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Segregation patterns in three-dimensional granular flows
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Flow of size-bidisperse particle mixtures in a spherical tumbler rotating alternately about two perpendicular
axes produces segregation patterns that track the location of nonmixing islands predicted by a dynamical systems
approach. To better understand the paradoxical accumulation of large particles in regions defined by barriers to
transport, we perform discrete element method (DEM) simulations to visualize the three-dimensional structure
of the segregation patterns and track individual particles. Our DEM simulations and modeling results indicate
that segregation pattern formation in the biaxial spherical tumbler is due to the interaction of size-driven radial
segregation with the weak spanwise component of the advective surface flow. Specifically, we find that after large
particles segregate to the surface, slow axial drift in the flowing layer, which is inherent to spherical tumblers,
is sufficient to drive large particles across nominal transport barriers and into nonmixing islands predicted by an
advective flow model in the absence of axial drift. Axial drift alters the periodic dynamics of nonmixing islands,
turning them into “sinks” where large particles accumulate even in the presence of collisional diffusion. Overall,
our results indicate that weak perturbation of chaotic flow has the potential to alter key dynamical system features
(e.g., transport barriers), which ultimately can result in unexpected physical phenomena.
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I. INTRODUCTION

Segregation, or demixing, in flowing granular materials
occurs in many industrial settings, including the process-
ing, blending, transport, and handling of pharmaceutical,
chemical, and construction materials in granular or pow-
der form. In shearing flows, granular materials segregate
when the component particles differ in physical proper-
ties, most commonly size or density [1,2]. The tendency
to segregate is countered by collisional diffusion driven
by particle collisions, which can lead to remixing. Ex-
periments and modeling methods have been developed to
understand the interaction of these elements in various pro-
totypical geometries [3,4]. Here we consider segregation
pattern formation in a spherical tumbler where the nominal
advection field is periodic, but where interactions with par-
ticle segregation can lead to a sensitive dependence on flow
conditions.

Most segregation studies in tumbler flows focus on quasi-
two-dimensional (2D) geometries where the axial dimension
is small compared to the radial dimension; this geometry re-
sults in an effectively 2D velocity field. In quasi-2D tumblers
rotating in the cascading regime [5,6], a thin flat free-surface
layer of particles flows above a nominally fixed bed, or “bulk,”
of particles in solid-body rotation with the tumbler. Segre-
gation patterns for a size-bidisperse mixture of particles in
quasi-2D tumblers correspond to the dynamics of the system.

*Corresponding author: r-lueptow@northwestern.edu

In a typical quasi-2D circular tumbler rotating at constant
speed and half-filled with a size-bidisperse particle mixture,
segregation in the flowing layer leads to a radial segregation
pattern where large particles migrate to the tumbler periphery,
leaving a core of small particles at the center within one
to two revolutions [7–11]. This process is well understood
and can be accurately modeled using a continuum transport
model [3,4,12]. When the rotation speed is slowed or mod-
ulated, or the tumbler is not half full, the boundary between
large particles on the periphery and the small-particle core
develops a multilobed structure, which can coarsen at high
fill-levels [13–19]. Similarly, lobed patterns are observed in
quasi-2D tumblers with polygonal cross-sections, due to the
time-periodicity of the flow induced by rotation of the polyg-
onal geometry. These lobed patterns are closely related to
the unstable manifolds of the associated dynamical system
[14,20].

Though quasi-2D geometries have provided a useful av-
enue for study, tumblers in practical applications are almost
always three-dimensional (3D). Here we consider a 3D tum-
bler geometry in which the underlying flow dynamics are
chaotic [21–23], which leads to complex interactions between
advection, segregation, and collisional diffusion. In particu-
lar, we consider a segregating granular mixture in what is
arguably the simplest nontrivial 3D geometry, a spherical
tumbler with periodic flow dynamics, specifically the biaxial
spherical tumbler (BST) flow. The tumbler is half-filled with
a size-bidisperse noncohesive granular material and rotated
alternately about two horizontal axes by rotation angles (θz,
θx) beyond the angle of repose. The choice of axes and rotation
angles is termed a protocol. Here we restrict our study to
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FIG. 1. Flow and segregation structures for the (57◦, 57◦) proto-
col. (a) Poincaré section from a continuum model (CM) simulation
of a half-full spherical tumbler at r = 0.95. (b) 3D nonmixing KAM
tubes visualized by transport barriers from CM for 0.55 � r � 0.95
in radial increments of 0.05. The six conelike KAM tubes (A1–
A3 and B1–B3) are period-3. The dashed white line indicates an
intersecting plane used for analysis in Sec. II B. (c) Segregation
experiment in a half-full 7 cm radius spherical tumbler with frac-
tion f = 0.05 large blue (shaded gray) particles and 1 − f = 0.95
small red (gray) particles by volume after N = 30 iterations of the
(57◦, 57◦) protocol with angular velocity ω = 2.6 rpm. All images
show the mixture-filled half of the tumbler viewed from below.
Adapted with permission from [32].

rotations about orthogonal axes, although nonorthogonal axes
can produce similar flow structures [24].

Mixing dynamics in the BST are richly complex, even in
the simpler case of a nonsegregating monodisperse (versus
size disperse) granular material. In the monodisperse case,
and for certain biaxial spherical tumbler protocols, some par-
ticles are trapped for many iterations, N, of the protocol
in periodic “nonmixing regions,” while particles outside of
these regions mix chaotically [25]. At what is likely the most
fundamental level, the mixing dynamics of the BST can be
viewed as a cutting-and-shuffling operation described by the
mathematics of piecewise isometries (PWI) [21,25–29]. Es-
sentially, each change in rotation axis “cuts” the material,
while each rotation “shuffles” it to a different location. The
PWI approach identifies the potential for nonmixing regions
(i.e., regions that are never cut) [21,25,26,29] and invariant
ergodic subsets that can result in barriers to mixing [30],
but the details of these predictions are altered by the finite
thickness of the flowing layer in any physical realization of
the BST [21,23,25,26]. However, the finite thickness flowing
layer can be modeled using a continuum description with a
time-periodic 3D velocity field [22,23,25] (see Appendix A).
This continuum model, or CM, is directly applicable to the de-
scription of monodisperse flows, which, by definition, do not
exhibit segregation.

An example of flow structures predicted by the CM is
shown in Fig. 1(a) as viewed from below for multiple ap-
plications of the rotation protocol (θz, θx ) = (57◦, 57◦) at a
radius of r = 0.95 for a unit hemisphere using a Poincaré
section [31], i.e., a stroboscopic map showing the locations
of all tracer points after each iteration of the protocol due to
advection by the flow. The CM predicts a flow structure con-
sisting of two groups of nonmixing islands (labeled A1–A3
and B1–B3) surrounded by a scatter of points corresponding
to a single large chaotic flow region [22,23]. Within each
island, tracer point trajectories are periodic and orbit around
the center of the island, while outside each island, tracer point
trajectories are chaotic [27]. The boundary of each island

forms a transport barrier across which tracer particles do not
cross in the CM model but can cross in physical flows and
discrete element method (DEM) simulations due to collisional
diffusion. For the (57◦, 57◦) protocol, the islands have period-
3 orbits, meaning that they return to the same location on
the hemisphere after three iterations of the tumbling protocol.
(More generally, a period-n orbit returns to the same location
after n iterations of the protocol.)

Since the flow is 3D, the boundaries of the nonmix-
ing islands shown in Fig. 1(a) are the intersections of the
r = 0.95 shell with six conelike nonmixing volumes called
Kolmogorov-Arnold-Moser (KAM) tubes. Figure 1(b) [32]
illustrates the cone structure by showing intersections of the
KAM tubes with spherical shells over a range of radii (see
the caption). Within the KAM tubes, the velocity field is fully
integrable and all orbits are periodic, which is in contrast to the
chaotic motion that occurs outside the KAM tubes [23]. Con-
sequently, the surface of the KAM tube also forms a barrier
to transport across which tracer particles do not cross in the
CM model. For the rotation protocol (θz, θx ) = (57◦, 57◦), the
KAM tubes are widest near the tumbler wall [corresponding
to the island boundaries shown in Fig. 1(a)], and their apexes
point toward the center of the spherical tumbler. For different
protocols with similar nonmixing behaviors, the KAM tube
shape varies with the rotation protocol and the flowing layer
thickness [23]. These protocol-dependent KAM structures
are also observed in an experimental study of the BST sys-
tem, where an x-ray opaque tracer particle among otherwise
monodisperse particles periodically appears in regions A1–A3
or B1–B3 for hundreds of consecutive iterations, occasionally
jumping out and back into these period-3 nonmixing islands
due, in part, to collisional diffusion [25].

In addition to nonmixing barriers bounded by KAM tubes,
the CM model and experiments also produce global transport
barriers that instead separate two chaotic regions [25,30]. In
these cases, particles remain and mix in the half of the domain
where they are located before tumbling starts. These global
nonmixing structures are surprising in a tumbling system
where complete mixing was originally anticipated outside of
KAM tubes. The observed complexity of mixing in the BST
system provides a starting point to probe into more practical
aspect, namely segregation.

Returning now to the case of size-bidisperse mixtures
where segregation can occur, experiments have shown that the
3D chaotic flows of the BST can form segregation patterns
reflecting the underlying flow dynamics of the continuum
model, i.e., large particles concentrate in and around the
nonmixing regions predicted by the CM [32]. For example,
an experiment tumbling a mixture with large particles [dL =
4 mm, blue (shaded gray), fraction f = 0.05] and small par-
ticles [dS = 2 mm, red (gray), fraction 1 − f = 0.95] in an
Ro = 7 cm spherical tumbler under the (57◦, 57◦) protocol
results in the segregation pattern at the tumbler wall shown in
Fig. 1(c) [32]. Though only a portion of the tumbler is visible
due to the spherical geometry of the tumbler, it is apparent that
large particles accumulate in and about nonmixing regions
A1, B2, and B3 of the Poincaré section shown in Figs. 1(a)
and 1(b) [32]. The curious aspect of the segregation pattern in
Fig. 1(c), and the phenomenon that is the focus of this study,
is that the nonmixing islands, whose perimeters are barriers to
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transport in both the CM and PWI models, act as “attractors”
for the large particles in a segregating size-bidisperse mixture.

Here we study how segregation patterns depend on the
interplay between particle segregation and the underlying dy-
namical system driven by the advection field. Using DEM
simulations to track each particle, we first characterize the
structure of the segregation patterns in Sec. II. In Sec. III
we examine how large particles cross the transport barriers
surrounding nonmixing regions. Based on our findings here
and previous work [25,32,33], we propose that weak axial
transport of surface segregated large particles is sufficient to
drive segregation pattern formation when nonmixing regions
are present. To support this hypothesis, axial transport is in-
corporated into the CM. Results from this modified continuum
model, or MCM, demonstrate that a weak perturbation to the
base flow results in the accumulation of large particles in
nonmixing regions predicted by the unperturbed flow. Using
DEM simulations and continuum modeling to examine other
protocols with varying dynamical behaviors in Sec. IV, we
observe sensitive segregation pattern formation in response to
weak perturbation of the flowing layer. We discuss our finding
and present our conclusions in Sec. V.

II. NONMIXING STRUCTURES AND SEGREGATION

The system we study is a half-filled Ro = 7 cm radius
spherical tumbler with an initially uniform size-bidisperse
mixture of noncohesive large (4 mm, blue) and small (2 mm,
red) diameter spherical particles. The tumbler is repeatedly
rotated about orthogonal axes by angles θz followed by θx, a
protocol of (θz, θx). For each rotation, the granular bed is first
rotated from horizontal to its repose angle, then rotated by the
specified angle, then rotated back to horizontal. Segregation
patterns are typically visible after three to six protocol itera-
tions and fully developed after N = 15–20 iterations in both
experiments [32] and in our DEM simulations; see, e.g., Video
S.1 in the Supplemental Material [34].

Although segregation patterns are reported in previous ex-
periments [32], it is difficult to fully understand how these
patterns form from visualizing the accumulation of parti-
cles at the clear wall of the tumbler alone. Here we use
DEM simulations to examine the flow and segregation as
it develops (see Appendix C for DEM simulation details).
To validate the DEM simulations, segregation patterns for
the (57◦, 57◦) protocol are compared to experimental results
[32] for three distinct large-particle mixture fractions, f =
{0.05, 0.15, 0.25}; see Fig. 2. The tumbler rotation speed, ω,

is 3 rpm in the simulations and 2.6 rpm in the experiments.
The associated Froude number, Fr = Rω2/g ≈ 6 × 10−4, is at
the lower end of the rolling/cascading regime in tumbler flow,
resulting in a thin continuously flowing particle layer at the
flat free surface [6,35]. The DEM simulation is rendered from
below using POV-Ray [36] to match the experimental images.
The segregation patterns for all three large-particle fractions in
the DEM simulations reproduce the experiments in that three
distinct large-particle regions of similar shape and extent are
observed, corresponding to nonmixing regions A1, B2, and
B3 in the Poincaré section; see Fig. 1.

0.05

0.15

0.25

f

FIG. 2. Comparison of segregation patterns in (left) experiment
[32] and (right) DEM simulation at N = 30 iterations for the
(57◦, 57◦) protocol using mixtures of 4 mm blue (shaded gray) and
2 mm red (gray) particles in a half-filled spherical tumbler of radius
Ro = 7 cm for three large-particle fractions f (rows) viewed from
below.

A. Large-particle motion in nonmixing regions

We use the DEM simulations to analyze the motion of
large particles in the nonmixing islands, shown in Fig. 1, after
the segregation pattern reaches steady state. For the (57◦, 57◦)
protocol considered in detail here, each island returns to
the same position after three iterations of the protocol
(the periodicity of the nonmixing structure depends on the
protocol [24,27–29,32,37]). Thus, in Figs. 1(a) and 1(b), A1
moves to the position of A2 after one iteration, to the position
of A3 after two iterations, and returns to its original position
after three iterations [25,29]. The flow of large particles in
the nonmixing islands as they cross the free surface is shown
in Fig. 3 (see also Video S.1 in the Supplemental Material
[34]). To aid visualization, the tumbler orientation in the
figure is offset by the free-surface angle, and small particles
are not rendered. Large particles associated with island A3
are colored gold and the surrounding region is highlighted in
yellow, while large particles not in A3 are colored blue. The
free surface flow direction is indicated by the arrow.

In steady state, as shown in Fig. 3, large particles are
concentrated in the six nonmixing regions. During the z-axis
rotation (left column), A3 rotates up from the solid-body re-
gion (bulk) into the flowing layer. At 2/3 of the z-axis rotation
(third row), A3 is stretched as it transits the free surface on one
side of the flowing layer. Simultaneously, but not highlighted,
nonmixing region B1 on the other side of the free surface is
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FIG. 3. Large-particle movement in a DEM simulation during
the N = 31 iteration of the (57◦, 57◦) protocol for an initially uniform
mixture with large-particle fraction f = 0.05. The free surface corre-
sponds to the flat portion of the hemisphere, which is offset from the
repose angle to horizontal for ease of visualization. Arrows indicate
streamwise velocity in the flowing layer. Labels identify two groups
of nonmixing clusters A1–A3 and B1–B3.

also stretched as it flows down the free surface. The other four
islands remain in the bed of nonflowing particles and rotate
as a solid-body with the tumbler. At the end of the z-axis
rotation, both A3 and B1 land on the downstream end of the
flowing layer after crossing the z-axis. In the subsequent x-
axis rotation, B1 is buried in the bulk near the tumbler wall and
undergoes solid-body rotation, while A3 reenters the flowing
layer. At 1/3 of the x-axis rotation, region A3 again spreads
across one side of the flowing layer, but then contracts again
at 2/3 rotation as it reenters the bed of nonflowing particles.
Region B3 also flows down the surface during this portion
of the iteration. After this biaxial iteration, region A3 lands
on the far left corner of the surface where A2 had started
at the beginning of this iteration. The motion of A3 differs
during the two rotations that define the protocol. A3 stretches
the most in the last 2/3 of the first rotation (θz) and in the
first 2/3 of the second rotation (θx) because it is closer to the
free surface at the end of the first rotation than at the start.
Regions A1, A2, and B2 do not enter the flowing layer during
this iteration, but they do so during subsequent iterations.
With two additional iterations of the protocol, all nonmixing
regions pass through the flowing layer twice and return to
their starting positions, thereby leading to the period-3 pattern
evident at the tumbler wall.

Finally, we note that the continuum model shows that only
the center of each nonmixing region is strictly periodic—the
rest of the island rotates about this fixed point of the Poincaré
section by an amount determined by the protocol and the

particle fill level [37]. Similar rotation of the particle clusters
is also evident in the DEM simulations and experiments, but it
is less pronounced due to the simultaneous action of collision-
driven particle diffusion.

B. Large-particle spatial distribution

The average local large-particle concentration, cL, near the
free surface in steady state (N � 13) from DEM simulation
is compared to the CM-predicted locations of the nonmixing
regions for three different large-particle mixture fractions, f ,
in order to quantify the spatial distribution of large particles.
The large-particle concentration is measured by projecting the
position of all large particles in a hemispherical shell of thick-
ness 0.9 < r < 1 onto a 2D plane using a Lambert azimuthal
projection [38] with an equal area grid [28,39], as shown in
Fig. 4. The six dark elliptical regions indicate the high cL val-
ues associated with nonmixing islands for the three values of
f . The boundaries of nonmixing islands predicted by the CM
[red (gray) curves] are projected to the 2D plane in the same
manner. For f = 0.05, most large particles occupy the non-
mixing regions predicted by the CM. At f = 0.15, the high
concentration regions increase in size but remain elliptical. At
f = 0.25, the high concentration regions remain centered on
the CM-predicted nonmixing regions, but large particles also
cover the rest of the domain at lower concentrations.

We can also examine particle distributions and 3D structure
in a plane through the particle bed that intersects nonmixing
regions A1 and B1 in Fig. 5. The majority of large particles
in the DEM simulations fall within the KAM tube boundaries
(dotted curves), but they are preferentially located near the
tumbler wall, i.e., at larger radii. This is readily explained by
size segregation. Large particles tend to rise to the free surface
when they cascade down the flowing layer and end up near the
tumbler wall (large radii), while small particles tend to drop
out of the flowing layer before they reach the downstream
tumbler wall (at smaller radii). As the large-particle fraction is
increased from 0.05 to 0.25, nonmixing regions become more
densely packed with large particles, but only to a depth of
three to four particle diameters from the tumbler wall, and the
high cL region expands along the tumbler wall. Because the
tendency for large particles to accumulate inside nonmixing
regions competes with their tendency to segregate to the top
of the flowing layer and then deposit near the tumbler wall,
large particles eventually accumulate near the tumbler wall
but outside the nonmixing regions for f > 0.05. At f = 0.5
(not shown), the entire surface is covered by large particles
and, consequently, segregation patterns are not visible on the
tumbler wall.

C. Particle persistence in nonmixing regions

Having confirmed that the DEM simulations reproduce
the segregation patterns observed in experiments and char-
acterized their steady-state concentration fields for different
large-particle fractions, we now quantify the tendency for par-
ticles to remain within nonmixing islands. The concentration
patterns shown in Fig. 4 are time averages from the DEM
simulations; individual large particles continue to enter and
leave the nonmixing regions during the steady-state averaging
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FIG. 4. Local large-particle concentration, cL, from DEM sim-
ulations in steady state averaged over iterations 25 � N � 35 and
tumbler radius (0.9 < r < 1) under the protocol (57◦, 57◦) for in-
creasing (top to bottom) large-particle fraction f as indicated.
Concentration fields are visualized from below using a Lambert
azimuthal projection, which preserves the area between the 3D hemi-
sphere and the 2D plane. Boundaries of nonmixing islands predicted
by the CM at r = 0.95 are indicated by red (gray) curves.

interval. To characterize particle movement in steady state,
we measure the angular particle displacement field, �ψ < π,

between initial and final positions at integer multiples of the
island periodicity, namely three iterations of the protocol for
period-3 islands. �ψ is spatially averaged using the equal area
grids of the Lambert projection for particles with 0.8 � r � 1
and for two periods (six iterations) in Fig. 6 and six periods
(18 iterations) in Fig. 7 for 13 � N � 35 (steady state) and
various f . In both figures, �ψ values are shown for large
particles (top row) and small particles (bottom row). Note that
f = 0 and 1 represent monodisperse systems with only small
or large particles, respectively, and thus no plots are shown for
the zero concentration species.

Over the two flow periods shown in Fig. 6, six distinct
regions of small �ψ (dark areas) are apparent for both large
and small particles. (Note that gray bins for f = {0.05, 0.15}

0.05

0.15

0.25

B1

A1
0.8

0.9

FIG. 5. Steady-state (N = 30) particle distributions from DEM
simulations for three large-particle fractions f in the intersecting
plane indicated by the dashed white line in Fig. 1(b) under the
(57◦, 57◦) protocol. Dotted white curves indicate boundaries of the
conelike nonmixing regions (KAM tubes) predicted by the CM. Solid
curves indicate radii r.

indicate regions with no large particles due to the low f
values and the strongly localized segregation.) These regions
correlate with nonmixing regions in the CM and indicate that
particles tend to remain in the vicinity of their local non-
mixing region after six protocol iterations (corresponding to
four passes through the flowing layer for particles in KAM
regions). The two groups of period-3 regions (A and B) differ
only in that they are mirror images of each other one-half iter-
ation apart. They have the same periodicity and, consequently,
the same net angular displacement.

The variations in the details of the displacement patterns
with f are associated with the mixture dynamics. In size-
bidisperse cases ( f = {0.05, 0.15, 0.25}), regions of small
�ψ for large particles are similar in size despite increasing
numbers of large particles. At the highest f shown ( f =
0.25), large particles tend to stay close to the tumbler wall
but cannot all accumulate in the small angular displacement
regions due to radial segregation. Consequently, large parti-
cles outside nonmixing regions are dispersed into the rest of
the domain leading to higher concentrations away from the
low displacement regions [Fig. 4(c)]. Small particles exhibit
similarly small displacements in nonmixing islands and their
vicinity, but they are not visible in Fig. 2 because large par-
ticles are predominant at the tumbler wall. Thus, both small
and large particles tend to stay in the period-3 nonmixing
regions over two periods. Even in the two monodisperse cases
( f = {0, 1}), similar periodic dynamics are observed, but the
low �ψ pattern is more localized for f = 0 than it is for
f = 1. This is likely due to the weaker collisional diffusion
of small particles, which scales with the square of the particle
diameter [40–42].

It is evident that low �ψ regions differ slightly in shape
and location for small and large particles in size-bidisperse
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FIG. 6. Net angular displacement, �ψ , of large particles (top row) and small particles (bottom row) from DEM simulations with 0.8 �
r � 1 over two flow periods (six iterations) during steady-state iterations (13 � N � 35) of protocol (57◦, 57◦) for mixtures with large-particle
fraction f varied from 0 to 1 as indicated. Grid cells with no large particles are shaded gray. Results are shown in bottom views of the spherical
tumbler presented in Lambert azimuthal projections.

cases. For example, the central low displacement region for
large particles is closer to the center of the projection than for
small particles. This small shift is likely a consequence of the
slight difference in the flow of the two particle species in the
flowing layer (i.e., small particles reenter the bulk before large
particles). Similar differences between low �ψ regions for the
bidisperse cases compared to the monodisperse case are also
likely a result of slight differences in the flow between the two
cases.

While Fig. 6 indicates that the periodic dynamics of parti-
cles in nonmixing regions are robust across various mixtures
over two periods (six iterations), the displacement over larger
numbers of iterations is also of interest. Plots of �ψ over six
flow periods (18 iterations) are shown in Fig. 7 for the same

simulations. For large particles, a similar pattern of six low
�ψ regions is observed compared to Fig. 6 at all f , but with
larger values of �ψ due to the greater influence of collisional
diffusion and chaotic mixing over more iterations in Fig. 7.
�ψ increases with increasing f , and the low displacement
regions are faint at f = 1. This is likely due to the increasing
fraction of large particles outside of the KAM tube at the same
projected location as f is increased; see, e.g., Fig. 5. For ex-
ample, at f = 1 a much larger percentage of large particles are
outside the KAM tube than at f = 0.05, where nearly all large
particles are at the tumbler wall and inside the KAM tube. For
small particles, the low �ψ regions also fade with increasing
f , and they are no longer apparent for f � 0.15. This is likely
due to two causes. First, with increasing f , small particles are

4 mm
particles

0

½ π

π

¾ π

¼ π
2 mm
particles

0.05 0.15 0.25 10

�

FIG. 7. Net angular displacement, �ψ , of large particles (top row) and small particles (bottom row) from DEM simulations with 0.8 �
r � 1 over six flow periods (18 iterations) during steady-state iterations (13 � N � 35) of protocol (57◦, 57◦) for mixtures with large-particle
fraction f between 0 and 1. Grid cells with no large particle are gray. Results are shown in bottom views of the spherical tumbler presented in
Lambert azimuthal projections.
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FIG. 8. Development of surface segregation patterns as shown by tracking large particles through barriers to mixing over 7 � N � 34
iterations of (57◦, 57◦) protocol in DEM simulations viewed from below. “Persistent” particles [orange (light gray)] start and end in nonmixing
regions, “captured” particles [blue (gray)] start in the chaotic region and end in nonmixing regions, and “dispersed” particles [green (dark
gray)] start in nonmixing regions and end in the chaotic region. All other large particles start and end in the chaotic region (small black dots).
Transport barriers (closed black curves) are determined from the CM.

displaced by large particles further from the wall to smaller
radii where the nonmixing region (KAM tube) narrows
[Fig. 1(b)]. Thus, compared to f = 0 where small particles
are against the tumbler wall, fewer small particles follow
the periodic movement of the nonmixing region at higher f .
Second, small particles in the three to four large-particle-thick
region of the KAM tube near the tumbler wall are in close
proximity to large-particle enriched regions where the colli-
sional diffusion is higher than in pure small-particle regions.

The DEM simulation results in this section demonstrate
that flow in the spherical tumbler under the (57◦, 57◦)
protocol produces periodic behavior independently of
whether the mixture is monodisperse or bidisperse. This con-
firms that the underlying spatial and temporal structure of the
segregation patterns is inherent to the tumbler dynamics. The
DEM simulation results also show that large particles con-
centrate inside nonmixing regions predicted by the continuum
model and remain there over multiple periods. However, why
large particles accumulate in the nonmixing regions of the CM
remains to be explained.

III. MECHANISM FOR SEGREGATION PATTERN
FORMATION

Our previous paper describing segregation patterns in ex-
periments [32], e.g., those in Fig. 2, suggests that the spatial
overlap between large-particle-rich regions in experiments
and the nonmixing regions in the continuum model is re-
lated to the enhanced tendency of large particles to remain
in nonmixing regions. This is confirmed by the angular dis-
placement plots in Figs. 6 and 7, which show that the mobility
of large particles in nonmixing regions is reduced compared
to monodisperse cases, where transport across the mixing
barriers is mostly due to collisional diffusion. The remaining
question, then, is what drives large particles to preferentially
cross transport barriers into nonmixing regions? While the
motion of the large-particle clusters is evident in Fig. 3, it does
not explain the mechanism that creates them.

A. Pattern evolution in DEM

To determine how large particles accumulate in nonmix-
ing regions, we first use DEM simulation data to track large
particles from when they initially segregate radially to the
free surface and are relatively uniformly distributed across the
surface (N ≈ 7) until N = 34, which is well after the steady-
state segregation pattern has developed. Figure 8 plots the
positions of four large-particle groups comprising the entire
population of 1980 large particles in the DEM simulation:
“persistent” large particles that start and end in the same
CM-predicted nonmixing region [orange (light gray), 124
particles]; “captured” large particles that are initially outside
nonmixing regions at N = 7 but are inside at N = 34 [blue
(gray), 429 particles]; “dispersed” large particles that start
inside nonmixing regions but end outside those regions [green
(dark gray), 241 particles]; and all other large particles (small
black dots, 1186 particles). Small particles are not shown. As
the segregation pattern starts to form (N = 7), large particles
are distributed throughout the tumbler with 365 particles [or-
ange (light gray) and green (dark gray)] in the nonmixing
regions. At N = 28, the density of blue (gray) large particles
is noticeably increased in and around the nonmixing regions.
Additionally, some of the persistent particles [orange (light
gray)] are outside but still in the immediate vicinity of the
nonmixing regions. At N = 34, large particles are densely
clustered in the nonmixing regions [544 orange (light gray)
and blue (gray) particles, many overlaying one another in the
figure] and most of the other large particles [green (dark gray)
and small black dots] closely surround the nonmixing regions.
Clearly, many large particles have crossed transport barri-
ers predicted by the CM to accumulate in these nonmixing
regions.

B. Modified continuum model

The accumulation of large particles in nonmixing regions
in experiments and in DEM simulations described above
clearly indicates that large particles do not exactly follow the
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FIG. 9. Continuum model (CM, vax = 0, σax = 0) and modified continuum model (MCM) results for (57◦, 57◦) protocol in Lambert
azimuthal projection viewed from below: (a) without axial drift or diffusion (CM); (b) with random-walk diffusion of σax only; (c) with axial
velocity but no diffusion; (d) with axial velocity and diffusion σax; (e) with axial velocity and increased diffusion 20σax. Top row: Initial random
distribution of tracer points. Middle row: Tracer point distribution at N = 30 with obvious clustering in (c), (d). Bottom row: Cumulative tracer
point positions for 30 � N � 45 and nonmixing island perimeters [red (gray) curves] determined by the CM, which does not include drift or
diffusion. Only tracer points in the bulk are plotted.

base flow of the CM. To explain this deviation, we note that
previous experiments and simulations have reported a weak
axial component of the velocity field in spherical tumbler
flows which occurs in the surface flow. This flow results in
slow axial drift of particles toward the poles at the flowing
layer surface and toward the equator in the deeper portions of
the flowing layer [33,43]. As we show below using a modified
version of the continuum model, weak axial drift, when com-
bined with radial segregation that keeps large particles near
the free surface, is sufficient to explain the segregation pat-
terns we observe. The basic mechanism is as follows. If a large
particle enters the flowing layer outside but in the vicinity of
a nonmixing region, axial drift will move the large particle
closer and potentially into the nonmixing region. Since large
particles above a layer of small particles will not sink due to
radial segregation, the large particles do not recirculate back
toward the equator in the lower portion of the flowing layer
as they do for size-monodisperse mixtures, but instead remain
near the surface and in the nonmixing island. In steady state,
the axial flux of incoming large particles is either balanced
by the diffusive flux of large particles out of the island or
limited by the presence of large particles already filling the
island (e.g., see Fig. 2).

To support the hypothesis that axial drift is sufficient to
drive surface segregation pattern formation, the CM is modi-
fied by adding an axial drift velocity component to the velocity

field of the flowing layer. The axial drift velocity, which varies
across the flowing layer, is the measured mean local axial
velocity of large particles at the free surface in the DEM
simulations before the surface pattern reaches steady state;
see Appendix A. (We note that, to the best of our knowledge,
it is not possible to calculate the drift velocity from first
principles.) In addition, to account for particle collisions, an
effective collisional diffusion is also included in the model
using a random-walk-like approach in which integer multiples
of the standard deviation σax of the measured axial velocity
are, with equal probability, added to or subtracted from the
mean axial velocity at each time step (see Appendix A for
details). The resulting modified continuum model (MCM)
implicitly includes radial segregation of the large particles
as the axial velocity is based on the large-particle motion at
the free surface only, matching the steady-state position of
radially segregated large particles in the flow.

Comparisons of tracer particle distributions from the CM
and the MCM for various parameter values for the (57◦, 57◦)
protocol shown in Fig. 9 demonstrate how axial drift and
collisional diffusion affect the accumulation of particles in
nonmixing regions. The initial condition (top row) consists
of 2000 tracer points (approximating the 1980 large particles
used in the corresponding DEM simulations at f = 0.15) ran-
domly distributed on a hemispherical shell of radius r = 0.95
(approximately one large-particle diameter from the tumbler

024902-8



SEGREGATION PATTERNS IN THREE-DIMENSIONAL … PHYSICAL REVIEW E 106, 024902 (2022)

wall). The advection scheme used in the MCM ensures that
the tracer points stay on this hemispherical shell so that they
represent large particles close to the tumbler wall due to radial
segregation. Distributions of tracer points (in the bulk only) at
N = 30 are shown in the middle row of Fig. 9, and cumula-
tive tracer point positions (30 � N � 45) at each flow period
(three iterations) are shown in the bottom row along with red
(gray) closed curves corresponding to the perimeters of the
nonmixing islands from the CM (i.e., no axial velocity and no
diffusion).

Results from the continuum model and the modified con-
tinuum model for various parameter values demonstrate how
axial drift can drive the accumulation of large particles in non-
mixing regions. The CM, without axial velocity or diffusion,
and the MCM incorporating only a random-walk diffusion
of σax do not result in an accumulation of tracer points in
the nonmixing regions; see Figs. 9(a) and 9(b). However,
when axial drift is present (MCM), tracer points accumulate
in nonmixing regions both without diffusion [Fig. 9(c)] and
with diffusion of σax [Fig. 9(d)]. If the diffusion is too large,
though, it overwhelms the axial drift effect so there is little
accumulation of large particles in nonmixing regions [see,
e.g., Fig. 9(e)].

We further note that the competition between axial
drift and collisional diffusion can be characterized by the
dimensionless Péclet number, Pe = Lu/D, where L is a char-
acteristic length scale, u is a characteristic velocity scale, and
D is the diffusion coefficient. In the context of the MCM used
here, we define Pe = Lisland〈|vax|〉/[(ασax)2�t], where 〈|vax|〉
is the spatial mean of the absolute value of the axial drift
velocity, α is a dimensionless constant (e.g., α ∈ {0, 1, 20}
in Fig. 9), Lisland is the characteristic size of an island, and
�t is the integrator time step from the MCM computations
[44]. Diffusion overwhelms axial drift in Fig. 9 for α = 20,
which corresponds to a small value of Pe = 0.4 as expected.
Similarly, axial drift is stronger than diffusion for α = 1,

which corresponds to a larger value of Pe = 150. It is not
currently possible to determine either vax or D (equivalently,
σax) from first principles, although D can be estimated if the
velocity field is known [42].

In this section, we have used the MCM, which is, to a
degree, ad hoc (e.g., it assumes large particles are radially
segregated and ignores their interactions with each other),
to clearly demonstrate that axial drift alone results in large
particles being transported across nominal mixing barriers to
accumulate in the nonmixing regions of the CM. Moreover,
the accumulation of tracer points in the nonmixing islands
observed under the MCM with axial drift is only disrupted
by diffusion when it is relatively large (i.e., here, 20σax cor-
responding to a small value of Pe = 0.4), as expected. This
result is consistent with observations of large collisional dif-
fusion and the disappearance of segregation patterns in biaxial
tumbler systems with small particle size ratios where radial
segregation is weak [32].

IV. SEGREGATION PATTERNS FOR OTHER PROTOCOLS

We have examined segregation under the (57◦, 57◦) pro-
tocol to this point, but segregation patterns and barriers to
mixing appear in the biaxial spherical tumbler for other pro-

(a) (b)

(c) (d)

FIG. 10. Segregation pattern under the (90◦, 90◦) protocol.
(a) Poincaré section from CM at r = 0.95. (b) Lambert projection of
particles (0.9 � r � 1) in the DEM simulation of a half-filled spher-
ical tumbler with a mixture of f = 0.15 large particles at N = 30
of the same protocol. (c) Average concentration of large particles
(0.9 � r � 1) in the DEM simulation for 15 < N < 30 (color map
as in Fig. 4). (d) MCM with axial velocity and diffusion σax for an
initial random distribution of tracer points at N = 30. Boundaries of
nonmixing islands predicted by the CM are indicated by red (gray)
curves in [(c),(d)]. All results are viewed from below.

tocols [32]. Furthermore, there are protocols and conditions
for which segregation patterns do not appear. In this section,
we use DEM simulations and the MCM to examine these
situations.

A. A similar biaxial protocol

There are many other protocols that produce large nonmix-
ing regions that vary in size, location, and periodicity from
those generated by the (57◦, 57◦) protocol [27]. For example,
the CM under the (90◦, 90◦) protocol results in four large
period-2 nonmixing regions, as Fig. 10(a) shows, that also act
as attractors for large-particle segregation in experiments [32].
In DEM simulations for the same conditions, large particles
accumulate in these nonmixing regions [Fig. 10(b)] matching
experimental results, and their concentration near the tumbler
wall (0.9 � r � 1) is high (dark regions) in the nonmixing
islands predicted by the CM [red (gray) closed curves in
Fig. 10(c)].

Applying the MCM to the (90◦, 90◦) protocol, as in Fig. 9,
results in tracer points accumulating in nonmixing regions, as
shown in Fig. 10(d). This again indicates that weak axial drift
is sufficient to drive the accumulation of tracer points in the
nonmixing regions predicted by the CM.

For both the (57◦, 57◦) and (90◦, 90◦) protocols, large par-
ticles accumulate in the nonmixing islands of the unperturbed
CM when the base flow is perturbed by a weak secondary
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(b)

(c)

(a)

FIG. 11. Absence of segregation patterns for the (68◦, 68◦) pro-
tocol. (a) No nonmixing islands in the Poincaré section of the CM.
(b) Bottom view of DEM simulation with initially mixed small red
(gray) particles and large blue (dark gray) particles ( f = 0.15) at
N = 40. (c) Average concentration in 2D Lambert projection for
26 � N � 40 from DEM simulation data with 0.9 < r < 1 (color
map as in Fig. 4).

flow. Under these conditions, the nonmixing islands of the
CM behave instead like sinks [31], allowing large particles
to cross the boundaries of the nonmixing islands, which were
previously understood as barriers to transport [25,32]. In ex-
periments and DEM simulations, because particles cannot
overlap, large particles fill the nonmixing islands and then
surround the nonmixing island as f is increased. In steady
state, there is a balance between diffusive fluxes, which drive
large particles away from the high concentration regions sur-
rounding the islands, and the actions of the perturbed base
flow (i.e., axial drift) which drive them into the islands.

B. No segregation-pattern example

So far we have shown that large particles cluster in non-
mixing regions as a result of weak axial drift that drives
them across the transport barriers of the unperturbed flow.
Thus, two elements are necessary for segregation: weak flow
perturbations and the existence of nonmixing regions. To fur-
ther support our understanding of segregation in the BST, we
consider a protocol for which no large nonmixing islands exist
in the Poincaré section, and therefore one for which we would
expect segregated surface patterns to be absent. Specifically,
we consider the (68◦, 68◦) protocol of the CM in Fig. 11(a)
for which no apparent nonmixing islands are present in the

Poincaré section, which is a very different situation from
the large islands present in (57◦, 57◦) (Fig. 1) and (90◦, 90◦)
(Fig. 10) protocols.

In DEM simulation of the (68◦, 68◦) protocol with initially
mixed large and small particles, the large particles radially
segregate to the tumbler wall where they distribute nearly
uniformly across the surface [Fig. 11(b)]. Although some
weak clustering is evident, the average large-particle concen-
tration is significantly more uniform than in the two previous
protocols with large nonmixing regions, i.e., (57◦, 57◦) and
(90◦, 90◦), and there is no obvious periodic pattern. Further-
more, particles in these weak clusters quickly disperse and
do not return to the same groups as occurs for the (57◦, 57◦)
protocol shown in Fig. 3. Similar results with little to no
segregation are also observed for (60◦, 75◦) and (65◦, 76◦),
which also have unstructured Poincaré sections in the CM.
Thus, without nonmixing regions, robust segregation patterns
do not develop.

C. Global transport barriers

In the previous example of the (68◦, 68◦) protocol that
lacks nonmixing regions, persistent segregation patterns do
not occur and large particles spread relatively uniformly
across the surface. However, some protocols that lack sig-
nificant nonmixing regions can still exhibit nonuniform
distribution of large particles depending on the initial condi-
tions of the mixture. In particular, we previously identified
protocols that lack nonmixing regions but exhibit global
mixing barriers between chaotic mixing regions [25]. To un-
derstand the effects of global mixing barriers on large-particle
distribution in these cases, consider the (45◦, 45◦) protocol.
Similar to other cases, the Poincaré section is generated from
the CM by tracking points seeded on the interface between
the flowing layer and the bulk at r = 0.95 at the start of
the first [red (gray)] and second [blue (dark gray)] rotation.
The Poincaré section in Fig. 12(a) shows interpenetrating
blue (dark gray) and red (gray) dominated fingerlike regions
separated by a “leaky” global mixing barrier [25,32]. This
structure results from the interactions between the flowing
layer and the underlying dynamical system of the biaxial pro-
tocol [21,23,25,26], which create invariant ergodic structures
that are barriers to mixing [30].

Although thin elongated nonmixing regions (white) exist
in the center of each of the six “fingers,” they occupy only
a relatively small area that does not significantly influence
segregation. Instead, the stable [shown in green (light gray)]
and unstable manifolds of the CM flow [32] (see Appendix B)
are responsible for the observed global mixing barrier that
defines the red (gray) and blue (dark gray) dominated regions.
That is, the stable and unstable manifolds, which drive chaotic
transport in these mixing regions, reside entirely in either
of the two domains. This is unlike the cases we examined
in Figs. 1(a) and 4(a), where every manifold fills the entire
chaotic sea and encloses every nonmixing region, as we have
shown previously [32]. In Fig. 12(a), the blue (dark gray)
dominated region has two of its three “finger” structures in
the bulk, while the third one is mostly in the flowing layer
(not visible from the bottom view of the tumbler), with only
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(a) (b)

(c) (d)

FIG. 12. Global mixing barrier spanning the tumbler for the
(45◦, 45◦) protocol (bottom view). (a) Poincaré section from the CM
shows large interpenetrating fingerlike structures. Stable manifolds
of the CM flow are indicated by green (light gray) curves. (b) Large
blue (dark gray) particles with f = 0.15 in DEM simulations remain
primarily in the half of the domain in which they are initially placed
after N = 30 iterations. (c) Average concentration of large particles
(0.9 � r � 1) in the DEM simulation for 15 � N � 30 (color map
as in Fig. 4). (d) Large-particle distribution from the MCM (vax �=
0, σax) at N = 30 for the same initial conditions as in (b).

its edge extending into the bulk, as is barely visible on the
periphery of the image.

Figures 12(b) and 12(c) demonstrate how the global mixing
barrier can result in pattern formation for a mixture of large
particles and small particles in the DEM simulation when the
large particles are initially located in the flowing layer (not the
well-mixed initial condition used in the previous examples),
which corresponds with the blue (dark gray) finger in the
flowing layer of the CM [Fig. 12(a)]. After N = 30 iterations,
diffusion and chaotic mixing distribute the large particles rel-
atively uniformly on the side of the mixing barrier on which
they are initially placed, but very few large particles cross the
global mixing barrier into the other half, i.e., the small-particle
[(red gray)] dominated region. This behavior stands in con-
trast to that for both the (57◦, 57◦) and (90◦, 90◦) protocols,
where large particles concentrate in nonmixing islands by
crossing the barrier to mixing that separates the chaotic sea
from the periodic regions, and to that for (68◦, 68◦), where
large particles spread uniformly throughout the entire domain.

MCM results for the (45◦, 45◦) protocol with the same
initial conditions as the DEM simulation (i.e., all large par-
ticles in the flowing layer) demonstrate that the global mixing
barrier persists even in the presence of axial drift and colli-
sional diffusion, as shown in Fig. 12(d). The global mixing
barrier is surprisingly persistent in the MCM, even with higher
levels of diffusion (20σax, not shown). Two reasons may ex-
plain this persistence. First, the global mixing barrier in this
example separates two chaotic regions, while the barriers to

mixing in previous examples, i.e., (57◦, 57◦) and (90◦, 90◦),
separate nonmixing periodic regions from the chaotic region.
Therefore, the global mixing barrier does not bound a sink
under the influence of axial velocity as it does for the other
two protocols. Second, the axial drift field is predominantly
tangent to the boundary between the red (gray) and blue (dark
gray) dominated regions when it crosses the flowing layer
so that axial transport redistributes large particles along the
boundary with a significantly higher frequency than across it.

D. Density-driven segregation

To this point we have described the formation of seg-
regation patterns due to particle size differences. However,
bidisperse mixtures of spherical particles varying only in
density can also result in radial segregation. Do these
density-bidisperse mixtures in the BST system form surface
segregation patterns, and if so, are they similar to those
for size-driven segregation? To achieve a similar segregation
strength to the size-ratio-2 mixture used here, the density
ratio Rρ = ρ1/ρ2 of the two species needs to be large, 8 <

Rρ < 10 [45,46]. Two DEM simulations are performed for
the (57◦, 57◦) protocol using equal diameter particles (2 mm)
with Rρ = 3 (2 vol. % of ρ = 2000 kg m−3 and 98 vol. % of
ρ = 6000 kg m−3) and Rρ = 8 (2 vol. % of ρ = 1000 kg m−3

and 98 vol. % of ρ = 8000 kg m−3; see [47]).
For both density ratios, lighter particles radially segre-

gate to the tumbler wall, similar to larger particles in the
size-bidisperse cases. However, only weak segregation pat-
terns occur, as shown by the particle distributions and the
average lighter-particle concentration in Fig. 13. For Rρ = 3,

the overall surface density is lower than for Rρ = 8, but the
segregation pattern is stronger. The weaker segregation pat-
terns for Rρ = 8 appear to be due to the significant degree of
bouncing of lighter particles in the flowing layer (i.e., higher
lighter-particle diffusion) and the possibly corresponding
smaller magnitude of mean axial drift in the flowing layer.

Based on DEM simulations and models (CM and MCM)
in this section, there appear to be two requirements on the
parameters of the BST for spontaneous pattern formation to
occur. These are (i) rotational protocols that produce large
nonmixing islands in the CM (e.g., Fig. 10 versus Fig. 11), and
(ii) strongly radially segregating mixtures with low collisional
diffusion relative to axial drift (e.g., consider Fig. 13, where
these conditions are not well met). It is also worth noting
that the existence of axial drift alone does not guarantee that
transport barriers of the CM will be crossed (e.g., Fig. 12); the
barrier must also be nonparallel to the axial drift direction as
it passes through the flowing layer.

V. DISCUSSION AND CONCLUSIONS

Segregation patterns in experiments with size-bidisperse
granular materials in a 3D tumbler system can be predicted
from the corresponding Poincaré sections [25,32]. This is
remarkable and also puzzling because Poincaré sections are
wholly kinematic and depend only on the details of the mix-
ing protocol [23,31], whereas the dynamics of segregation
is driven by the characteristics of the granular mixture. The
apparent ability of Poincaré sections to predict segregated pat-
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(a) (b)

(c) (d)

FIG. 13. Segregation of density-bidisperse mixtures of lighter
[blue (dark gray)] and heavier [(red gray)] 2-mm-diam particles
in DEM simulations for the (57◦, 57◦) protocol at density ratios
(a),(b) Rρ = 3 and (c),(d) Rρ = 8. (a),(c) Bottom view of DEM
simulations at N = 30, and (b),(d) average concentration of lighter
particles for 25 � N � 35 for 0.97 � r � 1 (one-particle-diameter-
thick layer adjacent to the tumbler wall) indicates weak pattern
formation (color map as in Fig. 4, except for lighter particles).

terns was the genesis for the detailed investigation presented
in this paper to uncover how segregation interacts with non-
mixing islands in the flow. Details are important in revealing
the nature of the interaction, which we summarize here.

It is well understood that when a size-bidisperse mixture
is rotated in a tumbler, large particles tend to segregate to
the surface of the flowing layer and, consequently, deposit
in the bulk near the tumbler wall. However, the mechanism
that causes large particles to form the patterns observed on
the surface in experiment [32] was unclear. Here we have
used DEM simulations and continuum models to gain the
following understanding of BST segregation. Before initially
well-mixed size-bidisperse particles are tumbled, the proba-
bility of finding large and small particles in nonmixing regions
and chaotic regions is uniform and proportional to their rela-
tive volumes. However, once tumbling commences and radial
segregation ensues, large particles rise to the surface of the
flowing layer, which has two consequences. First, radial seg-
regation causes the large particles to deposit into the bulk
near the tumbler wall, which is where the nonmixing regions
(i.e., KAM tubes) predicted by the base flow are the largest
[see Fig. 1(b)]. Second, particles on the surface of the flowing
layer drift axially into nonmixing islands. Consequently, large
particles preferentially accumulate in (due to axial drift) and
at the top of (due to radial segregation) the three-dimensional
nonmixing regions. At the same time, small particles fall to
lower levels of the flowing layer due to radial segregation,
and thus tend to reside beneath the large-particle layer visible
at the tumbler wall in the bulk. The segregation pattern can
only be observed for large-particle concentrations less than

about 0.3 for a size ratio of 2. Otherwise, radial segregation
causes the entire tumbler wall and flowing layer surface to be
fully covered by large particles. Likewise, when nonmixing
islands are absent from the base flow, there are no regions for
particles to accumulate, and robust segregation patterns are
not observed; see, e.g., Fig. 11.

Direct support for this understanding of size-bidisperse
mixture segregation in the BST is provided by a modified
continuum model, which incorporates the local axial velocity
measured from particles in the top layer of the flowing layer
in DEM simulations (similar weak axial drift in monodisperse
particle flow was previously observed in single-axis rota-
tion of spherical tumblers [33,43,48]). While the continuum
model without axial drift predicts [27,28], and experiments in
monodisperse flows confirm [25], that the boundaries of non-
mixing regions are transport barriers, the modified continuum
model not only predicts material transport through the bound-
aries, but also that these nonmixing regions act as sinks that
draw material (specifically large particles at the surface of the
flowing layer) into them as observed in experiment [32] and
here in our DEM simulations. The axial drift, although quite
small compared to the streamwise flow, significantly changes
the dynamical system features and is a key component of the
segregation pattern formation. It is also important to note that
axial drift in the BST cannot currently be determined from
first principles (i.e., knowing only the mixture composition
and the tumbler diameter, rotation rate, and protocol) because
continuum models of the flow dynamics are not yet suffi-
ciently accurate.

We also consider another category of nonmixing behav-
ior, namely the global mixing barrier [25,32]. Instead of
separating nonmixing from chaotic regions, global mixing
barriers separate distinct chaotic regions. Evidence of par-
ticles confined to regions separated by these barriers for a
size-bidisperse system in experiment was reported, but not
previously understood [32]. Here we observe the same behav-
ior in DEM simulation, and we show using the MCM that
the mixing barrier is insensitive to axial drift perturbations of
the base flow. We speculate that global mixing barriers are
related to invariant ergodic subsets that have only recently
been described in the BST system [30].

Although the axial drift mechanism is sufficient to explain
the segregation patterns we observed, it is likely that other
effects are at play. These include large particles starting at
positions midway along the length of the flowing layer after
switching rotation axes, differences in how quickly the small
and large particles start and stop in the flowing layer at the
start and end of a rotation, respectively, variations in how
large and small particles are buried in the bulk after they
leave the flowing layer, and particle interactions with the
curved tumbler wall that can affect segregation patterns [48].
These mechanisms likely act simultaneously with the axial
drift mechanism in ways that may also affect the segregation
patterns.

The appearance of segregation patterns in biaxial spherical
tumbler flow, which is a relatively simple 3D tumbler geom-
etry, suggests that analogous segregation patterns can occur
in industrial mixers used in the pharmaceutical, chemical, and
agricultural processing industries. In these settings, the goal
is usually to avoid segregation and assure mixing, something
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that may be critical to the process. In attempts to effectively
mix granular components in industry, a variety of tumbler ge-
ometries are used, including V-blenders, double-cone blenders
[49], and dual-axis cylindrical tumblers [50,51]. However, the
results of this study suggest that using a 3D tumbler geometry,
even with multiaxis rotation, does not ensure mixing. In fact,
the combined effects of the velocity field (which can produce
nonmixing regions and transport barriers) and segregation
can result in surprising effects that may frustrate attempts at
mixing in 3D tumblers.
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APPENDIX A: THE CONTINUUM MODEL AND
MODIFICATION WITH AXIAL VELOCITY

In the original continuum model [23,25], particles flow
down the surface in a thin flowing layer that lies on top
of nonflowing particles in the bulk that move in solid-body
rotation with the tumbler. The flow is assumed to be two-
dimensional in planes perpendicular to the axis of rotation.
The flowing layer velocity is approximated by a constant shear
rate velocity profile. For rotation about any axis (the z-axis
here with x in the streamwise direction and y normal to the free
surface), the nondimensionalized velocity field u = (u, v,w)
is piecewise defined such that the flowing layer (0 � y � −δ)
velocity is

u f l = ((δ + y)/ε2, xy/δ, 0)

and the bulk (y < −δ) solid-body rotation velocity is

ub = (y,−x, 0).

The interface of the lenticular flowing layer with the bulk
is located at δ(x, z) = ε

√
1 − x2 − z2, where ε = δ(0, 0) =√

ω/γ̇ is the maximal dimensionless flowing layer depth for
shear rate γ̇ and angular rotation velocity ω. All variables are
dimensionless—lengths are normalized by the tumbler radius
Ro, and the rotation time is normalized by 1/ω. Note that
we assume the particles gain the velocity described above
immediately as the tumbler starts to rotate, and that they stop
moving instantaneously as the tumbler stops rotating. This
original continuum model, which includes the stretching char-
acteristic of chaotic flows [52], is parametrized by the flowing
layer depth ε, which is set to 0.15 to match the conditions
in the experiments (ω = 2.6 rpm) [25]. The same rotation
speed about both the x-axis and the z-axis is assumed, so that
εx = εz.

To add axial drift to the CM model, the mean local axial
velocity on a grid, vax(i, j), is obtained from DEM simulations
by averaging the axial velocity of each large particle in the
flowing layer on a 30 × 30 grid covering the flowing layer.
Each grid cell is about one large-particle diameter (dL) in both
the x and z directions. Large particles that travel for at least
half of the rotation action are tracked to exclude those that
are only briefly in the flowing layer (i.e., at the beginning or
end of the rotation). The tracking sequence starts with any

large particle that is within dL of the free surface, noting that
large particles readily segregate to near the free surface of the
flowing layer. The tracking sequence ends when the particle’s
streamwise velocity reverses sign, which corresponds to when
a particle deposits into the bulk. Axial velocities of particles
are recorded in each grid cell every 0.1 s, which corresponds
to 1.8◦ of tumbler rotation at the 3 rpm rotation rate, over the
entire tracking sequence (one flowing layer pass consists of
about 18–20 axial velocity measurements per large particle in
the flowing layer). The axial velocities are sampled over the
initial 15 iterations of the simulation before significant surface
segregation occurs for eight simulations with f = 0.15, and
then averaged in each grid cell.

The axial drift of the large particles is zero at the equator
and toward the poles on each side of the equator, until near
the poles where large particles move away from the poles,
since only small particles can sustain contact with the tumbler
wall in the thin flowing layer at the poles [48]. The maximum
magnitude of the axial drift is about one-half large-particle
diameter per pass through the flowing layer, which is some-
what smaller than that found previously [33], likely due to a
slower rotation speed and including all large particles in the
flowing layer rather than just those visible at the tumbler wall
in solid-body rotation.

Note that flow in the MCM is not strictly incompressible
because it only tracks large surface particles while neglecting
small subsurface particles that migrate axially in the opposite
direction. Nevertheless, the MCM allows us to quantitatively
illustrate the propensity for large-particle movement under the
influence of both the biaxial protocol and weak axial drift.
Including the measured axial velocity in the MCM changes
the w component of ufl from 0 to w = vax(i, j), where the
indices corresponds to the averaging region at the location of
the large particle.

Random-walk diffusion in the axial direction to mimic
the effects of collisional diffusion is included by adding
or subtracting the standard deviation of the axial velocity
in the corresponding grid cell, σax(i, j), with equal prob-
ability. In MATLAB, this is done using an integer random
number generator on the domain [1 2], as w = vax(i, j) +
c(−1)randi([1,2],1)σax(i, j), where c is a weighting term that
adjusts the strength of diffusion. The imposed diffusion is not
related to concentration gradient or other possible diffusion
mechanisms, such as Taylor dispersion. Although this modi-
fied continuum model is simple, it captures the major elements
of the flow dynamics, including advection by the streamwise
and axial velocities and diffusion.

APPENDIX B: PERIODIC POINTS AND MANIFOLDS
OF A DYNAMICAL SYSTEM

The stability of periodic fixed points, their associated
manifolds, and the interactions between unstable and stable
manifolds largely represent the global dynamics of a smooth
system [52]. Periodic fixed points are classified by the eigen-
values of the Jacobian matrix D� = ( ∂�i

∂x j
) for a period-n

mapping of �n(x) = x [23,53]. For the 3D volume-preserving
map studied here, the three eigenvalues have a product of
λ1λ2λ3 = 1. There is a null direction at each periodic point
providing a local invariant, corresponding to the eigenvalue of
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FIG. 14. DEM simulation of a size-bidisperse mixture in a spher-
ical tumbler rotating about the z-axis with angular speed ω = 3 rpm.
Particles cross the free surface in a thin flowing layer in the direction
indicated by the white arrow and slowly drift toward the poles due to
a weak axial velocity (see the main text).

1, λ1 = 1 [53]. An elliptic point has two eigenvalues that form
a complex conjugate pair with λ2 = λ3 and |λ2| = |λ3| = 1.
Therefore, they can be expressed in trigonometric form as
λ2,3 = cosφ ± i sinφ, where φ is related to the internal rota-
tion angle of the elliptic region surrounding the elliptic point.
A hyperbolic point has two real eigenvalues, λ2 = 1/λ3. Ma-
terial expands along the direction corresponding to eigenvalue
λ > 1, and it contracts along the direction corresponding to
eigenvalue λ < 1 [54]. The stable manifolds consist of all
points that converge to the hyperbolic point as the number
of iterations approaches infinity, while the unstable manifolds
consist of all points that converge to the hyperbolic point in
the reverse time. Therefore, the stable manifolds and unstable
manifolds can be traced by tracking points seeded on the cor-
responding eigenvectors in backward time and forward time,
respectively. The unstable manifolds are traced by tracking
points seeded on a short line segment of length 0.001Ro.
Positions of tracer points are recorded after every iteration,
and the resulting manifolds shown in Fig. 12(a) are trajecto-

ries of tracer points advected for 14 iterations. To maintain
a uniform density tracing in the presence of fast manifold
stretching, new points are back-inserted in intervals between
consecutive points that are 5 × 10−5 Ro apart or more after
each iteration.

APPENDIX C: DEM SIMULATION

Flows in the biaxial spherical tumbler are simulated using
the discrete element method (DEM) with frictional smooth
boundaries. Particles are modeled as rigid spheres, and their
collisions cause a slight overlap. Contact forces are computed
based on the relative overlap and velocity between contacting
particles. Thorough discussions of DEM simulations in dense
granular flows can be found in the literature, e.g., [55–58], and
further details of the methods used here are also described
elsewhere [45,46,59]. In brief, a linear-spring dashpot force
model is used for normal contacts between two particles:
Fn

i j = [knζ − 2γnmeff(Vi j · r̂i j )]r̂i j , where ζ and Vi j represent
the overlap and relative velocity, respectively, between two
contacting particles i and j. The unit normal vector is de-
noted by ri j , and the reduced mass is meff = mimj/(mi +
mj ). The normal stiffness kn and damping γn of the gran-
ular material are determined from the restitution coefficient
e and collision time tc by kn = [(π/tc)2 + γ 2

n ]meff and γn =
− ln(e)/tc. Tangential contact forces are modeled using a hy-
brid Coulomb-like friction approach that models static friction
with a spring and sliding friction in the standard way: Ft

i j =
min(|ktβi j + 2γtmeff(Vi j × r̂i j )|, μ|Fn

i j |)sgn(β )ŝi j , where the
tangential stiffness is kt = 2

7 kn. The tangential displacement
βi j is defined as βi j = ∫ t

ts
Vi j × r̂i jdt , where ts is the ini-

tial contact time. The restitution coefficient e is set to 0.87,
and friction coefficients μ are 0.6 for particle-particle and
particle-wall contacts. In all cases unless specifically noted,
the spherical tumbler of radius Ro = 7 cm is half-filled with a
size-bidisperse mixture of d = 4 and 2 mm particles of density
ρ = 2500 kg m−3. The fractional volume of large particles,
f , relative to the total particle volume is varied from 0 to 1.
The spherical tumbler is rotated at 3 rpm, which is close to
the value of 2.6 rpm in corresponding experiments [25,32]. A
rendering of a DEM simulation in the spherical tumbler with
a size-bidisperse mixture is shown in Fig. 14.
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