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Weight of single and recurrent scattering in the reflection matrix of complex media
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In a heterogeneous medium, the wave field can be decomposed as an infinite series known as the Born
expansion. Each term of the Born expansion corresponds to a scattering order, it is thus theoretically possible to
discriminate single and multiple scattering contribution to the field. Experimentally, what is actually measured
is the total field in which all scattering orders interfere. Conventional imaging methods usually rely on the
assumption that the multiple scattering contribution can be disregarded. In a back-scattering configuration, this
assumption is valid for small depths, and begins to fail for depths larger than the scattering mean-free path �s.
It is therefore a key issue to estimate the relative amount of single and multiple scattering in experimental data.
To this end, a single-scattering estimator ρ̂ computed from the reflection matrix has been introduced in order to
assess the weight of single scattering in the backscattered wave field. In this paper, the meaning of this estimator
is investigated and a particular attention is given to recurrent scattering. In a diffraction-limited experiment,
a multiple scattering sequence is said to be recurrent if the first and last scattering events occur in the same
resolution cell. Recurrent scattering is shown to be responsible for correlations between single scattering and
higher scattering orders of the Born expansion, inducing a bias to the estimator ρ̂ that should rather be termed
confocal scattering ratio. Interestingly, a more robust estimator is built by projecting the reflection matrix in a
focused basis. The argument is sustained by numerical simulations as well as ultrasonic data obtained around
1.5 MHz in a model medium made of nylon rods immersed in water. From a more general perspective, this work
raises fundamental questions about the impact of recurrent scattering on wave imaging.
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I. INTRODUCTION

As a wave propagates through a heterogeneous medium, it
undergoes scattering: one part of its energy is diverted from
the initial direction, and gives rise to secondary waves, which
in turn can be scattered again. Multiple scattering can be en-
countered with all kinds of waves, and has been a very active
subject of research for several decades in quantum physics as
well as in optics or acoustics [1–7].

Imaging devices working in reflection as for radar echolo-
cation or medical ultrasound take advantage of single
scattering in order to detect, locate, and possibly character-
ize the individual heterogeneities. Yet, in ultrasonic imaging,
multiple scattering can be far from negligible, for instance in
breast [8] or liver [9] tissues and can be even largely predom-
inant in complex structures such as bones [10] or lungs [11].
In the context of nondestructive evaluation, polycrystalline
media such as titanium alloys are intrinsically scattering me-
dia for ultrasonic waves due to the random orientations of
crystallites, which generate a structural noise [12–18]. Defects
can be detected by ultrasound, provided that the amount of
multiple scattering between the grains is sufficiently low. If
not, spikes on an ultrasound image might result in false alarms
or, on the contrary, a defect might remain hidden in the clutter.
Multiple scattering is thus a key issue since it causes conven-
tional imaging techniques to fail. Therefore, whether it be for
medical or nondestructive testing applications, there is a need

for a depth-dependent indicator of the single-scattering weight
in the reflected wave field.

In order to account for multiple scattering in a randomly
disordered medium, the scattering mean-free path �s is a key
parameter. In the case of an incoming plane wave propagating
along the z axis, the intensity of the ensemble-averaged wave
field |〈ψ〉|2 decays as exp(−z/�s). Therefore the scattering
mean-free path may be roughly thought of as a typical length
scale to determine whether scattering has affected the incom-
ing wave. If the path length is very large compared to �s, the
incoming wave loses its initial coherence while its energy is
transferred to scattered waves; ultimately, the propagation of
the average energy density can be described as that of classical
particles undergoing a random walk, ruled by a diffusion
equation.

Working at frequencies for which �s is large, for instance
by lowering the frequency, is a classical way to diminish
multiple scattering, usually at the cost of a poorer spatial
resolution. In the case of ultrasonic waves though, the advent
of controllable multi-element arrays gave rise to alternative
imaging methods involving a matrix approach. A matrix for-
malism is particularly appropriate since all the information
available on the probed medium can be stored in the array
response matrix or the so-called reflection matrix, which con-
tains the set of impulse responses between each array element.
Interestingly, single and multiple scattering were shown to
exhibit different correlation properties in the reflection matrix
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measured on a random medium [19,20]. Building on this dif-
ference, an algorithm was proposed to separate the single- and
multiple-scattering contributions to the reflection matrices. A
first estimator of a multiple to single scattering ratio was built
by Aubry et al.[8] from the mean intensity of the reflection
matrix diagonal elements; then, Baelde et al. [21] proposed a
single-scattering estimator ρ̂ using the Frobenius norms of the
matrices. More recently, Lambert et al. [9] and Velichko [22]
built other local multiple- to single-scattering ratio estimators
calculated from the projection of the reflection matrix in a fo-
cused basis. In the aforementioned references, it is noticed that
a residual multiple-scattering term is not well separated from
single scattering and thus remains in the single-scattering
estimated matrix. All these estimators are thus biased. The
aim of this paper is to estimate and elucidate such bias by
providing a physical analysis of the back-scattered echoes. In
particular, we will show how part of the multiple-scattering
contributions, known as recurrent scattering, share common
features with single scattering. In multiple-scattering theory,
a scattering sequence is said to be recurrent if the first and
last scattering events occur at the same point. However, for
receivers placed outside the medium, paths whose first and last
scattering events take place in the same resolution cell also
give rise to a long-range memory effect analogous to single
scattering [23], the former being just time delayed compared
to the latter. In this paper, we will thus consider this last
definition for recurrent scattering.

Recurrent scattering has been the object of several studies,
in particular, it was shown that recurrent-scattering events do
not contribute to the coherent backscattering enhancement
[24]; the role of recurrent scattering loops was also studied
in the context of Anderson localization in a strong scattering
regime [23,25,26] (k0�s ∼ 1, with k0 the wave number). In
this work, we investigate the impact of recurrent scattering on
the reflection matrix properties in a much weaker scattering
regime (k0�s � 1). Recurrent scattering is shown to account
for a bias made on the estimation of the single-scattering
component. The original single-scattering estimator ρ̂ [21]
can thus be reinterpreted as a confocal-scattering ratio that
quantifies the weight of single plus recurrent scattering in the
reflection matrix.

Given the extreme variety and complexity of elastic wave
propagation in biological or polycrystalline media [27], in
this paper we choose to model much simpler media made of
random distributions of isotropic scatterers with a numerical
scheme based on the Born expansion. The advantage is that
the total reflection matrix can be decomposed as a series of
matrices K(n), n indicating the scattering orders, which can
be isolated and separately investigated. The chosen numerical
scheme also enables the discrimination of recurrent-scattering
paths among all possible multiple-scattering paths.

The paper is divided into four parts. The first section recalls
the fundamentals of multiple-scattering theory under Green’s
formalism. The second one explains the computation of the
single-scattering estimator ρ̂; then, our analysis is applied to a
proof-of-concept experiment that entails an assembly of paral-
lel nylon wires embedded in water insonified by an ultrasonic
linear array. The third section consists in translating the the-
ory into a matrix formalism in order to predict the reflection
matrix associated with a random distribution of scatterers, and

compare the weight of both single and recurrent scattering to
the experimental estimator ρ̂. The dependence of the single
plus recurrent scattering weight with respect to �s will be
discussed. The last part shows the manifestation of recurrent
scattering on the reflection matrix projected onto a focused
basis in a generalized image space [9,22]. The impact of
recurrent scattering on a local confocal-scattering estimator
is also discussed.

II. BORN SERIES AND T MATRICES

In this section, we recall some basics of wave propagation
in random media (more details can be found, for instance, in
Refs. [2,28,29]). In a homogeneous medium characterized by
a wave velocity c0, the scalar wave equation for the wave field
ψ (r, t ) writes:(

� − 1

c2
0

∂2

∂t2

)
ψ (r, t ) = s(r, t ), (1)

with s(r, t ) the source distribution in the medium. In the case
of a harmonic wave with angular frequency ω, the associated
Green’s equation is:

�G0(r, r′, ω) + k2
0G0(r, r′, ω) = δ(r − r′), (2)

where δ is the Dirac distribution and k0 = ω/c0, the wave
number. The homogeneous Green’s function G0 accounts for
the propagation of a monochromatic wave between two points
r′ and r and reads:

G0(r, r′, ω) =
{− i

4H
(1)
0 (k0|r − r′|) in two dimensions,

− exp(ik0|r−r′|)
4π |r−r′| in three dimensions,

(3)
with H(1)

0 the Hankel function of the first kind. In the far field,
the two-dimensional (2D) Green’s function can be approxi-
mated by:

G0(r, r′, ω) ≈ −eiπ/4√
8πk0|r − r′| exp(ik0|r − r′|). (4)

In a heterogeneous medium where the wave speed varies
randomly as a function of spatial coordinates, the Green’s
equation may be written as:

�G(r, r′, ω) + k2
0 (1 − μ(r))G(r, r′, ω) = δ(r − r′). (5)

The nondimensional quantity μ accounts for the medium het-
erogeneity. In the most common cases, it is a simple scalar:
for instance, in optics, 1 − μ is the squared refractive index
[c0/c(r)]2, c0 being the speed of light in vacuum; in acoustics,
ψ being the pressure field, it is the same expression provided
that the fluctuations of mass density at rest are ignored. With
no loss of generality, Eq. (5) also applies to less common
cases: μ is then an operator and not a simple scalar [30,31].

The solution of Eq. (5) may be written recursively using
the homogeneous space Green’s function G0:

G(r, r′, ω) = G0(r, r′, ω)

+ k2
0

∫
G0(r, r1, ω)μ(r1)G(r1, r′, ω) dr1. (6)
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Using the definition of the Green’s function, the wave field
ψ (r) is shown to follow the Lippman-Schwinger equation:

ψ (r) = ψ0(r) + k2
0

∫
G0(r, r1, ω)μ(r1)ψ (r1) dr1, (7)

with ψ0(r) the incident wave field generated in the homoge-
neous medium by an arbitrary source distribution.

Both Eqs. (6) and (7) are recursive and can be iterated to
obtain the Born expansion for the Green’s function as well as
for the wave field:

G(r, r′, ω) = G0(r, r′, ω)

+ k2
0

∫
G0(r, r1, ω)μ(r1)G0(r1, r′, ω) dr1

+ k4
0

∫∫
G0(r, r2, ω)μ(r2)G0(r2, r1, ω)μ(r1)

× G0(r1, r′, ω) dr1 dr2 + . . . (8)

and,

ψ (r) = ψ0(r)

+ k2
0

∫
G0(r, r1, ω)μ(r1)ψ0(r1) dr1

+ k4
0

∫∫
G0(r, r2, ω)μ(r2)G0(r2, r1, ω)μ(r1)

× ψ0(r1) dr2 dr1 + . . . (9)

Neither (6) nor (7) are explicit solutions of the scattering
problem, they are just a recursive expression of the solution.
The Born development is an actual expression of the solution,
but it contains an infinite number of terms, corresponding to
various scattering orders.

Let V be such that V (r2, r1) = k2
0μ(r1)δ(r2 − r1). Then for

the sake of brevity, matrix products can be used instead of
multiple integrals, for instance:

VG0V ↔
∫∫

V (r2, x)G0(x, y)V (y, r1) dx dy. (10)

Defining the T matrix (or scattering matrix) as
T = V + VG0V + VG0VG0V + . . . yields an explicit
expression for the total wave field (incident + scattered):

ψ (r) = ψ0(r) +
∫∫

G0(r, r2, ω)T (r2, r1, ω)ψ0(r1) dr2 dr1.

(11)
In Eq. (11), the entire complexity of the medium is wrapped
up in T. Equation (11) can be interpreted as the following
series of events: the incident wave ψ0 impinges at r1, is af-
fected by T, exits at r2, then the resulting wave propagates
freely to the receiver at r. In Eq. (11), T is the scattering
matrix of the entire medium, as if it was one single large
scatterer: intrinsically there is no multiple scattering between
two points, unlike in the Born development [Eq. (9)].

For a medium composed of Ns discrete objects embedded
in a homogeneous fluid, it is common to adopt an intermediate
scale, and consider each object, even if it is not pointlike,
as the unit scattering cell. Let Ti denote the T matrix of the
ith object; then, Eq. (11) can be developed into a series of

FIG. 1. Experimental configuration: an ultrasonic probe is used
to record the reflection matrix K = [K (ui, uj, t )] associated with the
scattering medium. The incident wave emitted by one transducer at
ui undergoes a first scattering event at r1. The wave can then either go
back directly towards the transducer uj (single scattering, blue path)
or be multiply scattered. Multiple scattering paths can be classified
in two categories: (i) recurrent scattering paths whose first and last
scattering events at r1 and r2 occur within overlapping resolution
cells (black arrows); (ii) nonrecurrent scattering paths (red arrows).

scattering sequences:

ψ = ψ0 +
Ns∑

i=1

G0Tiψ0 +
Ns∑

i=1

Ns∑
j=1
j �=i

G0TiG0T jψ0 + . . . (12)

The terms on the right-hand side of Eq. (12) correspond,
respectively, to the incident field, the single-scattering contri-
bution, the double-scattering contribution, etc. The total wave
field ψ may be decomposed in that manner whatever the
chosen unit scattering cell. In the following, Eq. (12) is the
fundamental relation that will be used to compute recursively
the reflection matrix, considering one cylindrical scatterer as
the unit scattering cell.

III. SINGLE-SCATTERING RATIO ESTIMATION

Let us consider the experimental setup in Fig. 1. An array
of N emitter receivers at positions ui = (ui, 0), (i = 1, . . . , N)
is placed in front of the scattering medium under investi-
gation. The N × N interelement impulse responses between
all possible transducers are measured. A Fourier transform
yields the reflection matrix K = [K (ui, u j, ω)] at each angular
frequency ω. In actual experiments, the various scattering
orders described by Eq. (12) cannot be discriminated in K.
Nevertheless, one can try to isolate the single-scattering con-
tribution from the other terms. To that aim, Aubry et al.
[19,32] proposed to apply a matrix manipulation based on
the peculiar correlation of the single-scattering matrix K(1).
We first recall the principle of this method, which will be
referred to as the matrix filter in the following, we then define
the single-scattering estimator [21] and apply it on a model
experiment.
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A. Theoretical derivation

The expression of the single-scattering matrix K(1) is the
second term of Eq. (12). For scatterers smaller than the wave-
length, the T matrix of the sth scatterer located at position rs =
(xs, zs) can be written Ts(r, r′, ω) = Ts(ω)δ(r − rs)δ(r′ − rs),
with Ts(ω), the scatterer frequency response. Moreover, when
considering the emitter and receiver sizes also much smaller
than the wavelength, ψ0 can be replaced by the Green’s matrix
G0 that contains the N × Ns free space Green’s functions be-
tween the transducers and the scatterers. Thus, the coefficients
of K(1) can be expressed as follows:

K (1)(ui, u j, ω) =
Ns∑

s=1

G0(ui, rs, ω)Ts(ω)G0(rs, uj, ω). (13)

In a time-resolved experiment, the received waves within
a given time window [T − �T/2; T + �T/2] come from
a specific region, called the isochronous volume 
(T,�T )
[33]. In the single-scattering regime, 
(T,�T ) is the locus of
points r such that |ui − r| + |r − uj | ∈ [2z − 2�z; 2z + 2�z],
with z = c0T/2 and �z = c0�T/2, which describes a skein
of ellipses. In the far field, 
(T,�T ) can be approximated
by a slice parallel to the transducers array, between depths
z ± �z/2. It is therefore a common procedure in ultrasound
imaging to time gate the reflected signals, then analyze their
properties as a function of the central time T (or the equivalent
depth z = c0T/2). It should be noted that as long as 2z is
larger than the transverse size of the array, the direct path
between the emitter and the receiver is eliminated by time
gating. And in the expression of K(1), only the scatterers
contained in the isochronous volume 
 are considered.

Injecting Eq. (4) into Eq. (13) and considering the
isochronous volume 
 as a thin slice of scattering medium
around depth z, the elements of K(1) can be written as follows:

K (1)(ui, u j, ω) ∝
∑

(xs,zs )∈


Ts(ω) exp
(
ik0

√
z2

s + (xs − ui )2
)

× exp(ik0

√
z2

s + (xs − u j )2). (14)

Under the paraxial approximation k0(xs − ui )4/(8z3
s ) � π ,

this expression can be rewritten as follows:

K (1)(ui, u j, ω) ∝ exp

(
ik0

(ui − u j )2

4z

) ∑
(xs,zs )∈


eik0(zs−z)Ts(ω)

× exp
(
ik0

(ui + u j − 2xs)2

4z

)
. (15)

The first phase term is deterministic and is the same for all
emitter-receiver pairs (i, j) such that ui − u j is constant, i.e.,
along the diagonals of K(1). The second term depends on the
scatterers configuration, therefore it is random and changes
from one realization to the next. However, it is a function
of (ui + u j ) hence it is constant along a given antidiagonal
of K(1). As a consequence, the single scattering matrix K(1)

exhibits a deterministic coherence along its antidiagonals, also

known as the memory effect, which can be expressed in the
following manner:

K (1)(ui−d , ui+d , ω) = K (1)(ui, ui, ω)

× exp

(
ik0

(ui−d − ui+d )2

4z

)
. (16)

There are N × N matrix elements K (1)(i, j), hence 2N − 1
antidiagonals than can be labeled from l = 1 to l = 2N − 1.
Following [21], we define:

El (i, j, ω, T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i + j �= l + 1,

exp
(
ik0

(ui−u j )2 )
4z

)
√

min(l, 2N − l )
if i + j = l + 1.

(17)
The next operation consists in projecting the reflection matrix
K onto the single-scattering space generated by the set of
matrices {El}1�l�2N−1. At each depth and each frequency, we
obtain a N × N filtered matrix denoted Kf :

Kf =
2N−1∑
l=1

〈El|K〉El. (18)

By doing so, we select the part of K that follows coherence
along antidiagonals as stated in Eq. (16). Next, we introduce
the following estimator:

ρ̂ = ‖Kf‖2

‖K‖2
. (19)

This estimator can be studied as a function of time (or equiv-
alent depth z = c0T/2) as well as angular frequency ω. It can
be averaged over the frequency band, or over realizations of
disorder, which can be achieved by randomly drawing a large
number of configurations.

If the matrix filter worked ideally, we should have
Kf = K(1), hence ρ̂ could be interpreted as the proportion of
single scattering within the reflected wave field; that would be
a valuable quantity, which could be studied as as function of
depth z and angular frequency ω. Before going deeper into
the theory, we provide an experimental illustration of this
estimator.

B. Experimental results

The single-scattering estimator is now applied to ultrasonic
measurements carried out in a water tank. The scattering
medium consists of a collection of randomly distributed par-
allel nylon wires of radius a = 0.1 mm. The wire sample
is of dimensions 150 × 135 mm, with a concentration of 4
wires cm−2, so that the fractional density is approximately
0.125%. Longitudinal and transverse wave speeds in nylon are
2500 m.s−1 and 1100 m.s−1, respectively. The density of ny-
lon being close to the one of water, the density contrast can be
neglected and the scattering considered as isotropic at low fre-
quencies. This was confirmed in a previous study by Minonzio
et al. [34] who calculated and measured the reflection matrix
of a single wire and derived its decomposition onto the cylin-
drical normal modes of vibration. Measurements were done
with a linear array (Imasonic, Besançon, France) composed
of N = 64 piezoelectric transducers with pitch p = 0.5 mm

025001-4



WEIGHT OF SINGLE AND RECURRENT SCATTERING IN … PHYSICAL REVIEW E 106, 025001 (2022)

FIG. 2. Results obtained from measured data on a nylon wire
sample for and �T = 10 µs: (a) reflection matrix at 1.5 MHz for
depth z = 205 mm, (b) filtered matrix obtained from (a), (c) exper-
imental single-scattering ratio estimator at 1.3 MHz, 1.5 MHz and
1.7 MHz obtained for one realization.

and 1.5 MHz central frequency. The distance z0 between the
probe and the front face of the sample is 140 mm. To acquire
the reflection matrix, each element is excited by a chirp of
30 µs duration and 0.5–2.5 MHz bandwidth with a von Hann
window apodization. The experimental setup is sketched in
Fig. 1.

As a typical example, Fig. 2 displays the reflection matrices
before (K) and after (Kf ) applying the matrix filtering process
described in Sec. III A. K and Kf are very different, which
indicates the existence of multiple scattering. The estimator of
the single-scattering ratio is plotted on Fig. 2(c), as a function
of depth z, at 1.3, 1.5, and 1.7 MHz. As expected, the slopes
of the curves increase with frequency, which means that the
medium exhibits stronger multiple scattering with increasing
frequency (smaller scattering mean-free path).

One purpose of this paper is to analyze and use the in-
formation contained in the filtered matrix, and in particular,
to understand how Kf differs from the theoretical single-
scattering matrix K(1). In the next section, we present a
numerical calculation of the successive scattering terms K(n)

(n = 1, . . . ,∞) contributing to the total reflection matrix K.
Then, the true single-scattering ratio ρ = ‖K(1)‖2

/‖K‖2 can
be computed and compared to its estimator ρ̂.

IV. BORN EXPANSION OF THE REFLECTION MATRIX

In this section, we describe the theoretical computation of
the reflection matrix for a random distribution of scatterers

using Born expansion. A similar approach was used by Mi-
nonzio et al. [34] and then by Fan et al. [35] to investigate
the effect of multiple scattering of two scatterers in a ho-
mogeneous medium on imaging algorithms. The analytical
expression of double scattering by a random distribution of
scatterers was then analytically derived by Hu and Turner
[27]. In this paper, for each realization of disorder, all scat-
tering orders are taken into account.

A. Scattering medium

The numerical scheme is two dimensional. The scattering
medium is a cloud of Ns identical nonoverlapping cylinders
of radius a, embedded in a fluid of sound velocity c0 and
randomly distributed on a rectangular area of surface A. It
is assumed that the density contrast between the cylinders
and surrounding medium is negligible, so that heterogeneity
comes from the compressibility contrast; only longitudinal
(pressure) waves are taken into account. Denoting cs the ve-
locity inside the cylinder, the random term μ in the wave equa-
tion (5) is μ = 1 − (cs/c0)2 inside the scatterers and μ = 0
outside. The radius a is smaller than the wavelength, so the
differential scattering cross section of a cylinder is isotropic.
Under these conditions, the frequency response T0(ω) of each
scatterer derived in Appendix A is given by

T0(ω) = k2
0

πa2μ

1 + ik2
0

4 πa2μ
, (20)

and the scattering cross section of a single scatterer is given
by

σ (ω) = k3
0

4

∣∣∣∣ πa2μ

1 + ik2
0

4 πa2μ

∣∣∣∣
2

. (21)

Under the independent scattering approximation, the scatter-
ing mean-free path is

�s(ω) = 1

nsσ (ω)
, (22)

with ns = Ns/A the number of scatterers per unit surface.

B. Reflection matrices

At each angular frequency ω, the N × N reflection matrix
K = [K (ui, u j, ω)] may be decomposed as a Born expansion,
with all scattering orders from n = 1 to infinity:

K =
∞∑

n=1

K(n), (23)

with K(n), the nth scattering order of the reflection matrix.
The single-scattering matrix K(1) can be expressed by

rewriting Eq. (13) under a matrix formalism:

K(1)(ω) = G0(ω) × T0(ω) × G�
0 (ω). (24)

G0 denotes the N × Ns matrix whose elements are the Green’s
function G0(ui, rs) between each array element and each scat-
terer. To avoid dimensional confusion, G′

0 denotes the Ns × Ns

matrix whose elements are the Green’s function G0(rs, rp)
between two scatterers. Accordingly, higher scattering orders
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K(n) (n > 1) can be deduced from Eq. (12):

K(n)(ω) = G0(ω) × T0(ω) × (G′
0(ω)T0(ω))n−1 × G�

0 (ω).
(25)

Injecting Eq. (24) and Eq. (25) into Eq. (23) leads to the
following expression of the reflection matrix:

K(ω) = G0(ω) × T0(ω) × [I − T0(ω)G′
0(ω)]−1 × G�

0 (ω),
(26)

where the exponent −1 denotes matrix inversion and I the
identity matrix.

The condition of convergence of the geometrical series∑
K(n) is |ν| < 1, with ν any eigenvalue of G′

0T0 [36]. Note
that if |ν| � 1, only the expression of K given by Eq. (26) has
a physical meaning. In this paper, as we are interested in the
different scattering orders, we will only consider converging
cases.

C. Numerical results

Simulation parameters are chosen to be as close as pos-
sible to the experimental configuration described in Sec. III.
We considered an array of N = 64 transducers with cen-
tral frequency 1.5 MHz, 1 MHz bandwidth with a von
Hann apodization and pitch p = 0.5 mm. Ns = 810 scatterers
with velocity cs = 2500 m s−1 are placed in a rectangular
area delimited by depths between 140 mm and 275 mm
and off-axis distances below 75 mm. The density is 4
scatterers/cm2; the radius is a = 0.1 mm. The ambient fluid
is water (c0 = 1480 m s−1). The scattering mean-free path �s

derived from Eq. (22) is 970 mm at 1.5 MHz, which is much
larger than the sample thickness L = 135 mm. This medium
is thus weakly scattering.

A 1D inverse Fourier Transform of K(ω), K(1)(ω) and
K(n)(ω) defined by Eqs. (24) to (26) provide the reflected
signals in the time domain. Examples of impulse responses
K (n)(ui, u j, t ) corresponding to different scattering orders are
shown in Fig. 3. As expected, the multiple-scattering contribu-
tions slowly increase after the first arrivals and persist after the
end of single-scattering signal, resulting in a coda whose dura-
tion increases with the scattering order. The shortest distance
between a scatterer and the array elements is 140 mm, and the
largest is 294 mm; as a result the single-scattering contribu-
tions occurs between 190 µs and 390 µs (t = 0 is the emission
time). The scattering mean-free time is �s/c0 = 650 µs at
1.5 MHz; this order of magnitude is consistent with the fact
that the double-scattering contribution increases with time and
its amplitude becomes comparable to that of single scattering
a few tenths of ms after the arrival of the front face echo. A
short-time Fourier analysis is applied to impulse responses,
which yields one complex-valued N × N matrix at each time
T and frequency ω. 10-µs time windows (6–7 periods) are
used, so that if the single-scattering and far-field approxima-
tions were valid, the isochronous area 
 would correspond to
a 7.5 mm-thick slice of the scattering medium. To avoid heavy
notations, the time or frequency dependence of matrices will
be omitted in the following.

Examples of time-gated matrices for different scattering or-
ders are presented in Fig. 4. As expected, the single-scattering
matrix K(1) displays a long-range coherence along its antidi-
agonals [Fig. 4(b)]. More surprisingly, this coherence seems

FIG. 3. Numerical results: impulse responses computed from
(a) the single-scattering matrix K(1), (b) the double-scattering matrix
K(2), (c) the triple-scattering matrix K(3), (d) the total scattering
matrix K. The red curves are the mean envelope of the impulse
responses, averaged over all emitter-receiver pairs.

to persist, at least partially, for the second and third scattering
order matrices, K(2) [Fig. 4(d)] and K(3) [Fig. 4(e)]. It results
in a multiple scattering matrix Km = K − K(1) [Fig. 4(c)]
that is far from having uncorrelated elements contrary to the
assertions given in previous works [8,21]. Consider matrix
elements (u, u) and (u − �u, u + �u): the former is on the
main diagonal, the latter is on the same antidiagonal. The
persistence of memory effect [cf. property Eq. (16)] in the nth
multiple scattering matrix can be measured by the correlation
coefficient:

C(n)(�u) = 〈K (n)(u, u)K (n)∗(u − �u, u + �u)〉u,

and its normalized version,

Ĉ(n)(�u) = C(n)(�u)√
〈|K (n)(u, u)|2〉u〈|K (n)(u − �u, u + �u)|2〉u

,

(27)

where the symbol 〈· · · 〉u denotes an average over each di-
agonal. Ĉ(n)(�u) evaluates the degree of correlation between
antidiagonal elements (u − �u, u + �u) of matrices K(n).

Figure 4(f) shows the correlation coefficient associated
with matrices K(1), K(2), and K(3). A constant correlation
coefficient Ĉ(1)(�u) is found for the single-scattering com-
ponent: this is the manifestation of the long-range memory
effect highlighted by Eq. (15). Interestingly, the correlation
coefficients Ĉ(2)(�u) and Ĉ(3)(�u) display the following
shape: a narrow peak characteristic of a multiply scattered
(i.e., spatially incoherent) wave field and of shape equal to
the coherent backscattering peak [37,38] (see Appendix C),
on top of a constant background characteristic of a long-
range correlation, similar to the memory effect exhibited by
K(1). In other words, the correlation described by Eq. (16)
that was typical of single scattering also appears in the
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FIG. 4. Modulus of the elements of the different calculated matrices : (a) total-scattering matrix K, (b) single-scattering matrix K(1),
(c) multiple-scattering matrix Km = K − K(1), (d) double-scattering matrix K(2), (e) triple-scattering matrix K(3), (g) recurrent scattering
matrix Kr, (h) confocal-scattering matrix Kc = K(1) + Kr, (i) conventional multiple-scattering matrix Km\r = Km − Kr. Matrices are time
gated (10 µs window around depth 205 mm) and shown at the central frequency. (f) correlation along the antidiagonals as a function of the
distance to the main matrix diagonal [Eq. (27)].

double-scattering contribution K(2), and also (yet to a lesser
level) in the triple-scattering contribution K(3). In light of this
surprising result, the validity of ρ̂ as an indicator of single-
scattering ratio is investigated in the next paragraph.

D. Single-scattering ratio estimator and first-order Born
approximation

The single-scattering ratio estimator ρ̂ averaged over 50
realizations of disorder is plotted in Fig. 5 as a function of time
(blue line). As observed experimentally in Fig. 2, ρ̂ decreases
with time. The orders of magnitude for the decay length of ρ̂

are in reasonable agreement with the experimental results: at
depth 260 mm, ρ̂ ≈ 0.85 in the experiment while ρ̂ ≈ 0.9 in
the simulation. The discrepancies between simulated and ex-
perimental curves computed at the same frequency (1.5 MHz,
blue curve on Fig. 2) can be explained by the simplified model
used in the simulation. First, the diffraction in the third dimen-
sion that occurs in the experiment is not taken into account
by the model; second, the simulated T matrix does not take
into account shear velocity and density contrast and considers
monopolar scattering only. As a consequence, the numerical

FIG. 5. Average and standard deviation over 50 medium realiza-
tions of the single-scattering ratio ρ, the confocal-scattering ratio ρc

and the estimator ρ̂ with a 10 µs time gating.
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FIG. 6. Average and standard deviation over 50 medium real-
izations of the normalized scalar products 1(K(n) ) [Eq. (29)] and
c(K(n)

m\r ) [Eq. (32)].

scattering cross section of the scatterers does not precisely
agree with the experimental one.

The numerical scheme yields a straightforward definition
of the true single-scattering ratio as the ratio between the
norms of the single- and total-scattering matrices:

ρ = ‖K(1)‖2

‖K‖2
. (28)

The single-scattering ratio ρ averaged over 50 realiza-
tions of disorder is plotted in Fig. 5 as a function of time
(red circles). Surprisingly, unlike the estimator ρ̂, the single-
scattering ratio ρ is found to be larger than 1 and even
increasing with time. The fact that ‖K(1)‖ > ‖K‖ may seem
counterintuitive; going back to the definition of K as the
sum of the scattering orders, this is possible only if K(1) and
higher scattering order matrices are correlated in such a way
that the norm of their sum is not equal to the sum of their
individual norms. To investigate this, we proposed to compute
the normalized scalar product 1(K(n) ) between the single
and the nth-order scattering matrices, K(1) and K(n). At each
frequency and time, 1(K(n) ) is computed as follows:

1(K(n) ) = |〈K(n)|K(1)〉|
‖K(n)‖‖K(1)‖ . (29)

Figure 6 displays 1(K(n) ) as a function of depth for
2 � n � 4. We observe that the correlation between K(n) and
K(1) increases with depth and decreases with the scattering
order, however, this correlation remains strong up to the fourth
scattering order. This is consistent with the observation made
on the multiple-scattering matrices [Figs. 4(c)–4(e)] and the
correlation coefficient of Eq. (27) [Fig. 4(f)]. It explains why
Kf cannot always be a perfect estimator of K(1): the matrix
filter does not extract single scattering in the sense of the
first-order Born approximation. Indeed it extracts all contri-
butions (including some of multiple scattering), which entail
the memory effect of Eq. (16). In the next section, we will

show how to build new matrices with less correlation between
the scattering orders and emphasize the weight of recurrent
scattering on ρ̂.

V. RECURRENT SCATTERING

As explained in Sec. III, the single-scattering matrix
K(1) [Fig. 4(b)] exhibits a spatial coherence along the an-
tidiagonals, known as the memory effect in optics [39],
which can be taken advantage of to discriminate single-
from multiple-scattering contributions [20]. Surprisingly, the
multiple-scattering contribution Km exhibits the same kind
of antidiagonal correlation, though to a lesser degree. In this
section, we provide a theoretical analysis of this phenomenon,
which we explain as a consequence of the combined effects of
recurrent scattering and diffraction-limited resolution. Then,
to confirm this analysis, we use the numerical scheme to
discriminate recurrent and nonrecurrent multiple-scattering
contributions.

A. Antidiagonal coherence in Km

A multiple-scattering sequence involves at least two dis-
tinct scatterers. Let us denote r1 and r2 their positions. Taking
the individual scatterer as the unit scattering cell, we sum all
over possible entry and exit scatterer pairs whose positions are
compatible with the time-gating condition. Using the proper-
ties of the T matrices, the (i, j) element of Km may be written
as:

Km(ui, u j ) = k2
0

∫∫
G0(ui, r1)μ(r1)G(r1, r2)μ(r2)

× G0(r2, uj ) dr1 dr2. (30)

Only the multiple-scattering sequences whose path lengths
are comprised between c0(T − �T/2) and c0(T + �T/2) are
considered; this affects the possible entry and exit scatterers
and limits the heterogeneous Green’s function to a domain that
depends on the entry and exit scatterer pairs.

Next, we investigate the correlation function Cm(�u) along
the antidiagonals of Km as defined in Eq. (27), assuming that
the medium is statistically invariant under translation. Using
Eq. (30) and considering that the average over transducer
position is equivalent to an ensemble average, Cm(�u) can be
expressed as follows:

Cm(�u) = k4
0

〈 ∫∫∫∫
G0(u, r1)G∗

0(u − �u, r′
1)G(r1, r2)

× G∗(r′
1, r′

2)G0(r2, u)G∗
0(r′

2, u + �u)

× μ(r1)μ∗(r′
1)μ(r2)μ∗(r′

2) dr1 dr2 dr′
1 dr′

2

〉
.

(31)

The full calculation of Cm(�u) is derived in Appendix B. The
conclusion is the following: if the first and the last reflectors of
a scattering sequence are located in the same resolution cell,
the corresponding wave field is strongly correlated along the
antidiagonals of the reflection matrix, as in a single-scattering
situation (cf. Sec. III). The resolution cell corresponds to the
focal area that would be obtained if the array was used to focus
at point ri. In our experimental configuration, the resolution
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cell is an ellipse centered on ri and oriented towards the array
central element. According to diffraction theory [40], its typ-
ical transverse and axial dimensions are given by �x = λz/A
and �z = 7λz2/A2, respectively, A being the array width.

B. Confocal-scattering ratio

We take advantage of the numerical scheme to study the
impact of recurrent scattering on the statistical properties of
the reflection matrix. The diffraction-limited recurrent con-
tribution Kr is extracted from the total-scattering matrix by
selecting the paths whose first and last scatterer, r1 and r2 have
overlapping resolution cells (see Fig. 1). As expected, Kr dis-
plays the long-range memory effect [see Fig. 4(g)], similarly
to K(1). In the following, we will refer to Kc = K(1) + Kr as
the confocal matrix since it corresponds to scattering paths
that start and end within the same resolution cell. Kc is par-
ticularly relevant in view of imaging applications based on
focused beam forming at emission and reception. An example
of Kc is displayed in Fig. 4(h).

Similarly, one can define a conventional (i.e., nonrecur-
rent) multiple-scattering matrix, Km\r = Km − Kr, that only
contains the multiple-scattering paths whose first and last
scattering events do not occur in the same resolution cell. One
example of the simulated matrix Km\r is shown Fig. 4(i). It
displays a random feature with short-range correlations along
its antidiagonals.

In the previous section, it was shown that various orders
of multiple scattering were correlated with each other; this
resulted in a single-scattering ratio, which could be larger
than 1. We reconsider this issue: Km\r is written as a sum
of different scattering orders K(n)

m\r obtained by removing the
contribution of recurrent scattering paths from each of them.
The following scalar product is then calculated:

c
(
K(n)

m\r

) =
∣∣〈K(n)

m\r|Kc
〉∣∣∥∥K(n)

m\r

∥∥‖Kc‖
. (32)

Figure 6 shows the normalized scalar product c between the
confocal contribution Kc and the different scattering orders
K(n)

m\r of the conventional multiple-scattering contribution. c

would actually tend to 0 if the matrices where of infinite
dimensions (N → ∞). With N = 64, the scalar product c

is found to be much smaller than the initial indicator based on
K(1) and K(n) [Eq. (29)]. This confirms that the high degree of
correlation observed between K(1) and K(n) (simulated data)
was due to recurrent scattering. As to experimental data, since
the matrix filter [Eq. (17)] is based on the memory effect,
it is more relevant to interpret the reflection matrix as an
addition of confocal + nonrecurrent contributions rather than
single + multiple scattering contributions. Then, like for the
single scattering rate [Eq. (28)], a confocal-scattering ratio can
be defined as follows:

ρc = ‖Kc‖2

‖K‖2
. (33)

The ratio ρc is calculated with the numerical simulation and
plotted in Fig. 5. It is consistent with the estimator ρ̂ that can
be obtained from experimental data. This highlights the fact

FIG. 7. Confocal-scattering ratio as a function of depth for three
different frequencies (top). Average and standard deviation over 50
sample realizations of the slope of ρc (red o) as a function of �−1

s ,
which is also plotted in black (bottom).

that matrix Kc is meaningful and corresponds to the filtered
matrix Kf .

We observe that ρc as well as ρ̂ decrease linearly with
depth. As shown experimentally by Fig. 2, the slope of ρ̂(z)
increases with frequency, which means that the multiple-
scattering weight appears to increase with frequency. To
investigate this effect numerically, we compute the scatter-
ing mean-free path �s(ω) at several frequencies in the array
bandwidth [using Eq. (22)]. We then compute the average
slope of ρc(z) for each frequency. Figure 7 displays this
slope as a function of 1/�s. We find that ρc roughly scales
as −z/�s, which suggests that the scattering mean-free path
is qualitatively linked to the decay of the confocal-scattering
ratio in the weak scattering regime considered in this work.
However, this observation is not yet supported by a theoretical
demonstration and would require further investigation.

Finally, note that the confocal-scattering ratio only weakly
depends on the finite width of the medium. Indeed, because
of time gating, a major part of the recurrent scattering con-
tribution corresponds to paths exploring a very few number
of resolution cells. Therefore, the recurrent-scattering com-
ponent strongly depends on the dimensions of the resolution
cells but not on the lateral size of the medium. This property
also holds for the conventional multiple-scattering contribu-
tion provided that the diffuse halo extension is smaller than
the medium width.

VI. LINK WITH THE REFLECTION MATRIX IN THE
FOCUSED BASIS

In recent studies [9,22], the reflection matrix has been
investigated in a focused basis in order to get a local in-
formation about the scattering properties of the medium. In
this section, we use our numerical simulation to: (i) highlight
the properties of this focused reflection matrix; (ii) build a
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new confocal-scattering estimator in this basis; (iii) compare
the confocal-scattering weights in the transducer and focused
bases.

A. Reflection matrices in the focused basis

The focused reflection matrix R is obtained by a beam
forming applied in emission and in reception to a set of
Ni points located at depth z in the scattering medium. In
practice, this operation can be experimentally achieved by
applying appropriate time delays to the probe elements [41].
This focusing can also be obtained by a linear projection
of the original reflection matrix K in the frequency
domain [9]:

R = G′′
0
∗ × K × G′′

0
†
, (34)

where the symbol † stands for transpose conjugate.
G′′

0 = [G′′
0 (r, ui, ω)] is the Ni × N Green’s matrix between the

array elements ui and the focal points r = (x, z). Each element
R(rin, rout, ω) of R is the signal that would be recorded by
a virtual transducer located at rout = (xout, z) for a virtual
source located at rin = (xin, z). A ballistic time gating is then
performed by integrating R over the signal bandwidth �ω [9]:

R(rin, rout ) =
∫

�ω

R(rin, rout, ω) dω. (35)

The diagonal elements of each matrix R(z), which obey
rin = rout, correspond to the confocal image that would be
obtained at the corresponding depth z. It was also shown
that the coefficients away from the diagonal carry information
about aberrations [42] or multiple scattering [9]. In particular,
as the information contained in the matrix R is local, 2D
maps of aberration or multiple-scattering estimators have been
proposed in biological tissues as well as in metallic media
[9,22].

By linearity of the matrix product, the different matrices
introduced in the canonical basis K, K(1), Kc, Km, Km\r can
also be represented in the focused basis and are denoted R,

R
(1)

, Rc, Rm, and Rm\r respectively. The total, single, and
multiple scattering focused matrices are displayed in Fig. 8 at
depth z = 242 mm. As expected, the single-scattering contri-

bution mainly emerges along the diagonal of R
(1)

[Fig. 8(b)].
A significant part of the multiple-scattering component is also
found along the diagonal of Rm [Fig. 8(c)]. Based on our
previous observation, this result is actually not so surprising
and can be accounted for by the predominance of recurrent
scattering paths whose contribution emerges along the diago-
nal of Rm.

To be more quantitative and investigate the relative part of
single, recurrent, and multiple scattering in the backscattered
wave field, the mean intensity along each antidiagonal of R
can be computed as:

I (�x) = 〈|R̄(x + �x/2, x − �x/2, z)|2〉, (36)

where 〈· · · 〉 denotes an average over the pairs of points
rin = (xin, z) and rout = (xout, z), which are separated by the

FIG. 8. Absolute value of focused reflection matrices at depth
z = 242 mm: (a) total-scattering matrix R, (b) single-scattering

matrix R
(1)

, (c) multiple-scattering matrix Rm, (d) nonrecurrent-
scattering matrix Rm\r. (e) Mean back-scattered intensity

I calculated for the matrices R
(1)

, Rm, Rc, and R following
Eq. (36).

same distance �x = |xout − xin|. This intensity can be calcu-
lated for each focused matrix. The corresponding intensity
profiles I (�x) are shown in Fig. 8(e). The value of Im at �x =
0 yields the recurrent scattering intensity. The latter quantity
is thus about one-fourth of the single scattering intensity at the
corresponding depth. As observed previously in the transducer
basis, the single- and recurrent-scattering intensities are not
additive: the total intensity is not equal to their sum along the
diagonal.

By removing recurrent-scattering paths from the multiple-
scattering matrix Rm, the resulting nonrecurrent-scattering
matrix Rm\r displays a random feature without any intensity
peak along its diagonal [cf. Fig. 8(d)]. As before, the single-
and recurrent-scattering paths can be rearranged in a so-called
confocal matrix Rc. The corresponding confocal intensity is
shown to be very close to the overall intensity I (�x = 0)
along the diagonal of R [Fig. 8(e)].
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FIG. 9. Average and standard deviation over 50 medium realiza-
tions of the single-scattering weights ρ f [red (top) line], ρ fc [black
(bottom) line], and ρ̂ f [blue (middle) line] defined by Eqs. (37), (38),
and (40), respectively.

B. Confocal-scattering estimator in the focused basis

The single- and confocal-scattering rates, defined by
Eqs. (28) and (33) in the transducer basis, can also be built
in the focused basis:

ρ f = ‖R
(1)‖2

‖R‖2
, (37)

ρ fc = ‖Rc‖2

‖R‖2
. (38)

The evolution of ρ f and ρ fc as a function of depth is dis-
played in Fig. 9 for the numerical simulation described above.
Because the beam-forming operation of Eq. (34) is nearly
unitary, the values of ρ f and ρ fc are close to their counterparts,
ρ and ρc, in the transducer basis (Fig. 5).

To find an estimator of these parameters, a single-scattering
filter has to be defined in the focused basis. Previous works
considered a confocal Gaussian filter applied to matrix R
[43,44] in order to eliminate multiply scattered echoes emerg-
ing far from the main diagonal. However, the shape of this
filter has not been precisely linked to the intensity distribution

of the single-scattering matrix R
(1)

.
To be more quantitative, an accurate single-scattering space

should be built in the focused basis, as previously done in the
transducer basis [Eq. (17)]. In the focused basis, an element of
the single-scattering space is the scattering matrix for a unique
scatterer located at a position (xl , z), noted Fl. To span the
whole single-scattering space, Nl points xl have to be spread
along the medium width with at least two points per unit
cell. An adequate number of points must be used to avoid
oversampling. The set of matrices Fl is orthogonalized using a
Gram-Schmidt process in order to get an orthonormal basis of
the single-scattering space that is denoted ⊥Fl. Two examples
of single-scattering space matrices are shown in Fig. 10.

The filtered matrix is then obtained by a projection of
the focused total-scattering matrix onto the set of matrices

FIG. 10. Two elements of {⊥Fl} calculated at the simulation cen-
tral frequency for two scatterers located at z = 242 mm and lateral
positions x = −58 mm (left) and x = 54 mm (right).

{⊥Fl}1�l�Nl at each frequency:

Rf =
Nl∑

l=1

〈⊥Fl|R〉⊥Fl. (39)

Rf is then integrated over a bandwidth �ω to give Rf
[Eq. (35)]. An experimentally available estimator in the fo-
cused basis writes:

ρ̂ f = ‖Rf‖2

‖R‖2
. (40)

ρ̂ f is compared to ρ f [Eq. (37)] and ρ fc [Eq. (38)] in Fig. 9. As
in the transducer basis, ρ̂ f is found to be a satisfying estimator
of the confocal-scattering ratio ρ fc.

Interestingly, the focused basis appears more flexible com-
pared to the canonical basis. Indeed, the time-gating operation
of Eq. (35) enables an optimal selection of singly scattered
echoes associated with reflectors located at a given depth z.
It is thus more adapted for imaging purposes than the abrupt
time window originally applied to impulse responses in the
transducer basis.

Furthermore, the estimator ρ̂ f does not require any paraxial
approximation. To illustrate this superiority of the focused
basis, a numerical simulation is performed with a smaller dis-
tance, z0 = 80 mm, between the probe and the front face of the
sample. The single- and confocal-scattering weights and their
estimators calculated in both bases are displayed on Fig. 11.
At the front face of the sample, the paraxial approximation
is not valid. ρ̂ is then not a good estimator of the confocal
scattering weight ρc since the long-range correlation along the
antidiagonals of K(1) is not verified [Eq. (16)]. Beyond the
center of the medium (z > 150 mm), the far-field approxima-
tion becomes valid and the parameters ρ̂ and ρc tend towards
each other. On the contrary, the estimator ρ̂ f in the focused
basis is consistent with ρ fc over the whole range of depths.
This numerical simulation thus illustrates the robustness of
the estimator ρ̂ f defined in the focused basis.

VII. CONCLUSION

This paper conveys an improved understanding of the
single-scattering rate of backscattered waves captured by a
finite-size array with elements acting both as emitters and
receivers. A numerical calculation of the acoustic response
of a random medium made of isotropic fluid scatterers is
performed. Each term of the Born series is calculated, as well
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FIG. 11. Numerical simulation beyond the paraxial approxima-
tion (z0 = 80 mm). Average over 50 realizations of the single-
scattering ratio ρ, the confocal scattering ratio ρc and the estimator
ρ̂ in the canonical basis, and the corresponding values ρ f , ρ fc and ρ̂ f

in the focused basis.

as the sum of the series providing the full reflection matrix
in the frequency domain. By means of an inverse Fourier
transform, the impulse responses for each scattering order
can be obtained, which would not be feasible experimen-
tally. Simple as it is, the numerical scheme sheds new light
on the relative importance of single- and multiple-scattering
contributions in the total field. Particularly, the existence of
correlations between the elements of the Born series is made
clear, and interpreted as a result of recurrent scattering com-
bined with finite axial and lateral resolutions. Accordingly, the
single-scattering weight ρ as defined by the Born series, is
shown to differ from ρc, the confocal-scattering weight that
includes both single and recurrent scattering. Unlike ρ, ρc can
be estimated from experimental data. In addition to numerical
computations, experiments were carried out with ultrasound
waves around 1.5 MHz in a weakly scattering forest of nylon
rods. Interestingly, our results indicate that the decay of ρc

with depth could be used as a characterization tool, giving
access to the scattering mean-free path �s in a backscattering
configuration. Besides, this measurement is independent of
the intrinsic absorption, as long as the duration of the time
windows �T is smaller than the absorption time.

In this paper, for simplicity the study has been restricted to
two-dimensional weakly scattering media for which the Born
series is convergent. In order to broaden the analysis to more
complex media, the numerical computation can be extended
to three dimensions; stronger scattering regimes could also be
investigated, if necessary by considering absorption in order to
prevent the Born series from diverging. Although an acoustic,
thus scalar, formalism is considered in this paper, the under-
lying physical argument is identical for other types of waves,
e.g, elastic or electromagnetic waves; the Born decomposition
can also be applied, though in a less tractable manner, to
vector waves by considering wave polarization and Green’s
tensors. The issue of how much single scattering is present
is essential for imaging with waves, whatever their nature:

an imaging device has a finite spatial resolution, hence an
elementary voxel whose dimensions depend on wavelength,
depth, and aperture. From the receiver’s point of view, two
scatterers within the same voxel are unresolved hence behave
as one single superscatterer. As a consequence, reflectivity
maps obtained with an imaging device do not result only from
single-scattering echoes (in the sense of the Born series) but
also from recurrent-scattering events. Whatever the kind of
wave and the kind of media, we hope this paper brings some
new insight in that respect.
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APPENDIX A: DERIVATION OF THE T MATRIX FOR A
SMALL COMPRESSIBILITY SCATTERER

The incident field ψ0(r) and the total field ψ (r) are linked
through the Lippmann-Schwinger equation [Eq. (7) in the
main text]. Omitting the frequency dependence, it is written
as follows:

ψ (r) = ψ0(r) + k2
0

∫
G0(r, r′)μ(r′)ψ (r′) dr′. (A1)

In the case of a subwavelength scatterer of volume V centered
at position rs, the field ψ (r) can be considered as constant
inside the particle, so that Eq. (A1) is simplified as:

ψ (r) = ψ0(r) + k2
0μ(rs)ψ (rs)

∫
V

G0(r, r′) dr′. (A2)

By definition, the T matrix links the incident and scattered
fields through the following equation:

ψ (r) = ψ0(r) +
∫∫

G0(r, r1)T (r1, r2)ψ0(r2) dr1 dr2. (A3)

For the subwavelength scatterer at position rs:

Ts(r, r′) = T0δ(r − rs)δ(r′ − rs). (A4)

It follows that:

ψ (r) = ψ0(r) + T0G0(r, rs)ψ0(rs). (A5)

By replacing the field ψ0(rs) by its expression given by
(A2) taken at r = rs into the preceding equation it comes:

ψ (r) = ψ0(r) + T0G0(r, rs)

×
(

1 − k2
0μ(rs)

∫
V

G0(rs, r′) dr′
)

ψ (rs). (A6)

For a point r far from the particle, G0 can be considered as
constant in the scatterer volume, so that (A2) becomes:

ψ (r) = ψ0(r) + VT0G0(r, rs)ψ (rs). (A7)
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Thus, by identifying terms in the last two equations:

T0

(
1 − k2

0μ(rs)
∫
V

G0(rs, r′) dr′
)

= k2
0Vμ(rs). (A8)

For a scatterer of radius a, the integral of the Green’s
function in two dimensions can be approximated as∫

V
G0(rs, r′) dr′ ≈ −iπa2

4
. (A9)

This provides an analytical expression of the scattering coef-
ficient T0:

T0 ≈ k2
0μ(rs)πa2

1 + i
4 k2

0μ(rs)πa2
. (A10)

APPENDIX B: RECURRENT-SCATTERING
CORRELATION

A multiple-scattering sequence involves at least two dis-
tinct scatterers. Let us denote r1 and r2 their positions. Taking
the individual scatterer as the unit scattering cell, we sum all
over possible entry and exit scatterer pairs whose positions are
compatible with the time-gating condition. Using the proper-
ties of the T matrices, the (i, j) element of Km may be written
as:

Km(ui, u j ) = k2
0

∫∫
G0(ui, r1)μ(r1)G(r1, r2)μ(r2)

× G0(r2, uj ) dr1 dr2, (B1)

Only the multiple-scattering sequences whose path lengths
are comprised between c0(T − �T/2) and c0(T + �T/2) are
considered; this affects the possible entry and exit scatterers
and limits the heterogeneous Green’s function to a domain
that depends on the entry and exit scatterer pairs. Next, we in-
vestigate the correlation function Cm(�u) defined in Eq. (27).
Using Eq. (B1), Cm(�u) can be expressed as follows:

Cm(�u) = k4
0

〈 ∫∫∫∫
G0(u, r1)G∗

0(u − �u, r′
1)G(r1, r2)

× G∗(r′
1, r′

2)G0(r2, u)G∗
0(r′

2, u + �u)

× μ(r1)μ∗(r′
1)μ(r2)μ∗(r′

2) dr1 dr2 dr′
1 dr′

2

〉
.

(B2)

Note that the medium is assumed to be statistically invariant
by translation. Hence, the correlation coefficient Cm does not
depend on the position u.

To go further, we assume that the scatterers’ positions are
independent random variables. In the weak scattering regime
(k�s � 1), most contributions to the correlation function,
〈G(r1, r2)G∗(r′

1, r′
2)〉, will cancel out in the above ensemble

average. The only contributions to survive this average are
those for which the wave and its complex conjugate experi-
ence identical paths. This condition is achieved if the wave
and the complex conjugate visit the same scatterers either
in the same order (ladder diagrams), or in reversed order
(maximally crossed diagrams). The correlation function can

thus be decomposed as the sum of two terms [3]:

〈G(r1, r2)G∗(r1
′, r2

′)〉 ∝ k−4
0 P(r1, r2)

× [δ(r1 − r1
′)δ(r2 − r2

′) + δ(r1 − r2
′)δ(r2 − r1

′)], (B3)

where P(r1, r2) is the mean intensity Green’s function. In a
statistically homogeneous medium, this quantity only depends
on |r1 − r2| and on the time lapse between scattering events at
r1 and r2. The left and right terms in Eq. (B3) correspond to
the contribution of identical and reciprocal scattering paths,
respectively. Ladder and crossed diagrams contribute equally
to Cm(�u) [Eq. (B2)] whose expression can be simplified as
follows:

Cm(�u) = 2〈|μ|2〉2
∫∫

G0(u, r1)G∗
0(u − �u, r1)

× P(|r1 − r2|)G0(r2, u)G∗
0(r2, u + �u) dr1 dr2,

(B4)

Considering the Green’s function in free space in three
dimensions or in two dimensions far field [Eq. (3)], the ar-
gument φ in the integrand of Cm [Eq. (B4)] writes:

φ = k0(|u − r1| − |u − �u − r1|
+ |u − r2| − |u + �u − r2|). (B5)

In the far field, a first-order expansion gives:

φ ≈ k0

[
�u

(
u − x1

z1
− u − x2

z2

)]
. (B6)

Let us define z0 = (z2 + z1)/2 and dz = (z2 − z1)/2. Using a
first-order approximation in dz/z0 we obtain:

φ ≈ k0

{
�u

z0

[
x2 − x1 + dz

z0
(2u − x1 − x2)

]}
. (B7)

It leads to the following expression for Cm in two dimensions:

Cm(�u) = 2〈|μ|2〉2

(8πk0z0)2

∫∫
P(|r1 − r2|) exp

{
i
k0�u

z0

×
[

(x2 − x1) + (2u − x1 − x2)
dz

z0

]}
dr1 dr2.

(B8)

Scattering paths such that the argument φ is small compared
to π will result in a correlation coefficient Cm independent
of �u at the scale of the array. In other words, such scattering
paths will induce a long-range correlation of the reflected field
along the antidiagonals of K. A sufficient condition for this
to occur is that the transverse distance between the first and
last scatterers |x1 − x2| is smaller than the transverse size of
the resolution cell �x ∼ λz0/A, with A the aperture of the
probe, and that the axial distance |z1 − z2| between them is
less than the depth of field �z ∼ 7λz2

0/A2. In other words,
these are the scattering paths whose first and last scatterers
are contained in the same resolution cell, that is to say the so-
called recurrent-scattering paths. If the mean intensity Green’s
function P(|r1 − r2|) has a characteristic support of transverse
extension �xP < �x and axial dimension �zP < �z, these
recurrent scattering paths predominate and the reflection ma-
trix shows a long-range correlation along its antidiagonals,
analogous to that obtained in the single-scattering regime.
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This effect has already been observed in strongly scattering
media near the Anderson transition [23].

APPENDIX C: COHERENT BACKSCATTERING PEAK

Using Eqs. (B1) and (B3), the mean backscattered inten-
sity, I (�u) = 〈|Km(u, u + �u)|2〉, can be decomposed as the
sum of a ladder (IL) and a crossed (IC) integral:

I (�u) = IL(�u) + IC (�u) (C1)

with IL corresponding to the incoherent summation of
multiple-scattering paths intensity, such that:

IL(�u) = 〈|μ|2〉2
∫∫

|G0(u, r1)|2P(|r1 − r2|)|

× G0(r2, u + �u)|2 dr1 dr2, (C2)

and IC resulting from the interference between multiple-
scattering paths and their reciprocal counterparts:

IC (�u) = 〈|μ|2〉2
∫∫

G0(u, r1)G∗
0(u, r2)P(|r1 − r2|)

× G0(r2, u + �u)G∗
0(r1, u + �u) dr1 dr2. (C3)

The latter term accounts for the coherent backscattering peak
[37,38]. Considering the Green’s function in free space in

three dimensions or in two dimensions far field [Eq. (3)], the
argument φC in the integrand of IC [Eq. (C3)] writes:

φC = k0(|u − r1| − |u + �u − r1|
− |u − r2| + |u + �u − r2|). (C4)

In the far field, a first-order expansion gives:

φC ≈ −k0

[
�u

(
u − x1

z1
− u − x2

z2

)]
. (C5)

This expression is strictly the opposite of Eq. (B6), hence
φC � −φ in the far field. Using Eq. (B7), a final expression
can be found for IC in two dimensions:

IC (�u) = 〈|μ|2〉2

(8πk0z0)2

∫∫
P(|r1 − r2|) exp

{
− i

k0�u

z0

×
[

(x2 − x1) + (2u − x1 − x2)
dz

z0

]}
dr1 dr2.

(C6)

By comparing the latter expression with Eq. (B8), we find
that the correlation coefficient Cm along the antidiagonals of
Km is similar to that of the coherent backscattering peak
IC : IC (�u) ∝ Cm(�u). Both quantities thus exhibit the same
dependence in �u in the far field.
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