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Vibrational density of states of jammed packing at high dimensions: Mean-field theory
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Several mean-field theories predict that the Hessian matrix of amorphous solids converges the Wishart matrix
in the limit of the large spatial dimensions d → ∞. Motivated by these results, we calculate here the density
of states of random packing of harmonic spheres by mapping the Hessian of the original system to the Wishart
matrix. We compare our result with that of previous numerical simulations of harmonic spheres in several spatial
dimensions d = 3, 5, and 9. For small pressure p � 1 (near jamming), we find a good agreement even in d = 3,
and obtain better agreements in larger d , suggesting that the approximation becomes exact in the limit d → ∞.
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I. INTRODUCTION

The vibrational density of states D(ω) plays a central role
to characterize the low-temperature properties of solids. For
both crystals and amorphous solids, D(ω) for small ω even-
tually follows the prediction of the Debye model D(ω) ∼
ωd−1, suggesting that the vibrational excitation is dominated
by phonon modes [1,2]. However, for amorphous solids, in
addition to the phonon modes, there arise excess nonphonon
modes for small ω. This phenomenon, often referred to as the
boson peak, is considered as a universal feature of amorphous
solids [3,4].

From the theoretical point of view, a first step to tackle the
problem is to consider mean-field models or theories. Several
mean-field models, such as the p-spin spherical model [5] and
perceptron [6], and theories, such as the effective medium the-
ory [7,8], cavity method [9], etc. [10–15], suggest that Hessian
matrices of amorphous solids are approximated by the Wishart
matrix. However, somewhat surprisingly, the functional form
of D(ω) of particle systems has not been calculated yet, even
in the large dimensional limit d → ∞, where the mean-field
theory becomes exact. As a consequence, one should intro-
duce fitting parameters to compare the theory and numerical
results [10,12,16], even in large d [17].

In this work, we focus on frictionless spherical particles
interacting with the harmonic potential [18]. Since the har-
monic potential is a purely repulsive potential, the system gets
unstable in the zero pressure limit p → 0, which is known
as the (un)jamming transition [18]. Near the jamming tran-
sition point (p � 1), several physical quantities, such as the
contact number z, exhibit the power-law behavior [18]. The
critical exponents near the jamming transition are calculated
by several mean-field theories [7,19–21]. However, again, the
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detailed functional form of z is still undetermined, even in
d → ∞.

Recently, one of the present authors performed an exten-
sive numerical simulation of harmonic spheres and calculated
D(ω) and z in spatial dimensions from d = 3 to d = 9 [22].
Therefore, it is now desirable to directly compare the numer-
ical results in large d with the predictions of the mean-field
theory.

Here, we theoretically calculate D(ω) and z of harmonic
spheres in large d , and compare them with the previous nu-
merical results. For this purpose, inspired by the previous
mean-field calculations, we assume that the Hessian of har-
monic spheres converges to the (shifted) Wishart matrix in
the mean-field limit d → ∞. We determine the prefactors of
the Wishart matrix so that its trace is consistent with that of the
Hessian of the original model. For small pressure, our results
agree well with the previous numerical results [22] even in
d = 3, and obtain better agreements in larger d , suggesting
that our theory becomes exact in the limit of d → ∞.

The organization of the paper is as follows. In Sec. II,
we introduce the model and several physical quantities. In
Sec. III, we calculate D(ω) in the limit of d → ∞. In Sec. IV,
we summarize the results.

II. SETTINGS

Here we introduce the model and several physical quanti-
ties. We consider a system consisting of frictionless spherical
particles interacting with the harmonic potential [18]:

V =
1,N∑
i< j

k
h2

i j

2
θ (−hi j ), hi j = |ri − r j | − Ri − Rj, (1)

where N denotes the number of particles, k denotes the spring
constant, and θ (x) denotes the Heaviside step function. ri =
{xi1, . . . , xid} and Ri denote the position and radius of the ith
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particle, respectively. To simplify the notation, hereafter, we
set k = 1.

The Hessian of the potential is

Hia, jb = ∂2V

∂xia∂x jb
= H(1)

ia, jb + H(2)
ia, jb,

H(1)
ia, jb =

Nz/2∑
μ=1

∂hμ

∂xia

∂hμ

∂x jb
, H(2)

ia, jb =
Nz/2∑
μ=1

hμ

∂2hμ

∂xia∂x jb
, (2)

where

z = 1

N

∑
i< j

θ (−hi j ) (3)

denotes the number of contacts per particle and
∑Nz/2

μ=1 denotes
the sum of all pairs μ = (i j) for which hi j < 0. Once we have
the eigenvalue distribution of H, ρ(λ), the vibrational density
of states D(ω) is calculated as

D(ω) = 2ωρ(λ = ω2). (4)

For the control parameter, we use the prestress defined as [22]

e = −2(d − 1)

Nz

Nz/2∑
μ=1

hμ

rμ

= (d − 1)

〈
Ri + Rj

ri j
− 1

〉
, (5)

where 〈•〉 denotes the average for all the contacts
〈•〉 = (Nz/2)−1 ∑Nz/2

i< j θ (−hi j )•. The rightmost expression in
Eq. (5) clearly shows that e proportional to the average over-
lap of particles. The proportional constant (d − 1) has been
chosen so that e remains finite in the limit d → ∞ [22].
Near the jamming transition point, e is proportional to the
pressure, e ∼ p, and vanishes at the jamming transition point.
In a previous numerical study [17], the packing fraction was
used as a control parameter. However, it has been pointed out
that e is a more natural control parameter [22,23]. Below, we
calculate z and D(ω) as functions of e.

III. THEORY

A. Summary of previous works

Here we briefly review the previous works. The semi-
nal work has been done by Parisi [9]. He showed that the
eigenvalue distribution of the Hessian of harmonic spheres
converges to the Marcenko-Pastur distribution in the limit
d → ∞, meaning that the Hessian is identified with the
Wishart matrix H ∼ W [9], but the effects of the prestress
e were neglected at that time. More recently, Parisi with coau-
thors performed a more complete analysis for the perceptron,
which is a mean-field model of random sphere packing of
harmonic spheres [20,24]. The analysis of the perceptron sug-
gests that the Hessian of harmonic spheres in large d is written
as

HMF = aW + b eI, (6)

where a and b denote constants, Iia, jb = δia, jb denotes the
identity matrix, and

Wia, jb = 2

Nz

Nz/2∑
μ=1

ξ
μ
iaξ

μ

jb (7)

denotes the Wishart matrix. ξ
μ
ia denotes the i.i.d. Gaussian

random variable with zero mean and unit variance [6]. The
replica calculation of the perceptron also proves the marginal
stability [25]: the minimal eigenvalue λmin of the Hessian
H vanishes λmin = 0 near the jamming transition point [6].
Interestingly, several other mean-field theories also suggest
that the Hessian of harmonic spheres is written as Eq. (6),
though the precise values of a and b are still unknown
[7,10–12,26].

In this work, we use Eq. (6) as an ansatz. We determine a
and b by requiring that the trace of HMF is consistent with that
of the Hessian of the original model, Eq. (2).

B. Calculation of a and b

To calculate a, we first consider the unstressed system,
where the pair interaction potential is replaced with an un-
stressed spring with the stiffness v′′(hμ) [7,27]. To be more
specific, the Hessian of the unstressed system is obtained by
setting v′(hμ) = hμθ (−hμ) = 0 in Eq. (2). Therefore, we get

H → H(1), HMF → aW . (8)

We determine a from the following condition:

TrH(1) = a TrW . (9)

The left-hand side (LHS) in Eq. (9) can be calculated as

TrH(1) =
N∑

i=1

d∑
a=1

Nz/2∑
μ=1

(
∂hμ

∂xia

)2

= Nz, (10)

where we used

∂hi j

∂xka
= (δik − δ jk )

xia − x ja

|ri − r j | ,

N∑
k=1

d∑
a=1

(
∂hi j

∂xka

)2

= 2. (11)

The RHS is

a TrW = 2a

Nz

N∑
i=1

d∑
a=1

Nz/2∑
μ=1

(
ξ

μ
ia

)2 = aNd. (12)

By using Eqs. (9), (10), and (12), we get

a = z

d
. (13)

We assume that the value of a of the unstressed system is the
same as that of the original system.

Next we consider the Hessian of the original system in-
cluding H(2). Assuming TrH = TrHMF, we get

Tr(H(1) + H(2) ) = Tr(aW + b eI )

→ TrH(2) = b e TrI. (14)

The LHS can be calculated as

TrH(2) =
N∑

i=1

d∑
a=1

Nz/2∑
μ=1

hμ

∂2hμ

∂x2
ia

= 2(d − 1)
Nz/2∑
μ=1

hμ

rμ

= −Nz e, (15)
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where we used

∂2hi j

∂x2
ka

= (δik + δ jk )
r2

i j − (xia − x jb)2

r3
i j

,

N∑
k=1

d∑
a=1

∂2hi j

∂x2
ka

= 2
d − 1

ri j
. (16)

From Eqs. (14), (15), and TrI = Nd , we get

b = − z

d
. (17)

In summary, we get

HMF = z

d
W − z

d
eI. (18)

C. Eigenvalue distribution

It is well known that the eigenvalue distribution of the
Wishart matrix W follows the Marchencko-Pastur law [28]:

ρMP(λ) = z

2d

√
(λ+ − λ)(λ − λ−)

2πλ
, λ± =

(
1 ±

√
2d

z

)2

.

(19)

Let en be an eigenvector of W and λMP
n be the corresponding

eigenvalue. Then, we have

HMF · en =
(

z

d
λMP

n − z

d
e

)
en, (20)

meaning that en is also an eigenvector of HMF and the cor-
responding eigenvalue is λn = z

d λMP
n − z

d e. Therefore, the
eigenvalue distribution of HMF is calculated as

ρ(λ) = ρMP(λMP)
dλMP

dλ
= d

z
ρMP(dλ/z + e). (21)

In particular, the minimal eigenvalue is

λmin = z

d

(
1 −

√
2d

z

)2

− z

d
e. (22)

D. Marginal stability and contact number

The replica calculation in the limit d → ∞ predicts that
the system is marginally stable near the jamming transition
point, λmin = 0 [29] [6,21,30]. By using the marginal stability
and Eq. (22), we get

z(e)

2d
= 1

(1 − e1/2)2
. (23)

Here we assumed that z/d takes a finite value in the limit d →
∞, because the numerical results suggest that z → 2d at the
jamming transition point [18]. For e � 1, we reproduce the
well-known scaling observed by numerical simulations [18]:

z/2d − 1 ∼ 2e1/2 ∼ p1/2. (24)

The critical exponent 1/2 was previously derived by using
the variational argument [19], effective medium theory [7],
and replica theory [20], but our result Eq. (23) also allows
us to access the prefactor and nonlinear terms. Somewhat
surprisingly, Eq. (23) suggests that z(e) depends only on e
and does not depend on the preparation protocols. It would

FIG. 1. (a) e dependence of z. Markers denote numerical results
taken from Ref. [22], while the solid line denotes the theoretical
prediction. (b) ε for the same data. (c) dε for the same data.

be interesting future work to see if this property survives in
finite d .

In Fig. 1(a), we compare Eq. (23) with numerical results in
several spatial dimensions d obtained by rapid quench from
high temperature random configurations. See Ref. [22] for the
details of the numerical simulations. The theory agrees well
with the numerical results for small e. For more quantitative
discussion, in Fig. 1(b), we show the difference between the
results of the theory zthe and simulation zsim:

ε = zthe/2d − 1 − (zsim/2d − 1)

zthe/2d − 1
= zthe − zsim

zthe − 2d
. (25)

The data collapse onto a single curve if we rescale the vertical
axis by d [Fig. 1(c)], meaning that the deviation scales as ε ∼
1/d .

E. Vibrational density of states

By using Eq. (21), the vibrational density of states D(ω) is
calculated as D(ω) = 2ωρ(λ = ω2). Although D(ω) depends
on both z and e, Eq. (23) allows us to eliminate the dependency
on z. After some manipulations, we get

D(ω) = ω2
√

(1 − e1/2)3{8 − (1 − e1/2)ω2}
2π{2e + (1 − e1/2)2ω2} . (26)

In Fig. 2, we compare the theoretical prediction Eq. (26) and
numerical results. The results are consistent near jamming e =
0.01 even in d = 3, while there is a visible deviation for small
ω far from jamming e = 0.2 even in d = 9. It would be an

FIG. 2. Density of states D(ω). Markers denote numerical results
taken from Ref. [22]. The solid lines denote theoretical predictions.
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interesting future work to see if a better agreement is obtained
in higher d .

For e � 1 and ω � 1, we get the following scaling:

D(ω) ∼ ω2
√

ω2
max − ω2

2π (ω2 + ω2∗)
∼

{
const, ω � ω∗,
δz−2ω2, ω � ω∗,

(27)

where ωmax = 2
√

2 and ω∗ = √
2e ∝ z/2d − 1. In particu-

lar, D(ω) = const at the jamming transition point e = 0. The
similar results have been previously derived by applying the
effective medium theory to the disordered lattices [7] and the
replica method to the mean-field models [6,26].

IV. SUMMARY

In this work, we calculated the contact number z and vi-
brational density of states D(ω) for harmonic spheres in the

large spatial dimensions d → ∞. Our theoretical results agree
well with the results of the previous numerical simulation in
large d .

Our theoretical results relied on the ansatz Eq. (6); that is,
the Hessian of harmonic spheres has the form of the shifted
Wishart matrix. The consistency between our theoretical re-
sults and previous numerical results suggests that the ansatz
becomes exact in the limit d → ∞. This result motivates us
to develop more rigorous calculation in d → ∞ without using
the ansatz, as done in the previous exact calculations for hard
spheres [30–32]. We left it as future work.
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