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Instability and rupture of ultrathin freestanding viscoelastic solid films
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We analyze the instability of viscoelastic solid freestanding thin films under the influence of van der
Waals forces using linear stability analysis and nonlinear simulations. Linear stability analysis shows that the
zero-frequency elastic modulus governs the onset of instability and stabilizes the film beyond a critical value
analogous to thin supported viscoelastic solid films. However, for freestanding solid films, the critical shear
modulus is found to be independent of surface tension, unlike that of thin supported viscoelastic solid films.
It is further shown that freestanding viscoelastic solid films with higher moduli can be destabilized for a given
film thickness and Hamaker constant compared to supported solid films. In contrast to thin viscoelastic liquid
films where the growth rate is enhanced due to elastic effects but length scale is unaltered, freestanding films
with solidlike viscoelasticity show a retarded growth rate and enhanced length scale. The presence of solidlike
viscoelasticity has a stabilizing effect and affects all the key aspects of instability such as critical wave number,
dominant wave number, and maximum growth rate. We numerically solve the set of coupled nonlinear evolution
equations for film thickness and tangential displacement in order to elucidate the dynamics of film rupture. Our
simulations show that, consistent with the linear stability predictions, an increase in the elastic modulus delays
film rupture. The dynamics exhibits self-similarity in the vicinity of film rupture and the film thins as (tr − t )3/4,
where tr is the rupture time and tr − t is the time remaining until film rupture. The scaling exponent 3/4 obtained
for a thin freestanding viscoelastic solid film is significantly greater than the scaling exponent (1/3) for a thin
freestanding viscous film.
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I. INTRODUCTION

Understanding the instability and dynamics of thin films
has received considerable attention owing to its relevance in
microfabrication, functional coatings, lab-on-a-chip devices,
adhesives, foams and emulsions, etc., and this research area
has been extensively reviewed [1–3]. In the biological realm
[4–6], stability or integrity of thin films is of interest in con-
texts such as tear film in the eye [7] and in epithelial layers
of the organs [8]. The body of literature that focused on the
instability of thin (<100 nm) films can be broadly classified
into two categories: thin films resting on a solid substrate
(asymmetric or supported films) and thin films bounded by
an inviscid fluid (symmetric or freestanding films). Derjaguin
[9] first recognized that thin films possess an excess dis-
joining pressure compared to a bulk liquid. Scheludko [10]
proposed that a negative disjoining pressure in the film drives
the flow from thinner regions to thicker regions resulting in
amplification of interfacial perturbations and film rupture. Vrij
[11] calculated the time of rupture and critical thickness of a
nondraining freestanding thin liquid film under the influence
of van der Waals forces. Ruckenstein and Jain [12] augmented
the Navier-Stokes equations with an additional body force
term due to van der Waals interactions to study the rupture
of both supported and freestanding thin viscous films using
linear stability theory within the lubrication approximation.

*Corresponding author: vshankar@iitk.ac.in

Sharma and Ruckenstein [13] investigated the stability of
thin viscous supported and freestanding films subjected to fi-
nite amplitude perturbations, i.e., for disturbances with height
fluctuations comparable to film thickness.

Linear stability analysis with respect to infinitesimal per-
turbations is valid only during the initial stage of film rupture,
and as the disturbances grow, nonlinearities accelerate the film
rupture, which necessitates a more general computational ap-
proach to capture the dynamics of film rupture. For thin films,
deformations happen on a very large length scale compared
to the film thickness, which allows for the use of lubrica-
tion approximation to simplify the governing Navier-Stokes
equations and boundary conditions in deriving the nonlinear
evolution equations. Williams and Davis [14] numerically
solved the nonlinear evolution equation for film thickness (de-
rived within the long-wave limit for supported Newtonian thin
films) and predicted much shorter rupture times than those
inferred from linear stability analysis.

Unlike supported films, freestanding films possess two
stress-free interfaces which diminish the viscous resistance to
flow [6]. Two different modes of deformation are exhibited
by thin free liquid films: squeezing-peristaltic-varicose mode
in which the fluctuations in film thickness are symmetric
around the centerline, and bending-undulating-sinuous mode
in which the film thickness is constant. The squeezing mode
leads to the thinning of the film and causes film rupture.
Erneux and Davis [15] proposed a different long-wave scal-
ing for a pure freestanding viscous film and obtained a pair
of coupled nonlinear evolution equations for film thickness
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and tangential velocity in which the nonlinear contributions
of inertial and unsteady terms from the Navier-Stokes equa-
tions are retained at higher order in the analysis. The inclusion
of inertial or unsteady terms was necessitated because in their
absence the length scale of the most unstable mode is infinite
in an unbounded system. De Wit et al. [16] extended this
nonlinear approach to study the stabilizing effect of insoluble
surfactants on the rupture of freestanding liquid films and
derived three coupled evolution equations for the film thick-
ness, tangential velocity, and surfactant concentration and
compared the results with supported liquid films with insol-
uble surfactants. Their linear stability results show a smaller
critical wavelength for a freestanding film than for a supported
film. They have also carried out numerical simulations of both
systems and showed that supported films need a larger magni-
tude of van der Waals forces in order to induce the rupture than
freestanding films. Sharma et al. [17] analyzed the weakly
nonlinear evolution of a thin freestanding viscous film devoid
of surfactants and numerically solved the set of evolution
equations of Erneux and Davis [15] to study the effect of
nonlinearities on stability and rupture. Matar [18] examined
the influence of soluble surfactants on the dynamics of the
rupture of thin freestanding films under the influence of van
der Waals forces and has shown through linear stability and
nonlinear simulations that instability of the film is promoted
by an increase in the degree of surfactant solubility. Lenz and
Kumar [19] studied the van der Waals-driven instability of the
interior film in a trilayer liquid film system that is confined
in a channel with parallel walls, using linear stability analysis
and nonlinear simulations. Their results show that a squeezing
mode is always a preferred mode of evolution in symmetric
configurations, whereas in asymmetric configurations initial
growth of instability is dominated by a bending mode of
evolution and the squeezing mode takes over close to film
rupture.

The aforementioned theoretical studies deal with the sta-
bility of rheologically simple, viscous thin liquid films. There
has also been considerable amount of research interest to
understand the dynamics of thin viscoelastic films. Sathyagal
and Narasimhan [20] presented a linear stability analysis to
study the rupture of the thin inelastic non-Newtonian power-
law liquid film with immobile interfaces under the influence
of van der Waals interactions. Tomar et al. [21] investigated
the instability and rupture of the Jeffreys-type viscoelastic
liquid supported film using linear stability and nonlinear
simulations. Their results show that liquidlike viscoelastic-
ity merely accelerates the growth rate without affecting the
length scale of instability. Sarkar and Sharma [22] presented
a general unified theory of field-induced instabilities in thin
viscoelastic films. They observed that unlike purely viscous
films which are unconditionally unstable for any small desta-
bilizing interaction potential, viscoelastic solid thin films are
unstable below a critical film thickness or above critical field
strength. The instability, in this case, occurs between two neu-
tral wave numbers and the region of instability shrinks with
an increase in elasticity without affecting the dominant wave
number. Further, Patra et al. [23] investigated the instability
engendered by van der Waals forces in thin linear viscoelas-
tic solid films using linear stability analysis and nonlinear
simulations.

Barra et al. [24] studied the nonlinear evolution of thin
Jeffreys viscoelastic film on a solid substrate and investigated
the effects of relaxation and retardation characteristic times
and the slip coefficient on the dynamics and final configura-
tion of the fluid. Their results show that the length scale of
instability is affected neither by rheological parameters nor
by slippage coefficient, but all these parameters influence the
timescale of instability wherein the maximum growth rate is
increased by increase in either relaxation time or slip length
but is decreased with the increase in retardation time. Bazzi
and Carvalho [25] studied the effect viscoelastic properties of
polymer solutions on the stability of a thin freestanding liquid
sheet through linear stability analysis and nonlinear simula-
tions and found that the rheological behavior has a strong
effect on the growth rate of the disturbance and consequently
on the film breakup time. Henkel et al. [26] developed a
long-wave model to capture the dynamics of a liquid drop on
an elastic substrate.

Slippage considerably influences the instability and dy-
namics of thin films [24,27–36]. The majority of the studies
on thin viscous [7,12,14] or viscoelastic [21–23] supported
films assume that the film is rigidly bonded to the substrate
and employ the no-slip boundary condition. However, sub-
strates which are modified with coatings of self-assembled
monolyers [37] or through any surface-grafting techniques
[38] provide slip lengths on an order of microns for films
with thickness of few tens of nanometers [33,39]. Sippage
effects are often incorporated using a Navier-slip boundary
condition. Münch et al. [29] theoretically investigated the
dewetting behavior of fluids on hydrophobic substrates using
lubrication models for a wide range of slip lengths. They
found that the rim profiles become very asymmetric in the
strong-slip regime, which are otherwise symmetrical in the
no-slip and weak-slip regimes. Rauscher et al. [30] explored
the influence of slippage on the dispersion curves and showed
that the position of the maximum shifts towards smaller
wave numbers for increasing slip length in the strong-slip
regime. Xu et al. [35] followed an experimental cum the-
oretical approach to analyze the dynamics of slipping films
by modulating the slippage at the confined interface in a
PMMA-PS bilayer system. Their experimental findings and a
general linear stability analysis reveal that the slip-dominated
noncircular morphologies possess a larger interhole spacing
than similar nonslipping systems. The experimental study of
Lessel et al. [34] on the dewetting of polymeric films on
lower-energy substrates shows enhanced dewetting dynamics
due to presence of strong slip and the film breakup is consis-
tent with the behavior observed in freestanding films.

A freestanding elastomeric film is a case of diverging slip
length, and in this article the limiting case of a freestand-
ing viscoelastic solid film is explored. In an earlier study
[40], we have carried out a general linear stability analysis
of thin freestanding viscoelastic films under the influence of
attractive van der Waals forces for different rheologies. In
this study, we adopt the approach of Erneux and Davis [15]
for the case of a thin freestanding viscoelastic solid film and
derive a set of coupled nonlinear equations for the evolution of
film thickness and tangential displacement. A linear stability
analysis of these nonlinear evolution equations is performed.
The dynamics of film rupture is studied through nonlinear
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FIG. 1. Schematic representation of an undulating thin free-
standing viscoelastic solid film. The dash-dotted line represents the
origin of the Cartesian coordinate system, and the film is symmetric
around this line. The upper and the lower deforming interfaces of
the freestanding film are located at ẑ = ĥ+(x̂, t̂) and ẑ = ĥ−(x̂, t̂),
respectively. The dashed lines represent the mean positions of the
deforming interfaces at ẑ = ±ĥ0/2.

simulations. The remainder of this article is organized as
follows. A theoretical model of the freestanding solid film is
presented in Sec. II. Nondimensional scaling, coupled evo-
lution equations of freestanding film in the long-wave limit,
and the details of numerical solution methodology are given in
Sec. III. A long-wave dispersion relation is obtained in Sec. IV
by linearizing the coupled evolution equations. Section V
discusses the results obtained from the linear stability analysis
and numerical simulations. A brief summary of the findings
from the present study is given in Sec. VI. The details of the
derivation of the coupled nonlinear evolutions are provided in
the Appendix.

II. THEORETICAL MODEL

Figure 1 shows the schematic of a thin freestanding vis-
coelastic film of mean thickness ĥ0, bounded by a nonviscous
medium on either side. The two free surfaces of the film
are located at ẑ = ĥ±(x̂, t̂) which undulate around their mean
positions at ẑ = ±ĥ0/2. Thus, the instantaneous film thickness
is given by ĥ∗(x̂, t̂ ) = ĥ+(x̂, t̂ ) − ĥ−(x̂, t̂ ). A two-dimensional
Cartesian coordinate system (x̂, ẑ) is employed to formulate
the present theoretical analysis as shown in Fig. 1. We assume
that the film is symmetric in the ẑ direction around the center-
line. In the following formulation, the variable t̂ represents
time. Boldface variables denote vector quantities, whereas
boldface Greek letters denote tensor quantities. The variables
with subscripts represent partial differentiation with respect to
the subscripted variable, and the over-dot represents the time
derivative.

We consider the film to be a zero-frequency incompressible
linear viscoelastic solid. The constitutive relation of the film
is given by

τ̂ = Ĝ(∇̂û + ∇̂ûT ) + μ̂(∇̂ ˙̂u + ∇̂ ˙̂u
T
), (1)

where a hat denotes a dimensional quantity, and the nota-
tions τ̂, û = (û, ŵ), Ĝ, and μ̂ represent the stress tensor,
displacement vector, shear modulus, and viscosity of the film,
respectively. Here û and ŵ, respectively, represent x̂ and ẑ
components of the displacement vector. Equation (1) repre-
sents a Kelvin-Voigt model, which is a linear combination of a
Hookean elastic spring and a Newtonian dashpot connected in
parallel. Materials such as cross-linked PDMS deforming to a
steady-state strain under a constantly applied stress gradually

relax to the undeformed state upon removal of stress, with
a characteristic timescale determined by the ratio of moduli
(μ̂/Ĝ), and can be described using Eq. (1). This constitutive
relation is capable of capturing the interfacial deformations
of such materials under the exposure of intermolecular forces
or an electrostatic field [23,41,42]. Such instabilities are often
within the realm of the small-deformation approximation and
well within the limit of linear stability analysis. The nonlinear
simulations presented in the present study focus on the in-
terfacial deformations in the long-wave limit, and the present
approach should serve the purpose.

In thin films, van der Waals forces become a dominant
body force in comparison to gravitational forces. The dynam-
ics of such films can be expressed using the following mass
and momentum conservation equations:

∇̂ · û = 0, (2)

ρ̂
D ˙̂u
Dt̂

= −∇̂ p̂ + ∇̂ · τ̂. (3)

Here the notation p̂ = p̂∗ + φ̂ is the total pressure, where p̂∗
is the pressure in the solid and φ̂ is the conjoining pressure.
We enforce symmetry boundary conditions at the centerline
(ẑ = 0) i.e., a zero normal displacement condition and zero
tangential displacement gradient,

ŵ = 0, ûẑ = 0. (4)

At the film-air interfaces (ẑ = ĥ±), tangential and normal
stress balances are used as boundary conditions along with the
kinematic conditions for the free interfaces,

t̂ · τ̂ · n̂ = 0, (5)

−p̂∗ + n̂ · τ̂ · n̂ = ±γ̂ κ̂, (6)

˙̂h± + ˙̂u · ∇̂ĥ± = ˙̂w. (7)

Here γ̂ and κ̂ are the surface tension and the curvature
of the free surface, respectively. The surface tension γ̂ is
assumed to be constant, and thus the shear stresses on the
interface vanish. The curvature of the free surface is given
by κ̂ = ∇̂ · n̂. The symbols n̂ and t̂ are the unit outward
normal and tangential vectors, which are defined as n̂ =
[∇̂(ẑ − ĥ±)/|∇̂(ẑ − ĥ±)| ] and n̂ · t̂ = 0.

The disjoining-conjoining pressure φ̂ in the total pressure
p̂ = p̂∗ + φ̂ is the excess pressure arising due to attractive van
der Waals interactions, which is obtained from the gradient of
interaction energy per unit area of the film as shown below:

φ̂ = ∂ (�Ĝ)

∂ ĥ∗ = Â

6π ĥ∗3
− 8B̂

ĥ∗9
. (8)

Here Â is the Hamaker constant, and B̂ is the Born repulsion
coefficient, which is introduced to remove the singularity at
extremely small thicknesses of the film. The expression for
Born repulsion coefficient is obtained by exploiting the mini-
mum free energy condition [φ̂(l̂0) = 0] at the cutoff distance
l̂0 ∼ 0.137 nm [43–45]. We consider the squeezing mode of
film deformation, with the interfacial deformation being sym-
metric about the centerline (i.e., ĥ+ = ĥ−). The analysis can
therefore be simplified by considering the domain 0 � ẑ �
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ĥ+. Henceforth, the half-film thickness ĥ+(x̂, t̂ ) is written as
ĥ(x̂, t̂ ). The intermolecular potential φ̂ in terms of the half-
film thickness after incorporating the Born repulsion term is
given as [44]

φ̂ = Â

6π (2ĥ)
3

[
1 −

(
l̂0
2ĥ

)6]
. (9)

III. LONG-WAVE APPROXIMATION

A. Scales for nondimensionalization

The governing equations and the boundary conditions
presented in Sec. II are made dimensionless using the
following scales: length (or displacement) ∼ĥ0, time
∼ρ̂ĥ2

0/μ̂, velocity ∼μ̂/ρ̂ĥ0, surface tension ∼μ̂2/ρ̂ĥ0, and
shear modulus and pressure ∼μ̂2/ρ̂ĥ2

0. The nondimensional
variables or parameters employing the above scales are
(h, h±) = (ĥ, ĥ±)/ĥ0, (x, z) = (x̂, ẑ)/ĥ0, (u,w) = (û, ŵ)/ĥ0,
l0 = l̂0/ĥ0, t = t̂μ̂/ρ̂ĥ2

0, (u̇, ẇ) = ( ˆ̇u, ˆ̇w) ρ̂ĥ0/μ̂, γ =
γ̂ ρ̂ĥ0/μ̂

2, G = Ĝρ̂ĥ2
0/μ̂

2, (p, p f , φ) = ( p̂, p̂ f , φ̂) ρ̂ĥ2
0/μ̂

2,
and A = Âρ̂/(6πμ̂2ĥ0).

B. Coupled evolution equations within
the long-wave approximation

For deformations occurring over a length scale much larger
compared to the mean film thickness, the complete set of gov-
erning equations and boundary conditions can be simplified
using lubrication approximation [2,12]. To this end, a small
parameter ε = 2π ĥ0/λ̂ is introduced, wherein λ̂ is the charac-
teristic long length scale of the instability, which is obtained
by balancing the surface tension forces with intermolecular

attractive interactions to yield λ̂ = [6π (ĥ0)
4
γ̂ /Â]1/2. We use

the long-wave scaling introduced by Erneux and Davis [15] in
the context of viscous freestanding films:

X = εx, Z = z, T = ε2t,

U̇ = ε−1u̇, Ẇ = ε−2ẇ, P = ε−2 p, � = ε−2φ,

H = h, � = γ , Ḡ = ε−2G, Ā = ε−2A. (10)

This long-wave scaling enables us to retain the unsteady or
inertial terms in the governing equations of thin freestanding
films [15–17], whereas those terms are asymptotically small
when the governing equations are scaled employing the scal-
ing used for supported films [14].

The nondimensional governing equations and boundary
conditions are scaled using the above long-wave scaling given
by Eq. (10). The governing equations in terms of the scaled
variables are as follows:

UX + WZ = 0, (11)

ε2(Ü + U̇U̇X + ẆU̇Z )

= −ε2(P + �)X + Ḡ(ε2UXX + UZZ ) + (ε2U̇XX + U̇ZZ ),

(12)

ε2(Ẅ + U̇ẆX + ẆẆZ )

= −(P + �)Z + Ḡ(ε2WXX + WZZ ) + (ε2ẆXX + ẆZZ ). (13)

The boundary conditions in terms of the scaled variables are
as follows. The symmetry conditions at the center line Z = 0
are

UZ = W = 0. (14)

The tangential, normal stress balances, and kinematic equa-
tion at Z = H (X, T ) are(

1 − ε2H2
X

)
[Ḡ(UZ + ε2WX ) + (U̇Z + ε2ẆX )]

+ 2ε2HX [Ḡ(WZ − UX ) + (ẆZ − U̇X )] = 0, (15)

− P + 2
(
1 + ε2H2

X

)−1{(
1 − ε2H2

X

)
(ḠWZ + ẆZ )

− HX [Ḡ(UZ + ε2WX ) + (U̇Z + ε2ẆX )]
}

− �HXX
(
1 + ε2H2

X

)− 3
2 = 0, (16)

Ḣ + U̇HX − Ẇ = 0. (17)

The following perturbation expansion for U , W , and P is
introduced in the scaled governing equations and boundary
conditions [Eqs. (11)–(17)]:

(U,W, P) = (U0,W0, P0) + ε2(U1,W1, P1) + · · · . (18)

Note that we have not shown the expansion of the dynamical
variable H (the interfacial deflection) because only the leading
order contribution to H is required in the present analysis. A
pair of coupled nonlinear evolution equations (19) for the
half-film thickness and the longitudinal displacement of a thin
freestanding viscoelastic solid film are obtained by carrying
out a higher order O(ε2) analysis of equations of motion. The
following set of coupled nonlinear equations can be derived
(details given in the Appendix) for the evolution of film thick-
ness and longitudinal displacement:

ḣ + (hu̇)x = 0, (19a)

h(ü + u̇u̇x + φx − γ hxxx ) = 4[(hu̇x )x + G(hux )x]. (19b)

C. Nonlinear simulations

The two coupled nonlinear evolution equations for
freestanding film thickness and longitudinal displacement
[Eqs. (19)] are discretized using a central difference scheme
with half-node interpolation. The resulting set of stiff coupled
ordinary differential equations are solved in time, at each grid
point, using Gear’s algorithm (using the D02EJF subroutine
of NAG library). Periodic boundary conditions are used at
the domain boundaries. Initial condition for the film thick-
ness h(x, t ) was given as a periodic perturbation with small
amplitude around the dimensionless mean half-film thickness,
whereas zero tangential displacement is imposed as the initial
condition for u(x, t ) at all the grid points. Simulations are car-
ried out in a domain sufficiently larger than the wavelength of
the fastest growing disturbance. The domain size was chosen
as a multiple of λ = λm, obtained from the linear stability
analysis. The grid independence of the solutions is ensured by
varying the number of grid points. Our code is benchmarked
with an earlier work [17] on the nonlinear stability of ultrathin
freestanding viscous films, as discussed in Sec. V.
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TABLE I. Expressions of kc, km, and ωm for different thin films.

Type of thin film kc km ωm

Freestanding viscoelastic solid film
(

6A−8 G
γ

) 1
2

[
(3A−4G)(γ−2

√
2γ )

γ (γ−8)

] 1
2 (3A−4G)(−4+√

2γ )
2(γ−8)

Freestanding viscous film
(

6A
γ

) 1
2

[
3A(γ−2

√
2γ )

γ (γ−8)

] 1
2 3A(−4+√

2γ )
2(γ−8)

Supported viscoelastic solid film
(

3A±
√

9A2−4 γ G

2γ

) 1
2 (

3A
2γ

) 1
2

(
9A2

4γ

)
− G

IV. LINEAR STABILITY ANALYSIS

An initially steady viscoelastic film with constant half-film
thickness h = 1

2 is subjected to an infinitesimal disturbance
(denoted by primed quantities) of the form (u, h) = (0, 1

2 ) +
(u′, h′). The following set of linearized coupled evolution
equations are obtained upon introducing these forms in
Eqs. (19):

ḣ′ + 1

2
u̇′

x = 0, (20a)

ü′ + φh h′
x − γ h′

xxx − 4(G u′
xx + u̇′

xx ) = 0. (20b)

In the linear stability analysis φh is evaluated at the base state,
which is given as φh = −6A. We introduce normal modes for
h′ and u′ as follows:

(h′, u′) = (h̃′, ũ′) eωt+ikx. (21)

Here k is the wave number of perturbations, and ω is the
growth rate, with the system being unstable if Re(ω) > 0.
Substituting the normal modes in the linearized evolutions
[Eqs. (20)], we obtain the following dispersion relation:

ω2 + 4k2(ω + G) + 3

2
k2

(
γ

3
k2 − 2A

)
= 0. (22)

In the dispersion relation, Eq. (22), the last term represents
the destabilizing intermolecular interaction force, while the
third and the fourth terms are due to the stabilizing elasticity
and surface tension of the film, respectively.

The critical wave number kc is defined such that for 0 <

k < kc the system is unstable ω(k) > 0 and ω(kc) = 0. In
the unstable domain, the wave number corresponding to the
maximum growth rate is referred to as the dominant wave
number km. The expressions for kc, km, and ωm for a thin
freestanding viscoelastic film are given in Table I along with
the corresponding expressions for thin supported viscoelastic
film and thin viscous freestanding film, which are obtained
from the long-wave dispersion relations given in the literature
[17,23].

From Table I, we can see that the critical wave number
of a thin freestanding viscoelastic solid film is always less
than that of a thin viscous freestanding film, which indi-
cates the shrinkage in instability domain of the former film.
Similarly, we can observe that the dominant wave number
of a thin freestanding viscoelastic solid film shifts towards
longer wavelengths as the elasticity of a freestanding film
increases. In the asymptotic limit of zero shear modulus, the
analytical expressions for kc, km, and ωm of a thin freestanding
viscoelastic solid film reduce to the corresponding analytical
expressions of a thin freestanding viscous film. The presence

of solidlike viscoelasticity exerts a stabilizing influence on the
freestanding film and also governs the onset of instability.

The striking difference between thin supported and free-
standing viscoelastic films is that in the former case the
instability zone is enclosed between two critical wave num-
bers, and in the latter case there exists a single critical wave
number similar to the dewetting of thin viscous supported
films or thin viscous freestanding films. For a supported zero-
frequency viscoelastic solid film, Patra et al. [23] showed that
the dominant length scale of instability is influenced neither
by viscosity nor by shear modulus but by the surface tension
and the film thickness, which is evident from the dominant
wave number km expression in Table I. However, for a thin
freestanding viscoelastic solid film, the dominant wavelength
is also a function of shear modulus and viscosity in addition
to surface tension and film thickness. There exists a critical
shear modulus in both freestanding and supported viscoelastic
films below which the instability is predicted for a given film
thickness.

Tomar et al. [21] showed that liquidlike viscoelasticity
of Jeffrey’s type does not alter the dominant length scale of
instability but aids in accelerating the growth rate. In contrast,
the solidlike viscoelasticity for a freestanding film enhances
the dominant length scale of instability and retards the growth
rate as will be discussed in the linear stability results presented
in Sec. V. The dominant wavelength of instability is given as
λm = 2π/km. Similarly, for a perturbation of amplitude δ, the
linear theory gives the rupture time as tr = (1/ωm ) ln(1/2δ).

V. RESULTS AND DISCUSSION

A. Linear stability results

Sharma et al. [17] have shown the variation of growth rate
with wave number of a viscous freestanding film in which
the retention of an unsteady term [the term proportional to
ω2 in Eq. (22)] in the long-wave dispersion relation leads to
the existence of a dominant wave and the omission of which
causes the monotonous decrease of growth coefficient with
wave number [12]. We first validate our formulation by con-
sidering the limit of a purely viscous film, which is obtained
by setting G = 0 in the dispersion relation given by Eq. (22).
Figure 2(a) shows the ω vs k plot in the asymptotic limit of
zero shear modulus, which matches with the result of Sharma
et al. [17] for a thin viscous freestanding film (kc = 0.0245,
km = 0.0078) for the given set of parameters. Figure 2(b)
shows ω vs k curves of a thin freestanding viscoelastic solid
film at different values of G (curves 1–4). In this plot, it can
be seen that the domain of instability gradually shrinks as G
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FIG. 2. Linear stability results of thin freestanding and supported viscoelastic solid films. (a) ω vs k curve for a thin freestanding
viscoelastic solid film in the asymptotic limit of zero shear modulus (symbols) which matches the ω vs k curve of a thin freestanding
viscous film (solid line). (b) ω vs k curves of a thin freestanding viscoelastic solid film. Curves 1–4 correspond to G = 1 × 10−5, 2 × 10−5,
3 × 10−5, and 3.98 × 10−5, respectively. The dimensional parameters used in (a) and (b) are ĥ0 = 10 nm, γ̂ = 0.0528 N/m, μ̂ = 10−3 Pa s, and
Â = 10−20 J. (c) ω vs k curves of a thin supported viscoelastic solid film. Curves 1–4 correspond to G = 0.8 × 10−11, 2.5 × 10−11, 3.3 × 10−11,
and 4.1 × 10−11, respectively. The dimensional parameters used in (c) are ĥ0 = 4 nm, γ̂ = 0.03 N/m, μ̂ = 0.1 Pa s, and Â = 10−20 J.

is increased (curves 1–3). At a certain value of G, the film
becomes stable for all the wave numbers (curve 4) and the
instability ceases to exist beyond this critical value of G. It
can be observed from Fig. 2(b) that incorporating solidlike
viscoelasticity affects all the key aspects of the instability such
as the cutoff wave number, dominant wave number, and max-
imum growth rate. Figure 2(c) shows ω vs k dispersion curves
of thin supported viscoelastic solid film, which are obtained
using the long-wave dispersion relation given by Patra et al.
[23]. Unlike freestanding solid films, supported solid films
exhibit a finite wave number instability. Cross and Hohenberg
[46] classified instabilities into different types, according to
the nature of linear instability. The instability exhibited by
thin supported viscoelastic solid films falls into the category
of type I instability in the Cross-Hohenberg classification,
whereas the instability exhibited by thin freestanding vis-
coelastic solid films falls into type II category. The effect of
elasticity on the instability of supported viscoelastic solid film
is depicted in Fig. 2(c) by plotting the dispersion curves at
progressively increasing values of G (curves 1–4). At smaller
values of G, curves 1 and 2 lie in the unstable zone and exhibit
a band of wave numbers between which the film is unstable. In
curve 3, the unstable band of wave numbers reduce to a single
wave number (which is also the dominant wave number),
where the stabilizing (capillary and elastic) and destabilizing
(intermolecular) forces exactly balance. Further increase in

G beyond this critical value makes the film stable to all the
wave numbers as shown in curve 4. The critical shear modulus
(obtained by setting ωm = 0 in the expression given in Table I)
of a thin freestanding viscoelastic solid film below which
instability exists is obtained to be Gc = 3A/4. Similarly, the
critical shear modulus of a thin supported viscoelastic solid
film [23], is given as Gc,supp = 9A2/4γ below which the film
is unstable. The critical shear modulus of a thin freestand-
ing viscoelastic solid film is independent of surface tension,
unlike the corresponding supported film. For a given set of
parameters, the critical shear modulus of a thin freestanding
viscoelastic solid film is much larger than that of a supported
solid film. This indicates that relatively harder freestanding
viscoelastic films can be destabilized for a given film thick-
ness. In other words, for a given shear modulus relatively
thicker freestanding viscoelastic films can be destabilized in
comparison with the supported films.

Figure 3 shows the variation of dominant wavelength λm

and maximum growth rate ωm of a thin freestanding viscoelas-
tic solid film with film thickness, surface tension, and shear
modulus. These parameters are varied one at a time in each
plot keeping the remaining parameters constant. In Figs. 3(a)–
3(c), the dashed lines show the variation of λm and the solid
lines show the variation of ωm with the specific parameter
being studied in the plot. Figure 3(a) shows the variation of
λm and ωm with A. The parameter A can be increased either
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FIG. 3. Effect of various parameters on the dominant wavelength and maximum growth rate of a thin freestanding viscoelastic film.
(a) Variation of λm and ωm with A. (b) Variation of λm and ωm with γ . (c) Variation of λm and ωm with G. Â = 10−20 J and μ̂ = 10−3 Pa s are
common parameters in all the plots. The other three-dimensional parameters (ĥ0 = 10 nm, γ̂ = 0.03 N/m, Ĝ = 100 Pa) are varied one at a
time in each plot, keeping the remaining two parameters constant. In (a)–(c) the dashed lines show the variation of λm, and the solid lines show
the variation of ωm.

by increasing the strength of intermolecular forces (Hamaker
constant) or by reducing the film thickness. In Fig. 3(a) the
Hamaker constant is kept constant and only the film thickness
is varied. It can be seen that dominant wavelength decreases,
and growth rate increases with increase in A, which indicates
the strengthening of the instability with the decrease in the
film thickness. As the film thickness is gradually increased
(A is decreased), the dominant wavelength diverges and the
maximum growth rate drops to zero upon approaching the
critical film thickness. Thus, the instability ceases to exist
beyond this critical film thickness. Figure 3(b) shows the
variation of λm and ωm with the variation in γ . The stabilizing
effect of surface tension is evident from the increase in the
dominant wavelength and decrease in the maximum growth
rate with increase in the surface tension. Figure 3(c) shows
the variation of λm and ωm with G. With an increase in G,
the dominant wavelength increases, and it diverges as Gc

is approached. Here ωm decreases linearly with an increase
in G and drops to zero at G = Gc. Thus, the solidlike vis-
coelasticity has a stabilizing effect on the instability of thin
freestanding viscoelastic solid film, and it also governs the
onset of the instability.

Figure 4 compares the dominant wavelength and maximum
growth rate of a thin freestanding viscoelastic solid film with
that of a thin freestanding viscous film. In Figs. 4(a) and 4(b)
the dashed and solid lines correspond to the thin freestanding
viscous and viscoelastic films, respectively. In Fig. 4(a) the

dominant wavelength of a thin freestanding viscoelastic film
is plotted as a function of G. Here the shortest dominant wave-
length occurs at G = 0, which coincides with the dominant
wavelength of a thin freestanding viscous film. The dominant
wavelength increases with an increase in G and it diverges
as we approach the critical value Gc. This is in contrast to
supported viscoelastic films, where the dominant wavelength
is unaltered with changes in the elastic modulus. Similarly,
Fig. 4(b) shows that a thin freestanding viscoelastic solid
film has the highest maximum growth rate at G = 0. Here
the maximum growth rate decreases linearly with the shear
modulus, which becomes zero at G = Gc Thus, the solidlike
viscoelasticity retards the growth of the instability of a thin
freestanding viscoelastic film.

A bifurcation diagram separates the instability region into
stable and unstable zones in the kc-G plane. The region inside
the curve is an unstable zone, and the region outside the curve
is a stable zone. Figure 5 compares the bifurcation diagrams
of freestanding and supported viscoelastic films having same
film thickness for different values of surface tension. Fig-
ure 5(a) shows the variation of kc with G of a thin freestanding
viscoelastic solid film. The critical wave number kc decreases
with an increase in G and becomes zero at G = Gc. Curves
1–3 correspond to different surface tension values. It is evident
from this plot that larger capillary forces diminish the region
of instability but do not affect the critical shear modulus Gc,
of a thin freestanding viscoelastic solid film. In the unstable
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FIG. 4. Comparison of dominant wavelength and maximum growth rate of thin freestanding viscoelastic film with that of thin viscous
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region, unlike a thin freestanding viscoelastic solid film which
has a single critical wave number for a given value of G,
Fig. 5(b) shows that a supported solid film has two critical
wave numbers between which the instability manifests. As
the value of G is increased, at one point these two critical
wave numbers merge to a single critical wave number corre-
sponding to the dominant wave number. Unlike freestanding
solid films, an increase in the strength of capillary forces not
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FIG. 5. Bifurcation diagrams of thin freestanding and supported
viscoelastic solid films for different values of surface tension. (a) and
(b) Variation of kc with G for a thin freestanding viscoelastic film
and thin supported viscoelastic, film respectively. Curves 1–3 in both
plots correspond to γ̂ = 0.01, 0.02, and 0.03 N/m, respectively. The
other parameter values are ĥ0 = 5 nm and Â = 10−20 J.

only diminishes the region of instability but also decreases
the critical shear modulus in supported solid films. Thus, for
a freestanding solid film, Gc depends only on the strength
of the destabilizing van der Waals interactions and the film
thickness.

B. Nonlinear evolution

Initially, the nonlinear simulations are performed for the
asymptotic case of a thin freestanding viscous film by keeping
the shear modulus at zero (G = 0) for the same set of param-
eters used by Sharma et al. [17] for the purpose of validation.
The results shown in Fig. 6 show very good agreement be-
tween our numerical formulation and earlier results.

Next, we show the effect of elasticity on the morphological
evolution and rupture time of thin viscoelastic freestanding
film. Figure 7 shows the dynamics of film rupture of a 5 nm
thin freestanding viscoelastic solid film in a 3λ domain with
an initial sinusoidal perturbation of small amplitude (δ = 0.01)
for two different shear moduli below the critical shear modu-
lus. Figures 7(a) and 7(b) show the nonlinear evolution of the
half-film thickness (h) of freestanding films. The wavelength
of perturbation is chosen to be the dominant wavelength
obtained from the linear stability analysis. The perturbation
gets amplified and the film ruptures at each minimum of the
perturbation. The rupture time tr is taken as the time at which
the minimum film thickness reaches the precursor thickness
at any lateral location in the domain under consideration. The
freestanding solid film shown in Fig. 7(b) has a higher shear
modulus and takes a longer time to rupture in comparison
with the film shown in Fig. 7(a), which has a lower shear
modulus. The maximum height of the ruptured morphology
at the time of film rupture in Figs. 7(a) and 7(b) also indicates
that an increase in solidlike elasticity induces stiffness to the
freestanding film. Figures 7(c) and 7(d) show the corre-
sponding tangential displacement profiles of these films at the
same instants of time where the height evolution profiles are
simulated. The film material gets depleted from the regions
of minimum thickness and gets accumulated in the regions of
maximum thickness. A positive value of u implies the material
movement towards right, and a negative value of u indicates
the material movement towards left. It can be seen from this
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FIG. 6. Nonlinear evolution of a 10 nm thin viscoelastic film for
G= 0, γ = 0.528, δ = 0.05. (a) Film profiles at different times
(t = 0, 10 000, 18 700, 26 600, 35 500, 42 500, 48 000, 49 600,
51 000, 51 200) until rupture occurs. (b) Evolution of the maximum
and minimum half-film thicknesses until film rupture. Curves 1 and
2, respectively, show the variation of maximum and minimum half-
film thicknesses with time.

figure that a sign change in the displacement happens at each
extremum of the half-film thickness h. Further growth of the
hole, after the rupture of the thin freestanding viscoelastic
solid film (results not shown here), is accompanied by the
formation of rims (which should not appear during the hole
growth of thin freestanding films [47] due to the absence of
friction) similar to the dewetting of thin supported films. In the
nonlinear simulations of freestanding films, a small precursor
thickness is used to avoid the singularities. This could be the
reason for the formation of rims in the postrupture dynamics.
Thus, the dynamics of hole growth of thin freestanding films
needs more accurate numerical algorithms. Hence, in this
article the nonlinear simulation results are confined until the
rupture of freestanding film.

Figure 8 shows the time evolution of total pressure in the
freestanding film. The expression for pressure profile is given
by Eq. (A11) of the Appendix. The corresponding pressure
profiles shown in Fig. 8 are for the same conditions given
in Fig. 7(a). We can observe from these pressure profiles
that the film material depletes from the regions of negative
pressure and accumulates in the regions of positive pressure.
The pressure in this problem is an adiabatic variable, which
is eliminated in the final forms of coupled nonlinear evolution
equations, Eqs. (19). The material movement here is essen-
tially governed by the interplay of van der Waals, capillary,
and elastic forces.

The influence of shear modulus and surface tension on
the rupture time of thin freestanding viscoelastic solid film
is studied next. To depict the influence of these parameters,
minimum half-film thickness (hmin) is plotted as a function of
time until the film rupture. Figure 9(a) shows the variation
of hmin as a function of t for different shear moduli when
the surface tension is kept constant. Among the four different
films shown in Fig. 9(a), the one with higher shear modulus
exhibits more resistance to film rupture and takes a longer
time for film rupture. Thus, the rupture time is enhanced with
the increase in shear modulus. Similarly, the variation of hmin

with t is shown in Fig. 9(b) for different values of surface
tension when the shear modulus is kept constant. Surface
tension being a stabilizing force, an increase in its magnitude
increases the rupture time and vice versa as can be seen from
the four different curves shown in Fig. 9(b). Thus, the thin
freestanding viscoelastic solid film ruptures more slowly with
either the increase in shear modulus or surface tension. We
can also see from Fig. 9 that nonlinearities accelerate the film
rupture beyond a certain time.

There have been several studies [48–52] which have elu-
cidated the self-similar nature of the dynamics near rupture
for both thin supported and freestanding films of Newtonian
and power-law fluids. It is therefore of interest to examine
whether self-similar dynamics is present in freestanding solid
films, and if so, whether it is similar or different from the other
cases studied in the literature. Thus, in addition to the transient
solution behavior for thin freestanding solid films, a quantita-
tive analysis of rupture dynamics is also carried out near the
film rupture. The rupture dynamics shown in Fig. 9 suggests
a possibility for the existence of self-similarity of the solu-
tion as the rupture time is approached. Hence, the evolution
of minimum half-film thickness hmin shown in Fig. 9(a) for
different G values is plotted as a function of time remaining
until rupture tr − t on a log-log scale in Fig. 10. Figure 10
shows that the data for different values of G collapse nearly
onto a single data set. A scaling law is also estimated which
suggests that the film rupture is asymptotically self-similar.
The film thickness of thin freestanding solid films for different
values of G scales as (tr − t )3/4 near the film rupture, which
is shown by the straight line in Fig. 10. Note that this scaling
law is different from the one estimated by Vaynblat et al. [49]
for a thin freestanding viscous film where the film thickness
decreases as (tr − t )1/3. Thus, a freestanding viscoelastic solid
film ruptures more readily than the viscous film in the regime
near the film rupture.

VI. CONCLUSIONS

In the present study, the instability and dynamics of thin
freestanding viscoelastic solid films under the influence of
destabilizing van der Waals forces have been investigated
through linear stability analysis and nonlinear simulations. A
set of coupled long-wave nonlinear evolution equations are
derived for the film thickness and longitudinal displace-
ment of thin freestanding viscoelastic solid films undergoing
squeezing-mode deformation.

The key conclusions from the linear stability analysis are
enumerated below:
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FIG. 7. Nonlinear evolution of thin freestanding viscoelastic solid films until rupture. Panels (a) and (b) show the evolution of the top
interface of films with G = 2.5 × 10−5 and G = 7.5 × 10−5, respectively. An initial sinusoidal perturbation of amplitude δ = 0.01 is imposed
around the mean film thickness which gets amplified leading to the film rupture. The height evolution profiles shown in plot (a) are at different
nondimensional times, t = 0, 20 176, 32 437, 45 673, 55 823, and 61 563. Similarly, the successive curves shown in plot (b) are at different
nondimensional times, t = 0, 45 050, 79 585, 121 095, 141 446, and 143 364. Panels (c) and (d), respectively, show the corresponding
tangential displacement profiles, for the films shown in plots (a) and (b), at the same instants of time. The other parameter values are ĥ0 = 5
nm, γ̂ = 0.03 N/m, and Â = 10−20 J.

(i) The zero-frequency viscoelasticity in thin freestanding
viscoelastic film controls the onset of instability, and the film
is unstable below a certain critical shear modulus which is
similar to a thin supported viscoelastic film.

(ii) In an unstable thin freestanding viscoelastic solid film,
the solidlike viscoelasticity retards the maximum growth rate

unlike the liquidlike viscoelasticity, which enhances the max-
imum growth rate.

(iii) The dominant wavelength of instability increases
with the increase in shear modulus of a thin viscoelastic
freestanding film. This behavior is different from thin vis-
coelastic solid- or liquid-supported films where the dominant
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FIG. 8. Pressure profiles during the evolution of thin freestanding viscoelastic solid film. Pressure profiles of early evolution and near to
film rupture are shown separately in (a) and (b), respectively. (a) Early evolution: successive curves shown are for different nondimensional
times, t = 0, 20 176, 32 437, 45 673, and 55 823. (b) Near film rupture: successive curves shown are for different nondimensional times,
t = 60 574, 60 916, 61 194, and 61 408. The parameters and initial conditions are same as those given in Fig. 7(a).
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wavelength of instability remains invariant to change in shear
modulus.

(iv) The critical shear modulus has been found to be inde-
pendent of surface tension for a thin viscoelastic freestanding
film, unlike a thin supported viscoelastic film.

(v) For a given film thickness, the magnitude of critical
shear modulus (below which the film is unstable) is much
higher for a thin freestanding viscoelastic film than that of
a thin supported viscoelastic film, which indicates that much
harder viscoelastic freestanding films can be destabilized. In
other words, for a given shear modulus, thicker viscoelastic
freestanding films can be destabilized more readily than sup-
ported viscoelastic films.

The set of coupled nonlinear evolution equations are solved
numerically to capture the dynamics of rupture of thin free-
standing viscoelastic films. The effect of parameters such as
shear modulus and surface tension on the dynamics of film
rupture was studied through nonlinear simulations. Simula-
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FIG. 10. Variation of the minimum half-film thickness hmin with
time remaining until rupture tr − t for the data shown in Fig. 9(a).
Thin film evolution data collapse onto a single data set for all four
values of G. The minimum half-film thickness of a thin freestanding
film is estimated to scale as (tr − t )3/4 near the film rupture. The esti-
mated scaling (collapsed straight lines) closely predicts the evolution
of minimum half-film thickness near the rupture, which suggests that
the solution exhibits self-similarity.

tions show that an increase in either of these parameters
slows the dynamics of film rupture. The numerical solution
exhibits self-similarity near film rupture, and the minimum
half-film thickness of thin freestanding solid films decreases
as (tr − t )3/4, where tr − t is the time remaining until film
rupture.

ACKNOWLEDGEMENT

S.S. thanks Dr. Sivasurender Chandran and Dr. Abir Ghosh
for insightful discussions.

APPENDIX: EVOLUTION EQUATIONS OF THIN
FREESTANDING VISCOELASTIC SOLID FILM

After incorporating the form of solution sought by Eq. (18),
in the scaled governing equations (11)–(13) and the scaled
boundary conditions (14)–(16), we obtain the leading order
problem by equating ε2-free terms to zero. At the leading or-
der, we have the following governing equations and boundary
conditions.

1. Governing equations

The leading order mass and momentum conservation equa-
tions are given by

U0X + W0Z = 0, (A1)

ḠU0ZZ + U̇0ZZ = 0, (A2)

ḠW0ZZ + Ẇ0ZZ − (P0 + �0)Z = 0. (A3)

2. Boundary conditions

The symmetry condition at Z = 0 and the kinematic and
normal stress conditions at the free surface are given by:
At Z = 0

U0Z = W0 = 0. (A4)

At Z = H (X, T )

ḠU0Z + U̇0Z = 0, (A5)
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−P0 + 2[ḠW0Z + Ẇ0Z − HX (ḠU0Z + U̇0Z )] = �HXX (A6)

Ḣ + U̇0HX = Ẇ0. (A7)

The X -momentum equation in the leading order [Eq. (A2)] is
integrated twice, and one constant of integration is eliminated
using the symmetry boundary condition [Eq. (A4)] to get the
solution for X displacement in the leading order, which is
given as

U0 = C(X, T ). (A8)

The continuity equation in leading order [Eq. ((A1)] is
integrated once and solved using the symmetry boundary con-
dition [Eq. (A4)] to obtain the Z displacement in the leading
order, and after substituting U0 from Eq. (A8), we get

W0 = −CX Z. (A9)

Now W0 is substituted in the leading order Z-momentum equa-
tion [Eq. (A3)] and integrated once to get P0:

P0 = −�0 − (ḠCX + ĊX ) + D(X, T ). (A10)

Here D is also an unknown function of X and T .
We can observe from the above equation that P0 is inde-

pendent of Z , and hence another equation can be obtained for
P0 from the leading order normal stress condition [Eq. (A6)]
at the film surface Z = H (X, T ):

P0 = −2(ḠCX + ĊX ) − �HXX . (A11)

Eliminating P0 from Eq. (A10) and Eq. (A11) we obtain

D(X, T ) = �0 − (ḠCX + ĊX ) − �HXX . (A12)

The forms of U0 and W0 are substituted into the leading order
kinematic equation (A7) to obtain

Ḣ + (HĊ)X = 0. (A13)

Since both H and C are unknown, another relation between
them is needed. To obtain this, we analyze the higher order
O(ε2) problem.

The X -momentum equation in the higher order is

(Ü0 + U̇0U̇0X + Ẇ0U̇0Z )

= −(P0 + �0)X + Ḡ(U0XX + U1ZZ ) + (U̇0XX + U̇1ZZ ).

(A14)

From the tangential stress balance in the higher order at the
film interface at Z = H (X, T ) we have

Ḡ(U1Z + W0X ) + (U̇1Z + Ẇ0X ) − (ḠU0Z + U̇0Z )H2
X

+ 2HX [Ḡ(W0Z − U0X ) + (Ẇ0Z − U̇0X )] = 0. (A15)

From the symmetry condition at z = 0 in higher order, we
have

U1Z = 0. (A16)

Equation (A14) is integrated once, and using equa-
tion Eq. (A16), we obtain

(ḠU1Z + U̇1Z ) = [Ü0 + U̇0U̇0X + Ẇ0U̇0Z

+ (P0 + �0)X − (ḠU0XX + U̇0XX )]Z.

(A17)

Now U1 is eliminated from Eqs. (A15) and (A17), and after
substituting P0 from Eq. (A11) we obtain another equation for
H and C:

H (C̈ + ĊĊX + �0X − �HXXX )

= 4[(HĊX )X + Ḡ(HCX )X ]. (A18)

Thus, we have two coupled nonlinear equations for film
thickness and longitudinal displacement. Finally, we rewrite
Eq. (A13) and Eq. (A18) in terms of the original variables to
obtain the following evolution equations:

ḣ + (hu̇)x = 0, (A19a)

h(ü + u̇u̇x + φx − γ hxxx ) = 4[(hu̇x )x + G(hux )x]. (A19b)
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