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Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation
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The one-dimensional Kardar-Parisi-Zhang (KPZ) equation is becoming an overarching paradigm for the
scaling of nonequilibrium, spatially extended, classical and quantum systems with strong correlations. Recent
analytical solutions have uncovered a rich structure regarding its scaling exponents and fluctuation statistics.
However, the zero surface tension or zero viscosity case eludes such analytical solutions and has remained
ill-understood. Using numerical simulations, we elucidate a well-defined universality class for this case that
differs from that of the viscous case, featuring intrinsically anomalous kinetic roughening (despite previous
expectations for systems with local interactions and time-dependent noise) and ballistic dynamics. The latter may
be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different
conditions. We identify the ensuing set of scaling exponents in previous discrete interface growth models related
with isotropic percolation, and show it to describe the fluctuations of additional continuum systems related with
the noisy Korteweg–de Vries equation. Along this process, we additionally elucidate the universality class of the
related inviscid stochastic Burgers equation.
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I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation describing the
evolution of a front with height h(x, t ) above position x ∈ R
along a one-dimensional (1D) substrate at time t reads [1]

∂t h = ν∂2
x h + λ

2
(∂xh)2 + η(x, t ),

〈η(x, t )η(x′, t ′)〉 = 2D δ(x − x′)δ(t − t ′), (1)

where ν, D > 0, and λ are parameters and η(x, t ) is zero-
average, Gaussian white noise. Within the physical picture
of a growing interface that led to the seminal proposal of
Eq. (1) in Ref. [1], the nonlinear term approximates growth
of the front at a constant rate along the local normal di-
rection, the noise implements the inherent stochasticity of
microscopic growth events in time and space, and the diffusive
linear term represents smoothening mechanisms, like surface
tension, which reduce the local height differences [2,3]. Al-
ternatively, the space derivative of Eq. (1) yields for u = ∂xh
the Burgers equation for the velocity of a stochastically driven
incompressible fluid, where ν measures viscosity [1,4,5].

The KPZ equation is a nonequilibrium system that, irre-
spective of parameter values, is well known to display generic
scale invariance [6,7], termed kinetic roughening in the sur-
face growth picture [2,3]. The universality class it represents
is very recently proving ubiquitous for low-dimensional sys-
tems with strong fluctuations, from nonquantum contexts like
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turbulent liquid crystals [8], stochastic hydrodynamics [9],
colloidal aggregation [10], reaction-diffusion systems [11],
random geometry [12,13], active matter [14], or thin films
[15], to the quantum realm, as for superfluidity [16], en-
tanglement [17], electronic fluids [18], or integrable and
nonintegrable quantum spin chains [19–21]. For example,
superdiffusive transport of quantum spin excitations has been
recently measured experimentally [22], finding values for the
dynamic exponent z < 2—which quantifies the increase of the
correlation length, ξ (t ) ∼ t1/z [2,3]—consistent with the 1D
KPZ behavior (zKPZ = 3/2), or else with ballistic transport,
zb = 1.

An important role in the recent identification of 1D KPZ
scaling for so many different physical contexts has been
played by the analytical solutions of Eq. (1) [23–25] and of
discrete models in the same universality class; see reviews,
e.g., in Refs. [26–29]. Beyond exact values for the scaling
exponents, such analytical solutions include the covariance
and probability distribution function (PDF) of the height
fluctuations, and their dependence on global constraints like
constant vs time-dependent system size [26–29]. For the KPZ
equation itself, a key step toward the exact solution is the
Cole-Hopf transformation H (x, t ) = exp[λh(x, t )/(2ν)] [1],
which converts Eq. (1) into the stochastic heat equation for
H (x, t ) [26–29]. However, this mapping is unavailable in the
tensionless case when ν = 0, namely, for the equation

∂t h = λ

2
(∂xh)2 + η(x, t ). (2)

Equation (2) has been considered as a model of conserved
relaxation [30]. Being marginally unstable to perturbations of
a flat solution [30,31], it is arduous to integrate numerically,

2470-0045/2022/106(2)/024802(9) 024802-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0495-4739
https://orcid.org/0000-0002-6521-526X
https://orcid.org/0000-0003-3288-6144
https://orcid.org/0000-0002-3563-771X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.024802&domain=pdf&date_stamp=2022-08-15
https://doi.org/10.1103/PhysRevE.106.024802


ENRIQUE RODRÍGUEZ-FERNÁNDEZ et al. PHYSICAL REVIEW E 106, 024802 (2022)

leading to questions on its well-posedness [32,33]. In this
paper, a suitable numerical algorithm allows us to uncover
a well-defined universality class for Eq. (2). The scaling ex-
ponents differ from those of the 1D KPZ equation with ν �=
0 and correspond to ballistic relaxation with z = zb. More-
over, the usual dynamic scaling ansatz satisfied in the ν �= 0
KPZ case does not hold. Rather, intrinsic anomalous scaling
[34–38] occurs, whereby the scaling exponents differ for local
and global fluctuations. Thus, Eq. (2) yields a counterexample
for an almost two-decades old conjecture [39] that intrin-
sic anomalous scaling cannot be asymptotic for continuous
models with local interactions and spatiotemporal noise. No-
tably, the universality class thus uncovered for Eq. (2) has
been reported earlier for discrete growth models related with
isotropic percolation [40,41]. Furthermore, we obtain it here
for yet another paradigmatic continuous system related with
the stochastic Korteweg–de Vries (KdV) equation with time-
dependent noise. Along this process, we additionally elucidate
the universality class of the related inviscid stochastic Burgers
equation.

This paper is organized as follows. In Sec. II, the kinetic
roughening of both the tensionless KPZ and the inviscid Burg-
ers equations is described in detail. An indirect integration of
the tensionless KPZ equation is also assessed in Appendix A,
as a cross-check. The statistics of the fluctuations for both
equations are studied in Sec. III. A final discussion of the uni-
versality classes elucidated by our present work is addressed
in Sec. IV. This includes additional numerical simulations of
different versions of the stochastic KdV equation, which prove
them as further conspicuous members of these universality
classes. Finally, our conclusions and an outlook are presented
in Sec. V.

II. KINETIC ROUGHENING: SCALING ANSATZ
AND EXPONENTS

A. Tensionless KPZ equation: Direct simulations

We proceed with the numerical simulation of Eq. (2).
As the equation depends on two parameters (λ and D) and
three independent rescalings can be done for x, t , and h,
we choose units so that λ = 2 and D = 1/2 without loss
of generality. Numerical simulations are carried out using
the multistep, predictor-corrector pseudospectral scheme pro-
posed in Ref. [43] and uniform-distributed noise of unit
variance [44]. We consider a flat initial condition h(x, t =
0) = 0 on a 1D substrate of lateral size L, with periodic
boundary conditions. Results of our simulations are shown
in Fig. 1. In the middle panels of the figure, representative
front morphologies h(x, t ) are shown for increasing times, left
to right. After an initial (random deposition, RD) transient
in which height values are uncorrelated in space, the surface
enters a time regime dominated by the nonlinear (NL) term,
to eventually saturate to steady state at long enough times.
More quantitatively, Fig. 1(a) shows the time evolution of
the surface roughness, namely, the standard deviation of the
height field h(x, t ),

W (t ) =
〈√

1

L

∫ L

0
[h(x, t ) − h̄(t )]2dx

〉
, (3)
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FIG. 1. Time evolution for (a) the roughness W (t ) and (b) struc-
ture factor S(k, t ) from numerical simulations of Eq. (2), for L as in
the legend. The number of realizations of the noise is 32, 16, and 8
for L = 512, 1024, 2048, respectively. Error bars for W (t ) [42] are
smaller than the symbol size. Time values increase bottom to top in
(b) and coincide with those used in (a). Data collapses of results for
(c) W (t ) and (d) S(k, t ) obtained using α = 1, z = 1, and αs = 1/2.
Solid lines represent power-law behavior with the indicated values
of the exponents. Sample morphologies h(x, t ) appear in the middle
panels for L = 512 and times in the random deposition (RD), non-
linear growth (NL), and saturation (Sat.) regimes, left to right.

where the bar denotes the spatial average and brackets denote
the average over different realizations of the noise, for sev-
eral values of the system size L. Under kinetic roughening
conditions, W grows with time as W ∼ tβ up to a satura-
tion value Wsat ∼ Lα that remains time-independent beyond
a time tsat ∼ Lz, where α is the roughness exponent, z is the
dynamic exponent mentioned above, and β = α/z [2,3]. As
seen in the figure, β � 1/2 for short times, the well-known
RD behavior [2]. However, for longer times before saturation
β � 1. This behavior is confirmed by the collapse of the
W (t ) data in Fig. 1(c) for large t/Lz, obtained for different
values of L and using α = z = 1, implying β = 1 [2,3]. Note,
these exponent values satisfy the so-called Galilean scaling
relation, α + z = 2, associated with the KPZ nonlinearity [1],
but with exponents very far from the standard 1D KPZ values;
in particular, recall that αKPZ = 1/2 as for the random walk
[2,3].

To address (two-point) correlation functions, we consider
the height structure factor

S(k, t ) = 〈|h̃(k, t )|2〉, (4)

where the tilde denotes space Fourier transform and k is the
wave number. While mathematically carrying the same in-
formation as real-space correlation functions like the height
covariance [3], this function is particularly informative in
the presence of crossover and/or anomalous scaling behavior
[36,37,47]. Results are shown in Fig. 1(b). The S(k, t ) curves
for small times in the RD regime are k-independent (white
noise), as expected for uncorrelated RD behavior. For longer
times, power-law behavior develops that behaves asymptoti-
cally as S(k) ∼ 1/k2αs+1, with αs = 1/2 �= α. Here, αs is the
roughness exponent that characterizes the scaling behavior of,
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e.g., the height-difference correlation function

G(r, t ) = 〈[h(x0, t ) − h(x0 + r, t )]2〉, (5)

which behaves as G(r, t ) ∼ r2αs at local scales r 	 t1/z 	 L,
while α characterizes fluctuations of global quantities like W
[2,3]. While, interestingly, the value of the local roughness
exponent αs turns out not to depend on the value of ν, the
fact that αs �= α contrasts with the standard KPZ behavior
for which αs,KPZ = αKPZ, and is an indication of intrinsic
anomalous scaling [36–38]. Full confirmation is obtained
from the data collapse of the structure factor data also shown
in Fig. 1(d), which agrees with the scaling ansatz of intrinsic
anomalous scaling, i.e. [36–38],

S(k, t ) ∼ s(t/Lz )

k2αs+1
, s(y) ∼

{
y2α+1, y 	 1,

y2(α−αs ), y 
 1,
(6)

again for α = z = 1 and αs = 1/2. Note, this scaling ansatz
retrieves the one satisfied by the KPZ equation for ν �= 0
when α = αs and for the corresponding exponent values
[36–38]. This result is unexpected in the context of a previous
conjecture [39] that intrinsic anomalous scaling cannot be
asymptotic for continuum models like Eqs. (1) and (2), which
feature local interactions and time-dependent noise (in con-
trast with, e.g., quenched disorder). Such an expectation was
based on perturbative arguments. However, the coupling con-
stant which controls the KPZ scaling behavior, g = λ2D/ν3

[1–3], is infinite for Eq. (2), so that the conjecture does not
necessarily apply for this equation.

B. Inviscid stochastic Burgers equation

As an alternative check of our numerical results, we have
considered the space derivative of Eq. (2), namely, the inviscid
stochastic Burgers equation [48] for u = ∂xh, i.e.,

∂t u = λu∂xu + ∂xη(x, t ). (7)

Our strategy is to simulate Eq. (7) via the pseudospectral
scheme proposed in Ref. [43] and, at each time, obtain the
solution of Eq. (2) as the space integral

h(x, t ) =
∫ x

0
u(x′, t )dx′. (8)

This approach has been successfully taken earlier [5] to study
the detailed relation between the solutions of the stochastic
Burgers and the KPZ equations in the growth regime and at
steady state, in the ν �= 0 case. As noted in Sec. II A above,
here we can similarly fix λ = 1 and D = 1/2 without loss of
generality. We integrate Eq. (7) numerically using the scheme
proposed in Ref. [43], using periodic boundary conditions
for a 1D system of lateral size L, a zero initial condition,
and uniform noise of unit variance, and at each value of
time compute h(x, t ) via Eq. (8). The results are shown in
Fig. 6 which, being virtually identical to Fig. 1, is provided
in Appendix A for the interested reader. Thus, this approach
reproduces accurately the results of the direct integration of
Eq. (2) already depicted in Fig. 1, but now for the field h that
is computed via Eq. (8).

Beyond providing the nontrivial test just discussed for the
results of Sec. II A, the inviscid stochastic Burgers equa-
tion displays kinetic roughening behavior which is interesting
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FIG. 2. Time evolution for the roughness, Wu(t, L) the difference
correlation function, Gu(r, t ), and the structure factor, Su(k, t ) of the
field u(x, t ), from numerical simulations of Eq. (7) for values of
L as given in the legend of the bottom left panel. The number of
realizations of the noise is 64, 32, 16, and 8 for L = 64, 128, 256, and
512, respectively. Error bars for Wu(t ) are smaller than the symbol
size. The Gu(r, t ) and Su(k, t ) data are shown for L = 512 only. The
data collapse of the roughness for αu = 1/3 and zu = 2/3 is shown
in the bottom left panel. Morphologies u(x) for growth regime (G.R.)
and saturation (Sat.) are also depicted left to right in the middle
panels. Insets of the right panels represent the evolution in time for
the averages (denoted by overbars) of Gu(r, t ) and Su(k, t ) over r and
k, respectively, where solid red lines have unit slope.

on its own and we discuss it next. The results are directly pro-
vided by the simulations of Eq. (7) mentioned in the previous
paragraph and are shown in Fig. 2 for the surface roughness
Wu(t ), surface structure factor Su(k, t ), and difference corre-
lation function Gu(r, t ). Note, in this figure we consider the
same formulas, Eqs. (3), (4), and (5), as employed in Sec. II A,
but now as applied to the field u(x, t ), instead of h(x, t ).
As seen in Fig. 2, the behavior for the roughness is notably
simple: already starting with the shortest times, Wu increases
as Wu(t ) ∼ tβu , to only saturate at sufficiently long times. As
borne out from the data collapse also shown in Fig. 2, the sat-
urated roughness Wu,sat ∼ Lαu and saturation time tu,sat ∼ Lzu

scale as expected for kinetic roughening systems [2]. The best
collapses for Wu(t ) are obtained using scaling exponent val-
ues αu = 1/3, βu = 1/2, and zu = 2/3. Remarkably, as noted
above β = 1/2 is the value of the growth exponent for the ran-
dom deposition (RD) process, which produces uncorrelated
surfaces and does not saturate to steady state [2]. At variance
with RD, Eq. (7) does saturate to steady state while similarly
producing uncorrelated interfaces. This is clearly seen in the
behavior of the difference correlation function and the struc-
ture factor, shown in Fig. 2. While the correlation function is
r-independent, the spectrum is k-independent as well, as for
white noise. Hence, the space average Gu(t ) of Gu(r, t ) and
the wave number average Su(t ) of Su(k, t ) are both expected
to scale as W 2

u ∼ t2βu , as seen in the corresponding insets of
Fig. 2.
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FIG. 3. Collapses of the structure factor Su(k, t ) data shown in
Fig. 2 for the field u(x, t ) in Eq. (7), with respect to the system
size L at saturation using αu = 1/3 (left panel), and with respect to
time t using βu = 1/2 prior to saturation, with blue to red colors
corresponding to increasing times (right panel).

The scaling behavior of the structure factor for steady state
solutions of u in Eq. (7) is consistent with the form

Su(k, L) ∼ L2αu

k2αs,u+d
, (9)

as seen in the left panel of Fig. 3 for αu = 1/3, αs,u = −1/2,
and d = 1. This behavior coincides with that described in
Refs. [49,50] for time series (of length L) of stochastic pulses.
In our case, we can generalize Eq. (9) for times prior to
saturation as

Su(k, t ) ∼ L2αu

k2αs,u+d
fS (t/Lz ), (10)

with

fS (y) ∼
{

y2βu , y 	 1,

const., y 
 1.
(11)

Indeed, the scaling of Su with t predicted by Eq. (10) is
verified in the right panel of Fig. 3.

While αu and zu satisfy the Galilean scaling relation α +
z = 1 expected for the stochastic Burgers equation [5], they
conspicuously differ from the values obtained for the viscous
case of this equation, which are αvisc = −1/2 and zvisc =
3/2 [5]. Moreover, the exponent relation expected between
Eqs. (2) and (7) [5] holds for the local roughness exponent
as αs,u = αs − 1, but not for the global roughness exponent,
since αu �= α − 1. It is also remarkable that Su(k, t ) and
Gu(r, t ) are like those of white noise for all t , making u(x, t )
a random deposition-like process in which saturation occurs.
Its steady state is like that obtained in Refs. [49,50] for a
stochastic model of independent pulses. Overall, this non-
trivial dynamics for the slope field u induces the anomalous
scaling observed for h, as argued for on general grounds for in-
trinsically anomalous kinetic roughening systems [34,35,51].
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FIG. 4. (a) Time evolution for the fluctuation skewness S
(empty) and kurtosis K (filled), and (b) and (c) PDF of normalized
field fluctuations [χ = (φ − φ̄)/std(φ), where bar is space average]
of Eq. (7) (φ = u, square symbols in all panels) and Eq. (2) (φ = h,
triangle symbols in all panels), for L = 512 and 100 noise realiza-
tions. For error bars, see [42]. (b) PDF at steady state. Inset: Linear
zoom of the central part of the exact Gaussian and the stationary PDF
for tensionless KPZ. (c) PDF for the tensionless KPZ fluctuations
at the maximum of S and K. Solid lines correspond to the exact
Gaussian (b) and GOE-TW (c) distributions. The dashed line in
(b) corresponds to the large-χ fit P(χ ) = 0.6 exp(−0.7χ2).

III. FLUCTUATION STATISTICS

The most recent developments in the context of 1D KPZ
universality (see, e.g., Refs. [4,5,28,29,52] and other therein)
underscore the importance of characterizing the PDF of the
field fluctuations to unambiguously determine the kinetic
roughening universality class. Figure 4 shows our results for
Eqs. (2) and (7); recall that we are using flat initial conditions
in both cases. The fluctuations for u(x, t ) are Gaussian along
its full dynamics, as manifested by the values of its skewness

Su(t ) = 1

W 3
u (t )

〈
1

L

∫ L

0
[u(x, t ) − ū(t )]3dx

〉
(12)

and kurtosis

Ku(t ) = 1

W 4
u (t )

〈
1

L

∫ L

0
[u(x, t ) − ū(t )]4dx

〉
, (13)

where Wu is the roughness of the u(x, t ) field, and by the full
PDF. Note that the exact values for a Gaussian distribution
are SGauss = 0 and KGauss = 3. The Gaussian behavior that
we obtain in Fig. 4 for the fluctuations of u is much like the
behavior obtained for the Burgers equation with ν �= 0 subject
either to nonconserved [4] or to conserved [5] noise.

For the tensionless KPZ equation, Eq. (2), starting out
from Gaussian values at very short times, both S (t ) and
K(t ) [defined as in Eqs. (12) and (13), but for h instead
of u] increase sharply reaching finite maxima; the PDF at
this time departs clearly both from a Gaussian and from the
Tracy-Widom distribution of the largest eigenvalue of random
matrices in the Gaussian orthogonal ensemble (GOE-TW).
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The latter PDF is expected in the growth regime of the ν �= 0
KPZ equation for our present boundary conditions [26–29].
The stationary state fluctuations for Eq. (2) become symmetric
(zero skewness) but their kurtosis does not take the Gaussian
value expected for ν �= 0 [2,3] because the PDF is flatter than
a Gaussian in its central part. Nonetheless, the tails agree
well with Gaussian decay, as suggested by the fit provided
in Fig. 4(b), so K → 0 for L → ∞ could be expected, as
in the ν �= 0 Burgers equation [4,5]. For the nonlinear ν �= 0
KPZ equation in 1D, the stationary PDF is known to be the
same as that of the linear (λ = 0) case as a consequence of
a fluctuation-dissipation theorem [2,3,53]. For the interested
reader and as a further cross-check, Appendix A provides the
full analysis of the statistics of the h fluctuations evaluated
via Eq. (8). The results are shown in Fig. 7, which is virtually
identical to Fig. 4.

IV. UNIVERSALITY CLASSES

The universality class that ensues for the tensionless KPZ
equation has been observed earlier without reference to
Eq. (2) itself. The same set of (Galilean-invariant, ballistic)
global exponent values α = z = 1 has been obtained for a
nonlocal generalization of the KPZ equation [54] that quanti-
tatively describes experimental thin films grown by chemical
vapor deposition [55]. However, in this case αs = α = 1 so
that a regular dynamic scaling ansatz is fulfilled, in contrast
with our present result of intrinsic anomalous scaling for
Eq. (2). Better agreement is found in simulations of a 2D
discrete growth model associated with an invasion percolation
process, under conditions that suppress fluid trapping [40,41].
The kinetic roughening of the corresponding height field is
intrinsically anomalous, with exponents α � 0.99, β � 1, z �
0.99, and αs � 0.51 [40,41], very similar to the values we
obtain for Eq. (2) at long times. Additional members of the
universality classes of the tensionless KPZ equation and of
the stochastic inviscid Burgers equation are discussed next.

Stochastic KdV equation

Further, the same full exponent set and scaling ansatz that
we find for Eq. (2) or for Eq. (7) can also be found for other
relevant continuum models. Specifically, consider

∂t h = c∂3
x h + 1

2 (∂xh)2 + η(x, t ), (14)

where c is a parameter and η is as in Eq. (1), whose space
derivative is the stochastic Korteweg–de Vries (KdV) equa-
tion

∂t u = c∂3
x u + u∂xu + ∂xη(x, t ). (15)

The deterministic KdV equation is a paradigmatic model of
weakly nonlinear waves and is well known to be exactly solv-
able [56]. Equation (15) generalizes it by adding conserved,
time-dependent noise; see, e.g., Refs. [57,58] for related sys-
tems.

Completely analogous to the approach we employed at
the beginning of Sec. II B, numerical simulations of Eq. (15)
can be employed to study the behavior of its space integral,
Eq. (14). Results are presented in Fig. 5, and indicate a scal-
ing behavior which is quite close to that obtained for the
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FIG. 5. Time evolution for the roughness W (t ) and structure
factor S(k, t ) from direct numerical simulations of Eq. (14), for L
as given in the bottom left panel legend and c = 1. The description
of the various panels and the values of the scaling exponents are as
in Fig. 1.

tensionless KPZ equation, Eq. (2). The time regimes and the
values of the scaling exponents are exactly like those seen
in Fig. 1, which confirms the intuitive expectation that the
dispersive linear term with parameter c appreciably influences
neither the value of S(k, t ) nor that of W 2(t ) = ∫

S(k, t )dk for
any value of time.

On the other hand, the results for the dynamics of the u field
from our numerical simulations of Eq. (15) are shown in Fig. 8
which, being quantitatively very similar to Fig. 2, is shown
in Appendix B. The kinetic roughening behavior obtained is
identical to that discussed in Sec. II B for Eq. (7). Hence, the
stochastic KdV equation, Eq. (15), is in the universality class
of the inviscid stochastic Burgers equation.

V. CONCLUSIONS AND OUTLOOK

Summarizing, we have elucidated a well-defined universal-
ity class for the tensionless KPZ equation for one-dimensional
interfaces that encompasses additional discrete and contin-
uum models. The former include at least systems related to
invasion percolation [40,41], while the latter include models
related with the KdV equation, Eq. (14), with time-dependent
noise. Along this process, we have additionally elucidated the
universality class of the related inviscid stochastic Burgers
equation.

Despite Eq. (2) featuring short-range interactions and stan-
dard time-dependent noise, its scaling behavior turns out to
be intrinsically anomalous, with different roughness expo-
nents controlling height fluctuations at local and global length
scales, and with ballistic propagation of correlations featuring
a dynamic exponent z = zb = 1 (as also recently reported in
Ref. [53]) which can be a test for conformal invariance [59]
in suitable parameter regions for, e.g., quantum spin chains
[19–22]. As noted above, a recent experiment has measured
both the z = zb = 1 value and z = zKPZ = 3/2 (as for the
viscous KPZ equation) in different parameter regions for the
evolution of a quantum spin chain [22]. In view of our present
results, these observations might be understood within a single
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framework, corresponding to ν taking zero or nonzero values,
respectively, in the effective KPZ equation relevant for differ-
ent experimental conditions. Confirmation could be achieved
via measurement of, e.g., additional scaling exponents, like α

and/or αs, in parameter regions corresponding to the observed
ballistic behavior, and of the accurate time evolution of the
skewness and kurtosis of the fluctuations.

The dynamical behavior obtained for Eq. (2) at large scales
is obviously induced by the nonlinear term, and may be
intuitively rationalized, bearing in mind that (in the determin-
istic limit) the latter propagates an interface with a constant
speed along the local normal direction as in the eikonal equa-
tion [60], implementing a Huygens principle, while no other
competing (deterministic) relaxation term exists in Eq. (2),
in contrast with the viscous KPZ equation, Eq. (1). No-
tably, a tensionless equation like Eq. (2), but defined on a
medium with suitable quenched disorder, leads to standard
viscous KPZ behavior [12,13], including Tracy-Widom statis-
tics which reflect global system constraints [26–29]. Possibly,
the neglect of self-intersections in the interface evolution
[12,13] may be inducing an effective nonzero value of the
surface tension.

From an analytical point of view, as noted above Eq. (2) de-
fies the exact solutions obtained in the KPZ case; conversely,
the existence of such solutions guarantees that, no matter
how small ν �= 0 is, standard KPZ asymptotics ensues, as the
Cole-Hopf transformation can then be applied. The ν = 0
condition also challenges perturbative dynamical normal-
ization group approaches [1,7,30,31], as its fixed point
corresponds to an infinite coupling constant g. Improved
non-perturbative approaches seem required to access the
asymptotic behavior analytically and confirm the non-
renormalization of ν for a bare ν = 0 which seems implied
by our numerical results.

A natural issue concerns the extension of our present re-
sults to higher dimensions. Note that, when x ∈ Rd with d >

1, if the relevant h(x, t ) field is to remain a scalar, the straight-
forward 1D relation is lost to an analogous scalar u(x, t ) field
which satisfies some Burgers-like equation. Although scalar
analogs of the Burgers equation are possible in higher dimen-
sions [4,61], we have not been successful in following this
route to efficiently integrate the corresponding generalization
of Eq. (2), while preliminary direct simulations [62,63] for
d = 2 suggest finite-time blowup behavior akin to previous
observations [32,33]. And although the KdV equation itself
conspicuously exemplifies the difficulty of extending its fas-
cinating 1D behavior [56] to higher dimensions, we consider
this as a relevant open issue for Eq. (2).
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APPENDIX A: TENSIONLESS KPZ EQUATION AS THE
INTEGRAL FIELD OF THE INVISCID BURGERS

EQUATION

The numerical simulations performed in Sec. II B for the
inviscid Burgers equation, Eq. (7), also provide us with a
consistency check of the results obtained in Sec. II A for the
direct integration of the tensionless KPZ equation. Specifi-
cally, our strategy is to simulate the u field of the inviscid
Burgers equation, Eq. (7) and, at each time, obtain the solution
of the tensionless KPZ equation, Eq. (2), as the space integral
h(x, t ) = ∫ x

0 u(x′, t )dx′. A similar strategy was successfully
employed in Ref. [5] to study the relation between the vis-
cous (ν �= 0) Burgers and KPZ equations. Results are shown
in Figs. 6 and 7 which, being virtually identical to, lead to
the same conclusions as those obtained from, Figs. 1 and 4,
respectively.
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FIG. 6. Top panels: Time evolution for the roughness W (t ) (left)
and structure factor S(k, t ) (right) of the field h(x, t ) = ∫ x

0 u(x, t )dx,
from numerical simulations of Eq. (7), for L as in the legend (bottom
left panel). The number of realizations of the noise is 32, 16, and 8
for L = 512, 1024, and 2048, respectively. Error bars for W (t ) are
smaller than the symbol size. Time values increase bottom to top
in the right panel and coincide with those used in the left panel.
Bottom panels: Data collapses of results for W (t ) (left) and S(k, t )
(right) obtained using α = 1, z = 1, and αs = 1/2. Solid lines repre-
sent power-law behavior with the indicated values of the exponents.
Sample morphologies h(x, t ) appear in the middle panels for times in
the random deposition (RD), nonlinear growth (NL), and saturation
(Sat.) regimes, left to right.
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FIG. 7. (a) Time evolution of the fluctuation skewness S (empty)
and kurtosis K (filled), and (b) and (c) PDF of normalized field
fluctuations [χ = (φ − φ̄)/std(φ), where bar is space average] of
φ = u (square symbols in all panels) and φ = h = ∫ x

0 u(x′)dx′ (tri-
angle symbols in all panels) from numerical simulations of Eq. (7)
for L = 512 and 100 noise realizations. (b) PDF at steady state.
Inset: Linear zoom of the central part of the exact Gaussian and the
stationary PDF for tensionless KPZ. (c) PDF for the tensionless KPZ
fluctuations at the maximum of S and K. Solid lines correspond to
the exact Gaussian (b) and GOE-TW (c) distributions. The dashed
line in (b) corresponds to the large-χ fit P(χ ) = 0.6 exp(−0.7χ2).
The dotted line in (c) shows the results obtained by direct integration
of the tensionless KPZ equation; see Fig. 4.

APPENDIX B: KDV EQUATION WITH BURGERS
NONLINEARITY AND CONSERVED NOISE

We consider the numerical simulation of the KdV equa-
tion with Burgers nonlinearity and conserved noise, Eq. (15).
We use the same numerical method and conditions that we
have used for the integration of Eq. (7) in Sec. II B. Results
are shown in Fig. 8 and lead to the same conclusions as those
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FIG. 8. Time evolution for the roughness, Wu(t, L), the differ-
ence correlation function, Gu(r, t ), and the structure factor, Su(k, t ),
of the field u(x, t ), from numerical simulations of Eq. (15) for c = 1
and values of L as given in the legend of the bottom left panel.
The number of realizations of the noise is 64, 32, 16, and 8 for
L = 64, 128, 256, and 512, respectively. Error bars for W (t ) are
smaller than the symbol size. The Gu(r, t ) and Su(k, t ) data are shown
for L = 512 only. The data collapse of the roughness for α = 1/3
and z = 2/3 is shown in the bottom left panel. Morphologies u(x)
for growth regime (G.R.) and saturation (Sat.) are also depicted left
to right in the middle panels. Insets of the right panels represent the
evolution in time for the averages (denoted by overbars) of Gu(r, t )
and Su(k, t ) over r and k, respectively, where solid red lines have unit
slope.

obtained from Fig. 2 for the inviscid Burgers equation, Eq. (7).
We conclude that the universality class of Eq. (15) is the same
as that of the inviscid Burgers equation.
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