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Chaos and irreversibility of a flexible filament in periodically driven Stokes flow
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The flow of Newtonian fluid at low Reynolds number is, in general, regular and time-reversible due to absence
of nonlinear effects. For example, if the fluid is sheared by its boundary motion that is subsequently reversed,
then all the fluid elements return to their initial positions. Consequently, mixing in microchannels happens solely
due to molecular diffusion and is very slow. Here, we show, numerically, that the introduction of a single, freely
floating, flexible filament in a time-periodic linear shear flow can break reversibility and give rise to chaos due
to elastic nonlinearities, if the bending rigidity of the filament is within a carefully chosen range. Within this
range, not only the shape of the filament is spatiotemporally chaotic, but also the flow is an efficient mixer.
Overall, we find five dynamical phases: the shape of a stiff filament is time-invariant—either straight or buckled;
it undergoes a period-two bifurcation as the filament is made softer; becomes spatiotemporally chaotic for even
softer filaments but, surprisingly, the chaos is suppressed if bending rigidity is decreased further.
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I. INTRODUCTION

Flows at very small Reynolds number play a key role
in biology [1–4] and microfluidics [5–7]. In the presence
of rigid boundaries, such flows are typically laminar and
reversible. For example, consider the fluid between two con-
centric cylinders sheared by rotating the outer one slowly. If
the rotation is reversed, then the fluid particles come back to
their original positions (ignoring the small fluctuations due to
Brownian motion) [8]. Consequently, mixing by periodic stir-
ring is in general catastrophically slow in microfluidic flows
although Lagrangian chaos is possible in pressure-driven
flows through rigid but complex boundaries [9]. Addition
of elastic polymers [10–13], or active objects [14–16] and
mutual hydrodynamic interaction between many suspended
colloidal particles [17], can also give rise to breakdown of
time-reversibility and to chaotic flows.

Here we consider a neutrally buoyant inextensible, elastic
filament, of length L and bending rigidity B, subject to a linear
shear flow U0(x, y) = γ̇ yx̂. The strain-rate γ̇ is time-periodic
with a period T , γ̇ = S sin(ωt ), where ω = 2π/T . Initially
the filament is placed along the y direction, see Fig. 1. The
flow parameters, S, T , and dynamic viscosity of the fluid, η,
are chosen such that the Reynolds number is very small. This
corresponds to, for example, the demonstration by G. I. Taylor
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where he puts a small thread in a Taylor-Couette apparatus
filled with syrup, turns the outer cylinder in one direction and
then reverses it exactly back to its starting position [8]. This
experiment does break time-reversal invariance—the thread
is buckled at the end of the cycle. Here our aim is to study
the same phenomena in a numerical setup. For simplicity, we
consider a plane Couette flow without boundaries.

An elastic filament, of length L, in a constant-in-time flow
has been extensively studied, numerically and experimen-
tally [18–26] for the past two decades. Depending on the
flow, the filament either attains a complex shape, which is
one case can even be helical [26], or shows a wide range of
morphological transition [20] depending on its elastoviscous
number μ ≡ (8πηSL4)/B. For small elastoviscous number
(large bending rigidity), typically, the filament behaves like
a rigid one. Hence, we expect that in our case, if the bending
rigidity of the filament is very large, then the filament would
rotate away and back to its original position without any
change in shape. We also expect that once the bending rigidity
is below a threshold (or μ is above a threshold) the filament
would buckle—it would not return to its original shape. The
time reversibility would be broken. If the bending rigidity is
decreased further, then we expect elastic nonlinearities to play
a more dominant role in the dynamics thereby giving rise to
complex morphologies. Repeating the experiments over many
cycles can potentially give rise to spatiotemporally chaotic
behavior of the filament.

II. MODEL

We use the bead-spring model for the numerical simulation
of the filament in a Stokes flow [19,22,23,27–29]. The model
consists of N spherical beads of diameter d , connected by
overdamped springs of equilibrium length a. The equation of
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FIG. 1. Sketch of numerical experiment: Initially the filament is
straight. It rotates and translates while advected by U = γ̇ yx̂ with
γ̇ = S sin(ωt ) over the first-half of the cycle. In the second half the
filament rotates and translates back but in addition buckles if its
elastoviscous number is large enough. The flow U at t = T/4 (top
panel) and t = 3T/4 (bottom panel) are shown as red arrows.

motion for the ith bead is given by [28]

∂t R
α
i = −

N−1∑
j=0

Mαβ

ij (Rij )
∂H
∂Rβ

j

+ U α
0 (Ri ), (1a)

Mαβ

ij (R) = 1

8πηR

[
δαβ + RαRβ

R2

+ d2

2R2

(
δαβ

3
− RαRβ

R2

)]
, for i �= j

= 1

3πηd
δαβ, for i = j, (1b)

where Ri is the position vector of the center of the ith bead,
Rij ≡ R j − Ri, U is the velocity of the background shear flow,
and η is the dynamic viscosity of the fluid.

The hydrodynamic interaction between the beads is de-
scribed by the Rotne-Prager mobility tensor Mij(R) [30–33]
derived by solving the Stokes equation, i.e., our simulations
are at zero Reynolds number. The Latin indices run from 1 to
N , the total number of beads, and the greek indices run from 1
to D, where D = 3 is dimensionality of space. Repeated greek
indices are summed.

The elastic Hamiltonian, H, contains contribution from
both bending and stretching but not torsion: H = HB + HS,
where HB and HS are contributions from bending [34,35]
and stretching [28,36], respectively. The bending energy of
a continuous filament is given by [37]

HB = B

2

∫
κ2(s)ds, (2)

where B is the bending modulus, κ is curvature, and s is the
material coordinate. As we use a discrete bead–spring model,
hence we must discretize the Hamiltonian, see Appendix A.

We define three dimensionless parameters: the elastovis-
cous number, μ, the nondimensional frequency, σ , and the
ratio of stretching to bending, K , defined, respectively, as

μ = 8πηSL4

B
, σ = ω

S
, and K = Hd2

B
. (3)

The elastoviscous number measures the relative strength of
the elastic forces due to bending and the viscous forces.

In Appendix A, we give a comprehensive description of
the model, its numerical implementation, and the parameters
of simulations. The elastoviscous number of our simulations
includes in the same range as the experiments in Ref. [20]. Our
code reproduces their experimental results, see Appendix A.

The velocity of the flow at any Eulerian point r = (x, y, z)
is given by

U α (r) = U α
0 (r) + Gαβ (r − Ri )F

β

i , where (4a)

Fα
i = − ∂H

∂Rα
i

, and (4b)

Gαβ (R) = 1

8πηR

[
δαβ + RαRβ

R2
+ d2

4R2

(
1

3
δαβ − RαRβ

R2

)]
.

(4c)

In Eq. (4a) U α
0 (r) is the background linear shear flow and Gαβ

is the Green’s function given in Eq. (4c).

III. RESULTS

Initially, the filament is placed along the y direction with
its head at y = 0; see Fig. 1. We use N = 256, K = 16, and
a = d in all our simulations and vary both σ and μ to explore
a variety of dynamical behavior.

As we impose an external linear flow with a period T ,
it is useful to look at stroboscopic snapshots of the filament
separated by time T . We note that in some cases filament does
not return to its original position at the end of a cycle. When
that happens time-reversal invariance is already broken even
if the shape of the filament remains unchanged. We call this
swimming. In this paper we focus not on swimming but on
how the shape of the filament changes.

A. Dynamical phases

Based on the shape, a kaleidoscope of qualitative behavior
emerges that we classify into five different dynamical phases.
For small elastoviscous number (μ) the filament comes back
to its original position undeformed at the end of every period
(not shown in Fig. 2). As μ is increased, the filament is buck-
led at the end of every period; see Fig. 2(A). On increasing μ

further we reach a phase where two buckled states, which are
mirror images of each other, alternate at the end of even and
odd periods—a period–two solution; see Fig. 2(B). At even
higher μ the shape of the filament at the end of every cycle
is different—the filament never repeats itself. We continue
these simulations to long times. In some cases the shape of
the filament never repeats itslf; see Fig. 2(C). In some other
cases, the shape of the filament is almost repeated at the end
of every period, but the shape is different at all other times,
e.g., consider the snapshots in Fig. 2(D). The shape of the
filament at 65T and 75T are almost the same. But the shapes
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FIG. 2. Kaleidoscope of dynamical behavior: (A) Periodic buckling (μ = 1.46 × 106, σ = 1.5): The filament is buckled after 8 cycles and
repeats itself after every cycle afterwards. Till cycle 8 the filament is not straight but slightly deformed from its initial straight shape. This
small deformation is barely noticeable in this figure. (B) Two-period (μ = 0.67 × 106, σ = 0.75): The shape of the filament is either of two
shapes, which are mirror images of each other, at odd and even cycles. (C, D) The two types of Complex phases: (C) For μ = 3.35 × 106,
σ = 1.5: The filament never repeats itself. (D) For μ = 6.7 × 106, σ = 0.75): The filament shows spatiotemporally complex behavior but for
late cycles, the filament (almost) repeats at the end of every cycle (nT ) (t = 55T, 65T, 75T ) but not at any other time. To illustrate, we show the
snapshots at t = 55.7T, 65.7T, 75.7T —the shape of the filament is different from one another. Note, the filament shows maximum buckling,
not at the end of a cycle, but at times in-between the cycles, i.e., at t = (n + p)T , where n is an integer and 0 < p < 1. (E) Complex transients
(μ = 16.75 × 106, σ = 1.5): Filament shows complex behavior for early periods but repeats itself at late times.

at 65.7T and 75.7T are not. We do not make a distinction
between these two dynamical behavior—we call both of them
complex. Finally, for large μ we find that the shape of the
filament shows complex spatiotemporal behavior till interme-
diate times t < 60T but almost settles (it comes very close
but does not repeat itself) to a fixed spatially complex shape

at late times; see Fig. 2(E). By surveying a range of values
for μ and σ we construct a phase diagram in Fig. 3. We find
that the straight phase can go unstable in two ways, depending
on the value of σ . It can either undergo a bifurcation to a
two-period solution or go to a buckled phase which repeats
itself. The buckled solution appears at end of every period, it
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FIG. 3. Phase diagram from time-dependent numerical simula-
tions in the μ-σ parameter space; (σ = ω

S , μ = 8πηSL4

B ). Here, ω is
rate of change of strain, S is strain rate, η is the viscosity, L is
length of the filament, and B is the bending modulus. Initially, the
filament is freely suspended in the shear flow; see Fig. 1. We show
five different dynamical phases in the system represented by five
symbols. Straight (•): The filament comes back to the initial position
in the straight configuration after every period. Periodic buckling
(�): The filament comes back in the buckled configuration after
every period. Two-period (�): The filament repeats its configuration
not after every but after two-period. Complex (�): The filament
buckles into complex shape with very high mode of buckling insta-
bility. Complex–transients (�): Filament shows long transients with
complex shape but at late times, the shape of the filament repeats
itself. The boundary between the complex and complex-transient
phase is difficult to clearly demarcate.

is a time-reversible solution, the two-period solution is not.
The boundary between the phases can be clearly demarcated
except the boundary between the complex and the complex-
transient phase. Thus it may be possible that there is a fractal
boundary between these two phases. Fractal boundaries not an
uncommon occurence in many dynamical systems including
transition to turbulence in pipe flows [38], different forms of
spiral-wave dynamics in mathematical models of cardiac tis-
sues [39], and onset of dynamo in shell-models [40]. We have
not explored this aspect in any detail in this paper. Except the
region of the phase diagram where we find straight solutions,
swimming solutions appear everywhere else.

1. Complex phase

Let us first discuss in detail a representative simulation
in the complex phase. As we focus on the shape of the fila-
ment we describe the filament in its intrinsic coordinates—its
curvature (κ) as a function of material coordinate (s). We
calculate curvature using a discrete approximation, see Ap-
pendix A. In Fig. 4 we plot κ versus s for early times, at
t = T, 10T, 19T, and 28T , in Fig. 4(A) and for late times
in Fig. 4(C), at t = 35T, 45T, 55T, and 75T . At all times,
the curvature is zero at the two end of the filament, as dictated
by the boundary conditions, and changes sign several times,

i.e., a quite complex morphology is observed, as we show
in Figs. 4(B) and 4(D), respectively. The minimum value of
the radius of curvature is approximately 10d where d is the
diameter of each bead or alternatively the thickness of the
filament. A sine transform of the κ (s) to κ̂ (q) shows several
peaks, For q � 20 the κ̂ is practically zero, see Appendix C.
This demonstrates that our simulations are well resolved to
capture the phenomena we observe. As the filament moves
in the fluid it changes the background flow. In Figs. 4(E)
and 4(F) we plot a typical phase-portrait of the velocity of the
flow (after subtracting out the background velocity) at a fixed
Eulerian point. For small μ, in the part of the phase diagram
where the filament always remain straight, the phase portrait
is a simple closed curve as shown in orange in Figs. 4(E)
and 4(F). For the case where the filament is in the complex
phase we obtain a nontrivial attractor.

There is another intriguing feature seen in some of the
runs in the complex phase: although the filament never repeat
itself exactly in the κ-s space it comes very close to periodic
behavior with a large period, in one case 30T .

2. Complex-transient phase

Next we turn to the phase we call complex-transient. Here
the behavior is the same as the Complex phase up to quite late
times, e.g., 60T after which the filament comes to almost the
same shape at the end of every period. Here also the dynamics
of the filament is not strictly periodic. The shapes, which are
complex, change but very slowly over time. This slow drift in
the configuration space can be measured by calculating

K (p − m) =
[∫

| κ (s, pT ) − κ (s, mT ) |2 ds

]1/2

, (5)

where m > 60 is a period where the filament has already
reached its late time behavior. We find K (p − m) ∼ (p − m),
for not too large values of p − m, i.e., an algebraic growth. We
perform another numerical experiment. We take the filament
in its late almost stationary configuration and add a small per-
turbation and then evolve again. The perturbation goes to zero
very quickly, the filament goes back to its almost stationary
configuration.

B. Stroboscopic map

So far we have studied the different dynamical phases
through time-stepping our numerical code. Potentially, both
the complex and complex-transient phase are spatiotempo-
rally chaotic. But a time-stepping code however accurate
accumulates error which grows with the number of time-steps
taken. To investigate the fate of the filament at late times we do
have to integrate over long times. Hence, we need additional
evidence to confirm the existence of chaos in this problem.

We start by defining the stroboscopic map, F ,

κ (s, T ) = Fκ (s, 0). (6)

The dynamical system obeyed by the filament, Eq. (1a), is
nonautonomous because the external flow U is an explicit
function of time, the map F , which is generated by integrating
Eq. (1a) over exactly one time period T , is autonomous. This
is a map of N-dimensional space onto itself where N is the
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FIG. 4. Evolution in the complex phase: (μ = 3.35 × 106, σ = 1.5) The filament shows complex behavior and does not repeat in real space
or configuration space (t < 45T ) 9. (A) Curvature (κ) as a function of material coordinate, s, of the filament at early cycles, t = T, 10T, 19T,

and 28T . (B) Image of the filament at the same times. (C, D) Same as (A, B) but for late times. (E, F) Phase portrait of tracer velocity at a fixed
Eulerian point for late cycles t = 45T –75T .

number of beads. The function κ (s, t ) at t = nT and t =
(n + 1)T are related by one iteration of this map. We proceed
to study the fixed points and periodic orbits of this map as a
function of the parameters, μ and σ , following Refs. [41,42].
Such techniques have been used widely to study transition to
turbulence in high-dimensional flows [43–45] and has also
been applied to other fields of fluid dynamics [46,47]. The
detailed numerical techniques are described in Appendix A.

In Fig. 5 we show several examples of the solutions we
obtain, for a fixed σ = 0.75 as a function of μ. For small μ =
0.17 × 106 we obtain only one fixed point and it corresponds
to κ (s) = 0, i.e., a straight filament. At μ = 0.33 × 106 in
addition to the straight filament a new fixed point appears,
where κ is zero at one end, changes sign once roughly at the
middle of the filament and has two maximas. We show the
shape of the filament in Fig. 5(B1). At exactly this point in
the phase diagram, see top line in Fig. 5, obtained from the
evolution code, we find a straight filament. This implies, either
of the two possibilities: one, the new solution is unstable; two,
both the solutions are stable but the evolution code lands up

in the straight one because of the initial condition we chose.
Next at μ = 0.33 × 106 we no longer find any fixed points.
We find two periodic orbits, one that is a two-period Fig. 5(C1)
and one with four periods Fig. 5(C2). The two solutions
in the two-period solution are mirror images of each other.
At the same place in the phase diagram the evolution code
finds the same two-period solution. Increasing μ to 0.84 ×
106 we find that the four-period solution has disappeared, two
two-period solutions exist, Fig. 5(D). At even higher values
of μ we start to obtain many solutions. We show a few ex-
amples in Figs. 5(F)–5(H). This is the region of phase space
where complex and complex-transient dynamical phases are
seen.

To summarize, by turning our system of coupled nonau-
tonomous differential equations (1a) to an autonomous
stroboscopic map and by studying the solutions of the map
we find further support of breakdown of time reversibility and
appearance of chaos that we had already seen from the evo-
lution of the differential equations. We demonstrate that the
first appearance of breakdown of time-reversibility is through
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FIG. 5. Solutions of stroboscopic map in real space for σ = 0.75 for different values of μ. We find multiple coexisting solutions as we
increase μ (black symbols from left to right) indicating the complexity of the system. We compare this solutions with the solutions obtained at
late times from the evolution code at the same points in the phase diagram.

a period-two bifurcation. The map has many solutions and the
number of solutions increases as we increase μ.

C. Mixing of passive tracer

Next we study how passive tracers are transported by the
flow generated by the presence of the filament for parameters
in the complex phase. The velocity of the flow, U (r), at any
Eulerian point, r = (x, y, z) is given in Eq. (4a). The equa-
tion of motion of a passive tracer, whose position at time t is
given by X (t ), is

dX
dt

= U (r)δ(r − X ). (7)

We solve Eq. (7) simultaneously with Eq. (1a) and for Np

tracers. The tracers are introduced into the flow on concentric
circles in the x-y plane, Fig. 6(A), after approximately 10
cycles, when the flow has reached a statistically stationary
They are colored by radius of the circle on which they lie on
at the initial time. After 8 periods, t = 8T , we find that the
outer rings are still somewhat intact but the inner rings have
somewhat merged with each other and also moved out of the
x-y plane. At even later time, t = 256T , we find the tracer
particles are well mixed with each other.

In the rest of this section, we set t = 0 at the time the
tracers are introduced. To obtain a quantitative measure of
mixing we define

�X k
j ≡ X k[( j + 1)T ] − X k( jT ), (8)

the net displacement of the kth tracer particle over the jth
cycle—t = jT to t = ( j + 1)T , where j is an integer. The net

displacement of the kth tracer after q cycles is

ρk(q) =
q∑

j=1

�X k
j . (9)

The total mean square displacement, averaged over all the
tracers, at the end of q cycles is given by

〈ρ2(q)〉 ≡ 1

Np

Np∑
k=1

|ρk(q)|2. (10)

If the tracers diffuse, then we expect 〈ρ2(q)〉 ∼ q for large
q [48]. In Fig. 6(D) we plot 〈ρ2(q)〉 versus q in log-log scale.
Clearly, 〈ρ2(q)〉 increases faster than q but slower than q2!
Could it be possible that the tracers show Levy-like superdif-
fusion?

If this is true, then the probability distribution function
(PDF), P , of the displacement �X k

j must have a power-law
tail with an exponent γ � −2. We probe this by calculating
the cumulative probability distribution (CDF) function for
�X k

j for all j and k. We calculate the CDF using rank-order
method. The advantage of using the CDF is that unlike the
PDF it is not plagued by binning error. The CDF of �X k

j is dif-
ferent for each of its components. The CDF of the out-of-plane
component, X3, has an exponential tail. The CDF of the two
in-plane components are qualitatively similar, hence we cal-

culate �s =
√

X 2
1 + X 2

2 and plot its CDF, Q(�s), calculated
by the rank-order method, in Fig. 6(E). The tail of the CDF
has a slope approximately equal to −3, which implies that the
tail of the corresponding PDF has a slope of approximately
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FIG. 6. Mixing of passive tracer: (A–C) Positions of tracer particles at different times for the filament in complex phase (μ = 3.3 × 106,
σ = 1.5). Initially, the tracers are placed on concentric circles, color coded by their distance from the center of the circles. The mixing of the
colors show the mixing of the scalars. (D) Mean-square displacement (MSD), 〈ρ2〉(qT ), defined in Eq. (10), as a function of q in log-log scale.
We also plot two lines with slopes 1 and 2. (E) Cumulative probability distribution function, 1 − Q(�s) as a function of �s = √

X 2
1 + X 2

2 (X1

and X2 are in-plane coordinate of the tracers).

−4. Thus, by the central limit theorem we conclude that the
tracers to show diffusion, not superdiffusion. However, as the
PDF has power-law tail we expect that very long averaging
over very many number of tracer particles is necessary for
convergence. This explains why we do not observe clear evi-
dence of diffusion from the mean square displacement.

IV. CONCLUSION

To summarize, we numerically study the motion of a freely
floating elastic filament in a linear shear flows that changes
periodically with time, at zero Reynolds number. We find that
elastic nonlinearities of the filament are responsible for break-
down of time-reversal symmetry. The first signature of this
breakdown, which appears as we increase the elasto-viscous
number, is that the filament starts to swim—it does not return
to its initial position after one period, although it returns to
the same shape. As the elastoviscous number is increased
we find period-two bifurcation and eventually what could be
spatiotemporally chaotic behavior of the shape of the filament.
Surprisingly, at quite large elastoviscous number we find that
chaos is suppressed at late times—the filament returns to the
same shape at the end of every period but does not repeat itself
between the periods. We also demonstrate that such a filament
is an efficient mixer of a passive scalar. Few comments are
now in order.

Our numerical experiments correspond, roughly, to the
same range of elastoviscous parameters as the recent experi-
ments [20] of flexible filaments in constant-in-time shear flow
and our code reproduces the behavior seen in these experi-
ments. Hence, we expect it will be possible to experimentally
confirm our results, at least qualitatively. Intriguingly, the spa-
tiotemporally chaotic behavior is observed within a window of
values of the elastoviscous number for a fixed value of σ .

We have not confined the numerical solution of our prob-
lem to two dimensions. The filament could, in principle,
bend out-of-plane when buckled, but it never does. We ex-
pect, if torsion is included the filament will bend out of the
plane and also break the reflection symmetry. However,
the passive tracers driven by the filament do move out of the
plane.

In addition to elastic nonlinearity, we have included non-
local viscous interaction. In its simplest approximation a
filament in a viscous flow can be described by including only
the diagonal term (i = j) in the Rotne-Prager tensor [49] in
Eq. (1b). We have checked that for such a model we also
find spatiotemporally chaotic behavior, which will be reported
elsewhere.

Spatiotemporally chaotic systems are rare in nonlinear sys-
tems in one space dimension, e.g., the one-dimensional Burg-
ers equation does not show chaotic behavior. When described
in terms of its intrinsic coordinates our filament could, naively,
considered to be, a spatiotemporally chaotic one dimensional
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system. However, this is not true because the external shear
cannot be captured only with the intrinsic coordinates.

A single rigid ellipsoid in a shear flow shows low-
dimensional chaotic motion for appropriate choice of param-
eters [50–52]. Hence, from a fundamental point of view, it is
not a surprise that a deformable thread in a time-dependent
shear can show spatiotemporally chaotic behavior. However,
it has never been demonstrated before.

For a small enough filament, e.g., a single large poly-
mer molecule, thermal effects that we have ignored, may be
important. We have ignored them for two reasons. First, in
many experimental situations [20] the filament is large enough
that the thermal fluctuations may not be crucial. Second, we
want to address the fundamental question of emergence of
chaotic behavior due to elastic nonlinearities in the absence
of any external stochastic fluctuations. We further emphasize
that most strategies of increasing mixing in microfluidics rely
on having a nonzero but small molecular diffusivity—“For
efficient mixing to be achieved, the velocity field must stir
together different portions of the fluid to within a scale that
is small enough for diffusion to take over and homogenize the
concentrations of the advected quantities” [9]. By contrast, we
operate at zero molecular diffusivity—our system is diffusive
even at infinite Peclet number.

Notes added. It has come to our notice that the two follow-
ing preprints [53,54] have studied a flexible filament driven in
a time-periodic manner to find complex or chaotic behavior.
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APPENDIX A: MODEL AND METHOD

1. Model

We use the bead-spring model for the numerical simulation
of the filament in a flow [19,22,23,27–29]. The model consists
of N spherical beads of diameter d , connected by overdamped
springs of equilibrium length a, see Fig. 7. The total length
of the filament is L. The position of the center of the ith bead
is Ri, where i = 1, . . . N . The equation of motion for the ith
bead is given by [28]

∂t R
α
i = −

N−1∑
j=0

Mαβ

ij (Rij )
∂H
∂Rβ

j

+ U α
0 (Ri ), (A1)

where Rij = R j − Ri, H is the elastic Hamiltonian, ∂ (·)/∂ (·)
denotes the partial derivative, the greek indices run from 1 to
D, where D = 3 is dimensionality of space. Repeated greek
indices are summed. The velocity of the background flow, U0

is given by

U0(x, y) = γ̇ yx̂, with γ̇ = S sin(ωt ), (A2)

being the time-periodic strain-rate, and ω ≡ 2π/T .

The hydrodynamic interaction between the beads is
encoded by the Rotne-Prager mobility tensor Mij(R) [30–33]:

Mαβ

ij (R) =
{

1
8πηR

[
δαβ + RαRβ

R2 + d2

2R2

(
δαβ

3 − RαRβ

R2

)]
, i �= j

1
3πηd δαβ , i = j

}
.

(A3)

Here, η is viscosity of the fluid, and R = |R|.
The Hamiltonian of the system, H, is H = HB + HS—we

do not consider torsion. Here HB and HS are contributions
from bending [34,35] and stretching [28,36], respectively. The
bending energy of a filament is given by [37]

HB = B

2

∫
κ2(s)ds, (A4)

where B is the bending modulus, κ is curvature, and s is the
material coordinate. The discrete form of HB is [34,35,56]

HB = aB
N−1∑
i=0

κ2
i = B

a

N−1∑
i=0

ûi · ûi−1 = B

a

N−1∑
i=0

cos θi, (A5)

where

κi = 2

a
tan

(
θi

2

)
≈ sin (θi )

a
= |ûi × ûi−1|

a
, (A6a)

ûi = Ri+1 − Ri

|Ri+1 − Ri| , (A6b)

and θi is the angle between two consecutive unit vectors ûi

and ûi−1 [see Fig. 1(A)]. In the second step of Eq. (A5), we
have dropped a constant term. In the last step of Eq. (A6a), we
have used the small-angle approximation [34].

The stretching energy is discretized [28,36] as

HS = H

2a

N−1∑
i=0

(|Ri+1 − Ri| − a)2, (A7)

where H is the stretching modulus. We ignore thermal fluctu-
ations.

2. Nondimensionalization

We use L and 1/S as our characteristic scales for length and
time, respectively. The evolution equation in nondimensional

FIG. 7. Schematic of a freely jointed bead-rod chain. We show
a > d for illustration, but we use a = d for our simulation.
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TABLE I. Parameters of simulation. Earlier studies have used
N = 20 − 40 [28], N = 40 [22], N = 400 [26].

Parameters Simulation values

Number of beads, N 256
Equilibrium distance between beads, a 0.005
Filament diameter, d 0.005
Filament length, L 1.28
Bending modulus, B 2 × 10−5–8 × 10−3

Strain-rate amplitude, S 2
Viscosity, η 10
Rate of change of strain rate, ω 1–6
Time-step, � 10−4–10−6

Elastoviscous number, μ = 8πηSL4

B 1.7 × 105–6.8 × 107

Frequency parameter, σ = ω

S 0.5–3
Stretching-bending modulus ratio, K = Ha2

B 16

form is

∂t̃ R̃
α
i = − 1

μ

N−1∑
j=0

M̃αβ

ij (R̃ij )

[
∂H̃B

∂R̃β

j

+ K
(L

d

)3(d

a

)
∂H̃S

∂R̃β

j

]
+ ỹ sin σ t̃ . (A8)

Here ˜(·) denotes nondimensional quantities. We get the fol-
lowing dimensionless parameters: The elasto-viscous number,

μ ≡ 8πηSL4

B
, (A9)

the nondimensional frequency,

σ ≡ ω

S
, (A10)

and the ratio of stretching to bending,

K ≡ Hd2

B
. (A11)

All the parameter values are shown in Table I.

APPENDIX B: NUMERICAL IMPLEMENTATION

We use the adaptive Runge-Kutta method [57] with cash-
karp parameters [58,59] to evolve the system. We use time-
step, �t , such that

�̃ = B�t

8πηL4
= 10−11 – 10−12. (B1)

We use numerical accuracy of order 10−6 [57–59]. We use
CUDA to parallelize the code [60]. The dimensionless fre-
quency, σ , must be small enough such that the Stokesian
approximation remains valid. We use K = 16 (see Table I)
for all the simulations. Note that Eq. (A5) is exact for an inex-
tensible filament. In our case, the total length of the filament
changes at most by 2%—the filament is practically inextensi-
ble. Hence, Eq. (A5) remains a reasonable approximation. Our
code reproduces the experimental results by Liu et al. [20] (see
Fig. 8).

APPENDIX C: DETAILED DESCRIPTION
OF THE DYNAMICAL PHASES

Our simulations reveal five different dynamical phases
which we call straight, buckling, two-period, complex, and
complex-transients (see Fig. 3 from main text).

For each case, we describe the dynamics through the mor-
phology of the filament. This we do in two ways:

(1) Extrinsic (real space)—actual shape of the filament.

FIG. 8. Comparison with experimental results: We reproduce the experimental results of Ref. [20]. The filament lies along the x axis. It is
advected by a flow U = (γ̇ y, 0), where γ̇ is the shear rate. The flow is constant in time. We observe different dynamical behavior for different
μ. The gray background are figures from Ref. [20], and the white background are results of our simulation. Initially, we add small perturbation
to the filament but ignore thermal fluctuations. The μE and μS are the values of μ from experiments and our simulations, respectively.
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FIG. 9. Evolution of the filament in complex phase (μ = 3.35 × 106, σ = 1.5). The filament shows complex behavior for cycles at
intermediate times: (A) real space; (B) configurational space. (C, D) For late cycles also, the filament either does not repeat itself or comes
close to repeating itself with very high time-period. The filament shows maximum compression at the end of cycle. (E, F) Phase portrait of
tracer velocity late cycles t = 45T –75T . For comparison we also show the phase portrait for a case in the straight phase (orange).

(2) Intrinsic (configurational space)—curvature (κ) of the
filament as a function of the material coordinate (s). Our
classification of dynamical phase is based on the intrinsic
coordinates. Conversion between extrinsic to intrinsic coor-
dinates is done using Eq. (A6)—this conversion is unique.
Although the inverse is not true. To impose uniqueness, we
fix the position of the first bead and slope of the bond to the
next one.

1. Straight (S)

The filament does not buckle but remains straight all
through its evolution, the curvature remains zero always.

2. Periodic buckling (B)

The filament develops buckling instability. The filament
settles into periodic behavior after initial transients and
repeats itself stroboscopically (after every cycle) both extrin-
sically and intrinsically.

3. Two-period (2P)

The filament does not repeat itself after every period but
after every two periods. Also, the filament does not come back
to its position but is rotated after two-cycles—which we call
swimming.

025103-10
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FIG. 10. Discrete sine transform for two-period phase (A), and complex phase (B).

4. Complex (C)

The filament rotates in the first half of the cycle (see
Fig. 1). In the second half, it buckles. In Fig. 9(A), we plot
the filament at the end of 1st, 10th, 19th, and 28th cycle for
μ = 3.35 × 106, σ = 1.5)—the filament never repeats itself.
In Fig. 9(B), we plot the curvature (κ) of the filament as a
function of arc-length (s) at the same times. This shows too
that the shape of the filament never repeats at the end of
each cycle. Even at late times t > 60T , the filament does not
repeat itself at the end of a cycle—see Fig. 9(C) where we
plot the shape of the filament at t = 35T, 45T, . . . , 75T . The
corresponding plot of κ versus s is shown in Fig. 9(D). Here it
may seem that the filament comes close to its previous shapes
but a careful look tells us that it never completely repeats
itself. Note that, the κ-s plot for t = 35T is very close to the
one at t = 65T , although not exactly the same. The same is
true for t = 45T and t = 75T . This suggests that there maybe
a very high period solution to the stroboscopic map. A sine
transform of the κ (s) to κ̂ (q) shows several peaks, For q � 20
the κ̂ is practically zero (Fig. 10) This demonstrates that our
simulations are well resolved to capture the phenomena we
observe.

Note that, in some cases of this complex phase, at late
times, the filament achieves the most buckled state (as mea-
sured by total elastic energy) not at the end of the cycle but
somewhere in between. One such case is shown in Fig. 11
for μ = 6.7 × 106 and σ = 0.75. The κ-s plot at the end of
every cycle comes very close to repeating itself—Fig. 11(B).
The corresponding plots of the filament in real space, is shown
in Fig. 11(A), are also very close to one another although do
not overlap everywhere. However, if we look at intermediate
times, e.g., at t = 65.7T . . . 75.7T , we find that the filament
does not repeat itself [Figs. 11(C) and 11(D)].

To measure the disturbances in the flow due to moving
filament, we calculate the time series of flow disturbance
(U − U0) at an Eulerian point r = [0, L/2, 2d]. The numer-
ical method is described in the main body of the paper, see
also chapter 8 of Ref. [33]. The Eulerian point is chosen to
be just above the XY plane such that the filament does not

overlap with it. We show the phase portraits of fluctuating
velocity at late times (t = 40T to t = 75T ) in Figs. 9, 11(E),
and 11(F), respectively. Note that, the velocity values are
larger compared to the straight phase [Figs. 9(E) and 9(F)].

5. Complex transients

The filament shows high mode of buckling. We compare
the filament extrinsically and intrinsically at the end of the
24th, 34th, and 44th cycle for μ = 3.35 × 107, σ = 1.5, re-
spectively, in Figs. 12(A) and 12(B). The filament shows
complex behavior and does not repeat itself for early pe-
riods (t < 60T ), similar to the complex phase. However,
the complex behavior is transient and the filament comes
very close to itself for late periods—at the end of a cy-
cle [t = 80T, 90T, 100T , see Fig. 12(C)] and intermediate
times between cycle where the filament shows maximum
buckling [t = 80.8T, 90.8T, 100.8T , see Fig. 12(E)]. The
corresponding plots of κ-s are shown in Figs. 12(D)
and 12(F)—this also shows the almost-periodic behavior of
filament at late times. In Fig. 12(G), we show the shapes at t =
80T, 130T, 180T, and 230T . Over such a long timescale, the
shape does change. The corresponding s-κ plots are shown
in Fig. 12(H). In Figs. 12(I) and 12(J) we show the phase
portrait of Eulerian velocity at r = [0, L/2, 2d] for late times
(t > 80T ).

APPENDIX D: STROBOSCOPIC MAP

We take a dynamical system approach to analyze the com-
plex dynamics we observe. Such techniques have been used
widely to study highly turbulent flows [43–45] and has also
been applied to other fields of fluid dynamics [46,47]. Let us
define an operator F such that

κ(T ) = Fκ(0), (D1a)

F p = FF . . . p times . . .F , (D1b)

where κ = [κ1, κ2, . . . κi . . . κN ], where κi is the curvature at
point i. For a given κ, the operator, F , returns the values of
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FIG. 11. Evolution of the filament in the complex phase (μ = 6.7 × 106, σ = 0.75) The filament shows complex behavior at early cycles
respectively in real space and configuration space. However, for late times (t = 65T, 70T, 75T ), the filament almost repeats itself at nT ,
where n is an integer (A, B). Also note that, highest bending energy of the filament is at (n + p)T , p �= 0 instead of nT (C, D). The filament is
shown stroboscopically for p = 0.7 respectively in real space and configuration space. We observe that the filament does not repeat itself. (E,
F) Phase portrait in (x, y) and (y, z) of Eulerian velocity at one point.

κ after evolving the system for exactly one time-period. We
look for fixed points and periodic orbits of this map [42] by
solving κ = F pκ. The task is now to calculate the solutions of
set of the nonlinear equations:

Npκ ≡ (F p − 1)κ = 0. (D2)

For example, κ = 0, p = 1, is a solution for straight phase.
The periodic buckling and two–period have nonzero curvature
(κ) solution respectively for p = 1 and p = 2. We use the
Newton-Krylov method [61] based on generalized minimal
residual method (GMRES) [62] in Jacobian-free way to find
the solutions. It is described next.

1. Newton-Krylov

The flow-chart of the algorithm is shown in Fig. 13.
We start with a guess for the curvature, κ(0). Then
we calculate the positions of the beads given by
y ≡ [y1, . . . y2 j−1, y2 j, . . . y2N ] ≡ [R1

1, . . . , R1
j , R2

j , . . . R2
N ]. We

call this transformation κ to y, K−1, such that

y(0) = K−1κ(0). (D3)

Then we evolve in time from t = 0 to t = pT by solving
Eq. (A1) to obtain y(pT ). Then we apply the inverse trans-
formation, K, to obtain

κ(pT ) = K[y(pT )]. (D4)
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FIG. 12. Evolution in the complex-transient phase: (μ = 3.35 × 107, σ = 1.5). The shape of the filament in panels (A, C, E) and the
corresponding curvature is shown in panels (B, D, F). For early cycles (t � 60T), the filament shows complex behavior and does not repeat
itself (A, B), similar to the complex phase (see Fig. 9). For late cycles (t = 70T . . . 100T ), although the filament does not repeat itself, it comes
very close after every cycle (C–F). The filament shape, from the end of one cycle to next, changes very slowly, e.g., panel (E) shows the shape
at t = 80.8T, 90.8T, 100.8T . In panel (G), we show the shapes at t = 80T, 130T . . . . Over such a long timescale, the shape does change. (I,
J) Phase portrait of velocity at an Eulerian point for the late cycles.

Then we check how accurately Eq. (D2) is satisfied, i.e., we
define

error = ||Npκ||2
||κ(0)||2 . (D5)

The case for straight solution is dealt specially because in this
case κ = 0. Here we use

error = ||Npκ||2
N ∗ tol

. (D6)
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FIG. 13. Flowchart for Newton-Krylov iteration. K is coordinate
transformation from real to curvature space using Eq. (A6). Simi-
larly, K−1 is the inverse coordinate transformation from curvature to
real space. We use the notation: J is jacobian of the operator N ,
described in Eq. (D2). We use tol = 0.01.

If the error is less than a preset tolerance, then we accept the
guess [κ(0)] as a solution; otherwise, we generate a new guess
by

κ(0) = κ(0) + δκ, (D7a)

such that

J · δκ = −Npκ(0). (D7b)

Here J is jacobian matrix of the operator Np computed at
κ(0). We do not calculate J , instead we calculate

J · δκ = Np[κ(0) + εδκ] − Np[κ(0) − εδκ]

2ε
. (D8)

Here ε is a step size [61]. We use the GMRES [62,63]
method in matrix-free way using Eq. (D8) to find solutions
of Eq. (D7b). The operator Np is implemented as described
in Fig. 13. The value of ε should be small enough such that
Eq. (D8) is well approximated and large enough such that
the floating point round-off errors are not too large [61]. We
compute ε in the following way:

ε = εrel

(
1 + ||κ(0)||2

||δκ(0)||2

)
, (D9)

where || · || is the second norm, and εrel = 10−4.
Note that the conversion from curvature space to real space

(K−1) is not unique. However, if we fix the position of the
first bead and slope of the bond to the next one, then it is
unique. One advantage of using this method is that it accounts
for all the continuous symmetries (translation in x, y direction)
present in the system [42].

Also note that the κ is the same for two filaments which
has the same shape but are rotated with respect to each other.
But the evolution of two such filaments are not the same, in
principle, because the ambient flow depends on space. In some
cases, we find the solutions such that the filament comes to
the same shape as before but rotated. We call these solutions
“swimming solutions.”
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[41] D. Auerbach, P. Cvitanović, J.-P. Eckmann, G. Gunaratne, and I.
Procaccia, Exploring Chaotic Motion Through Periodic Orbits,
Phys. Rev. Lett. 58, 2387 (1987).

[42] P. Cvitanovic, R. Artuso, R. Mainieri, G. Tanner, G. Vattay,
N. Whelan, and A. Wirzba, Chaos: Classical and Quantum,
https://chaosbook.org/.

[43] R. R. Kerswell, Recent progress in understanding the transition
to turbulence in a pipe, Nonlinearity 18, R17 (2005).

[44] B. Suri, L. Kageorge, R. O. Grigoriev, and M. F. Schatz,
Capturing Turbulent Dynamics and Statistics in Experiments
with Unstable Periodic Orbits, Phys. Rev. Lett. 125, 064501
(2020).

[45] J. Page, Y. Dubief, and R. R. Kerswell, Exact Traveling Wave
Solutions in Viscoelastic Channel Flow, Phys. Rev. Lett. 125,
154501 (2020).

[46] A. Franco-Gómez, A. B. Thompson, A. L. Hazel, and A. Juel,
Bubble propagation in Hele-Shaw channels with centred con-
strictions, Fluid Dynam. Res. 50, 021403 (2018).

[47] A. Gaillard, J. S. Keeler, G. Le Lay, G. Lemoult, A. B.
Thompson, A. L. Hazel, and A. Juel, The life and fate of
a bubble in a geometrically perturbed Hele-Shaw channel,
J. Fluid Mech. 914A34 (2021).

[48] G. I. Taylor, Diffusion by continuous movements, Proc. London
Math. Soc. s2-20, 196 (1922).

[49] R. E. Goldstein, T. R. Powers, and C. H. Wiggins, Viscous
Nonlinear Dynamics of Twist and Writhe, Phys. Rev. Lett. 80,
5232 (1998).

[50] K. Radhakrishnan, K. Asokan, J. Dasan, C. C. Bhat, and T. R.
Ramamohan, Numerical evidence for the existence of a low-
dimensional attractor and its implications in the rheology of
dilute suspensions of periodically forced slender bodies, Phys.
Rev. E 60, 6602 (1999).

[51] F. Lundell, The effect of particle inertia on triaxial ellipsoids
in creeping shear: From drift toward chaos to a single periodic
solution, Phys. Fluids 23, 011704 (2011).

[52] C. Nilsen and H. I. Andersson, Chaotic rotation of inertial
spheroids in oscillating shear flow, Phys. Fluids 25, 013303
(2013).

[53] F. Bonacci, B. Chakrabarti, D. Saintillan, O. D. Roure, and
A. Lindner, Dynamics of flexible filaments in oscillatory shear
flows, arXiv:2205.08361 (2022).

[54] D. Krishnamurthy and M. Prakash, Emergent Programmable
Behavior and Chaos in Dynamically Driven Active
Filaments, bioRxiv 2022.06.05.494577 (2022), doi:
10.1101/2022.06.05.494577.

[55] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

[56] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E.
Grinspun, Discrete elastic rods, in Proceedings of the ACM
SIGGRAPH (ACM, New York, 2008), pp. 1–12.

025103-15

https://doi.org/10.1038/nature04380
https://doi.org/10.1103/PhysRevLett.87.198301
https://doi.org/10.1063/1.4771606
https://doi.org/10.1073/pnas.1805399115
https://doi.org/10.1016/j.jnnfm.2019.06.007
https://doi.org/10.1103/PhysRevE.101.023104
https://doi.org/10.1017/jfm.2020.1048
https://doi.org/10.1088/1367-2630/17/5/053009
https://doi.org/10.1103/PhysRevLett.127.074503
https://doi.org/10.1038/s41567-020-0843-7
https://doi.org/10.1122/1.550991
https://doi.org/10.1209/epl/i2006-10155-0
https://doi.org/10.1016/j.jcp.2016.10.026
https://doi.org/10.1063/1.1670977
https://doi.org/10.1146/annurev.fl.20.010188.000551
https://doi.org/10.1063/1.1848511
https://doi.org/10.1145/1778765.1778853
https://doi.org/10.1209/0295-5075/77/68001
https://doi.org/10.1103/RevModPhys.82.1607
https://doi.org/10.1103/PhysRevLett.99.034502
https://doi.org/10.1103/PhysRevE.75.011929
https://doi.org/10.1103/PhysRevE.81.036317
https://doi.org/10.1103/PhysRevLett.58.2387
https://chaosbook.org/
https://doi.org/10.1088/0951-7715/18/6/R01
https://doi.org/10.1103/PhysRevLett.125.064501
https://doi.org/10.1103/PhysRevLett.125.154501
https://doi.org/10.1088/1873-7005/aaa5cf
https://doi.org/10.1017/jfm.2020.844
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1103/PhysRevLett.80.5232
https://doi.org/10.1103/PhysRevE.60.6602
https://doi.org/10.1063/1.3548864
https://doi.org/10.1063/1.4789376
http://arxiv.org/abs/arXiv:2205.08361
https://doi.org/10.1101/2022.06.05.494577
https://doi.org/10.1101/2022.06.05.494577
https://doi.org/10.1109/MCSE.2007.55


VIPIN AGRAWAL AND DHRUBADITYA MITRA PHYSICAL REVIEW E 106, 025103 (2022)

[57] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Comput-
ing, 3rd ed. (Cambridge University Press, Cambridge, UK,
2007).

[58] W. H. Press and S. A. Teukolsky, Adaptive stepsize Runge-
Kutta integration, Comput. Phys. 6, 188 (1992).

[59] J. R. Cash and A. H. Karp, A variable order Runge-
Kutta method for initial value problems with rapidly vary-
ing right-hand sides, ACM Trans. Math. Softw. 16, 201
(1990).

[60] Our code is available here: https://github.com/dhrubaditya/
ElasticString.

[61] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov
methods: A survey of approaches and applications, J. Comput.
Phys. 193, 357 (2004).

[62] Y. Saad and M. H. Schultz, GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,
SIAM J. Sci. Stat. Comput. 7, 856 (1986).

[63] G. Guennebaud, B. Jacob, P. Avery, A. Bachrach, S. Barthelemy
et al., Eigen v3 (2010), https://eigen.tuxfamily.org.

025103-16

https://doi.org/10.1063/1.4823060
https://doi.org/10.1145/79505.79507
https://github.com/dhrubaditya/ElasticString
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1137/0907058
https://eigen.tuxfamily.org

