu-
ids with extensile stress, F � 〈−ξ (δq)2δu〉 thereby leading
to the possibility of an inverse cascade of energy. In con-
trast, for active binary fluids with contractile stress where
ξ < 0, we have F � 〈[(δu)2 + |ξ |(δq)2]δu〉, and a direct
cascade of energy is always expected. Note that unlike two-
dimensional hydrodynamics, here we are not talking about
the simultaneous forward and inverse cascades of two invari-
ants. In the present case, the energy cascade is forward or
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inverse depending upon the activity parameter ξ . For a system
with given ξ , the cascade direction is therefore automatically
determined.

However, such type of speculations can be nontrivial if the
correlation between δu and δq is not negligible. The direction
of the cascade then depends on the mutual competition of the
various terms in the flux and can be explored numerically.
Such investigation certainly demands a separate study and
is beyond the scope of the present paper, which presents a
systematic analytical approach for an exact calculation of the
inertial range energy transfer rate in homogeneous BFT.

B. In terms of two-point correlators

In order to obtain the exact relations in terms of two-point
correlators, we start from Eqs. (23) and (27). Splitting the
two-point energy correlator R in the kinetic and active energy
correlators Ru and Rq, respectively, we can write the evolu-
tion equations as follows:

∂tR(r, t ) = Tu + Tq + D + F, (40)

∂tRu(r, t ) = Tu + χqu + Du + Fu, (41)

∂tRq(r, t ) = Tq − χqu + Dq + Fq, (42)

where

Tu(r, t ) = 1
2 〈−u′ · (u · ∇)u − u · (u′ · ∇′)u′

−ξ (u′ · q)(∇ · q) − ξ (u · q′)(∇′ · q′)〉, (43)

χqu(r, t ) = 1
2 〈−ξSu′

z(∇ · q) − ξSuz(∇′ · q′)〉, (44)

Tq(r, t ) = 1
2 〈−q′ · ∇(u · q) − q · ∇′(u′ · q′)〉, (45)

with Tu(r, t ) and Tq(r, t ) being the scale-to-scale kinetic and
active energy transfer terms and χqu(r, t ) being the active
to kinetic energy conversion term. Similar to Eqs. (32) and
(37), it is evident to see that the mean gradient field (Sẑ),
which appears only in the conversion terms, cannot affect
the scale-to-scale energy transfer rate ε. This is similar to
incompressible MHD turbulence, where the mean magnetic
field cannot alter the turbulent energy transfer. Reasoning as
in the Sec. IIIA, here the final expression of the inertial range
exact relation can be written as

Tu + Tq = −ε. (46)

Equation (46) is another important result of this paper. This
form is particularly useful for calculating ε using the spectral
method [58].

C. In terms of new variables ϒ±

Instead of u and b, the equations for incompressible MHD
can also be written in terms of Elsässer variables, z± = u ± b
[59]. In a similar way, the basic equations for BFT can also be
written in terms of “upsilon” variables ϒ± = u ± iQ, where
Q = √

ξ∇φ. This can be obtained by writing Eqs. (13) and
(14) in the following form:

∂t u = − (u · ∇)u + (Q × ∇) × Q − ∇PT + ν∇2u + f ,
(47)

∂t Q = − (u · ∇)Q − (Q × ∇) × u + D∇2Q + G, (48)

where PT = P∗ + Q2, G = √
ξg, and we use the follow-

ing vector-calculus identity: (A × ∇) × B = A × (∇ × B) +
(A · ∇)B − A(∇ · B). Note that here we are considering the
chemical potential

√
ξ∇μ ∼ Q, which is practically true for

phase-mixed or nearly phase-separating binary fluid. Finally,
combining Eqs. (47) and (48), one can write the basic equa-
tions of BFT in terms of the ϒ± variables as

∂tϒ
+ = 1

2 [−{(ϒ+ + ϒ−) · ∇}ϒ+ − {(ϒ+ − ϒ−) × ∇}ϒ+ + ∇2(ν+ϒ+ + ν−ϒ−)] − ∇PT + f +, (49)

∂tϒ
− = 1

2 [−{(ϒ+ + ϒ−) · ∇}ϒ− + {(ϒ+ − ϒ−) × ∇}ϒ− + ∇2(ν−ϒ+ + ν+ϒ−)] − ∇PT + f −, (50)

where ν± = (ν ± D)/2 and f ± = f ± iG. The above equa-
tions show that unlike the Elsässer variables in incompressible
MHD, ϒ± undergo both cross and self-deformation through
two types of nonlinear interactions. In addition to the usual
advective nonlinear interactions (u · ∇)ϒ±, here we also have
other nonlinear terms proportional to (Q × ∇) × ϒ±. For a
given direction of Q (say ẑ), (Q × ∇) × ϒ± calculate the
variation of ϒ± in a plane perpendicular to that direction.
In contrast to the Iroshnikov-Kraichnan (IK) phenomenology
[2,3] for incompressible MHD turbulence, the coexistence of
the two aforesaid nonlinear interactions and their possible
entanglement does not provide a simple phenomenological
image for BFT. However, in Sec. IV, we predict a power
law dependence of the conserved energy analogous to IK
phenomenology based on the relative importance of various
timescales corresponding to different interactions. From the
definition, one can immediately show

∇ · ϒ± = ±i∇ · Q, ∇ × ϒ± = ∇ × u. (51)

This is also in contrast to the Elsässer variables which are
divergence free, similar to the u and b fields of incompressible
MHD.

Previously, we showed that the turbulent energy is an invis-
cid invariant of a binary fluid flow. By the same method, one
can also show that the total energy,

E =
∫

1
2 (u2 + Q2)dτ, (52)

is (as expected) an inviscid invariant. In terms of the upsilon
variables, the total energy becomes E = ∫

1
2 (ϒ+ · ϒ−)dτ .

Furthermore, the exact relation derived in Eq. (32) can be
written as

−4ε = ∇r · 〈[(δu)2 − (δQ)2]δu + 2(δu · δQ)δQ〉
= 1

8∇r · 〈2[(δϒ+)2 + (δϒ−)2](δϒ+ + δϒ−)
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− 2[(δϒ+)2 − (δϒ−)2](δϒ+ − δϒ−)〉
= 1

2∇r · 〈(δϒ−)2δϒ+ + (δϒ+)2δϒ−〉. (53)

Note that the same exact relation can also be derived directly
from Eqs. (49) and (50). Interestingly, Eq. (53) looks very
similar to the exact relation of energy transfer in incompress-
ible MHD turbulence when expressed in terms of the Elsässer
variables [10,12]. Here one has to remember that the Elsässer
fields z± are always real. This is not true for the upsilon
variables. For ξ > 0, one can write ϒ± = u ± i

√|ξ |∇φ, thus
yielding complex upsilon fields. However, for ξ < 0, we have
ϒ± = u ∓ √|ξ |∇φ and hence the upsilon variables become
real in that case. Irrespective of whether the upsilon fields are
real or complex, it is straightforward to verify that the flux
term in the right-hand side of Eq. (53) is, as expected, always
real.

IV. DISCUSSION

In this paper, we derived several exact relations for
fully developed, three-dimensional, homogeneous binary fluid
turbulence. Using this relation, we can calculate the scale-to-
scale transfer rate of total energy (kinetic plus active energy)
within the so-called inertial range. Previously, it has been
argued [26] that simple binary fluids and incompressible
MHD are structurally similar in terms of the equations of
dynamics and linear wave modes. Drawing analogy with IK
phenomenology, they also predicted a −3/2 power law for
turbulent energy spectra. However, for fully developed tur-
bulence, our paper shows that the generic form of the exact
relation derived in Eq. (32) differs from that of incompressible
MHD turbulence [8]. In particular, the flux F in Eq. (32) has
two sign reversals in comparison with that of Eq. (3). Inter-
estingly, active binary fluids with contractile stress (ξ < 0)
are found to be algebraically identical to the exact relation of
incompressible MHD turbulence if we replace the magnetic
fields in Eq. (3) with

√|ξ |q. Nevertheless, these two systems
are categorically different with respect to the linear stability
analysis. Under weak perturbations, an active binary fluid
with contractile stress leads to linear instability, whereas an
incompressible MHD fluid responds to weak perturbations
in terms of Alfvén waves. From Eq. (32), we retrieved the
exact relation for passive scalar turbulence in the limit of
vanishing activity parameter. In addition, we have predicted a
possible inverse cascade of energy in three-dimensional (3D)
active binary fluid turbulence with extensile stress when the
correlation between the u and the q fields is sufficiently weak.
Inspired by the Elsässer variables, here we introduced the
“upsilon” variables and wrote the dynamical equations for
binary fluids in a more symmetric form by the introduction
of upsilon variables. Finally, from Eq. (32), we also wrote
the exact relation in terms of the upsilon variables. Inter-
estingly, this exact relation looks exactly similar to that of
incompressible MHD turbulence when expressed in terms of
the Elsässer variables. However, unlike incompressible MHD,
here the cross helicity

∫
(u · q)dτ is not an inviscid invariant.

A helicity cascade is therefore not guaranteed [60] and hence
the derivation of the corresponding exact relation is not useful
in BFT.

Based on our previous analysis, here we propose a plausi-
ble phenomenology and predict a power law for the turbulent
energy spectrum in simple and active binary fluids with
extensile stress. Writing Eqs. (49) and (50) in a compact form,
we obtain

∂tϒ
± = − (u · ∇)ϒ± ∓ i(Q × ∇) × ϒ± − ∇PT

+ ∇2(ν±ϒ+ + ν∓ϒ−) + f ±. (54)

In the above equations, possible nonlinear interactions can
be obtained from the terms (u · ∇)ϒ± and (Q × ∇) × ϒ±.
Whereas (u · ∇)ϒ± represent the advection of ϒ± by the
velocity field, the terms (Q × ∇) × ϒ± represent the variation
of ϒ± in a plane perpendicular to Q. Expressing Q as a
sum of the mean field Q0 and the fluctuation Q̃ in Eq. (54),
we get three types of interactions. While we associate two
kinds of nonlinear timescales τ u

� and τ
Q
� corresponding to the

terms (u · ∇)ϒ̃
±

and (Q̃ × ∇) × ϒ̃
±

, respectively, one linear
timescale τ0� corresponds to the term (Q0 × ∇) × ϒ̃

±
, with

ã representing the fluctuating part of the vector a. This linear
time can be associated with the concentration waves as de-
fined in [26] and the corresponding dispersion relation is given
by ω(k) = ±|k × Q0|. If the two nonlinear interactions are
assumed to be independent, the effective distortion timescale
τ� becomes

1/τ� = 1/τ u
� + 1/τ

Q
� , (55)

where �(≡ |r|) is the characteristic size of the eddies, u� ∼
|δu|, Q� ∼ |δQ|, τ u

� ∼ �/u�, and τ
Q
� ∼ �/Q̃�. Analogous to

the Alfvén timescale in incompressible MHD, here we can
also define the linear timescale τ0� ∼ �/Q0. In the presence of
strong Q0, we have τ0� << τ�. In that case, the energy transfer
timescale τ tr

� ∼ τ 2
� /τ0� and the energy flux rate ε would scale

as [2,3,61]

ε ∼ (ϒ̃+
� ϒ̃−

� )/τ tr
� . (56)

Under the assumption of weak correlations between u� and
Q�, we have ϒ̃+

� ∼ ϒ̃−
� ∼ ϒ̃� ∼ u� and hence τ� ∼ τ u

� ∼
�/ϒ̃�. Combining all, finally, we can write

ε ∼ ϒ̃4
� /�Q0 ⇒ ϒ̃� ∼ (εQ0)1/4�1/4. (57)

Again, by definition of energy spectrum E (k),

ϒ̃2
� ∼ E (k)k ⇒ E (k) ∼ (εQ0)1/2k−3/2, (58)

where k is the wave number corresponding to �. This is in
agreement with the predictions of [26], which was done for
simple binary fluids only.

Similar types of studies can be generalized to the com-
pressible binary fluids as well as to the mixtures of more than
two fluids.
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