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Phase behavior of fluids in undulated nanopores
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The geometry of walls forming a narrow pore may qualitatively affect the phase behavior of the confined fluid.
Specifically, the nature of condensation in nanopores formed of sinusoidally shaped walls (with amplitude A and
period P) is governed by the wall mean separation L as follows. For L > Lt , where Lt increases with A, the pores
exhibit standard capillary condensation similar to planar slits. In contrast, for L < Lt , the condensation occurs
in two steps, such that the fluid first condenses locally via bridging transition connecting adjacent crests of the
walls, before it condenses globally. For the marginal value of L = Lt , all the three phases (gaslike, bridge, and
liquidlike) may coexist. We show that the locations of the phase transitions can be described using geometric
arguments leading to modified Kelvin equations. However, for completely wet walls, to which we focus on, the
phase boundaries are shifted significantly due to the presence of wetting layers. In order to take this into account,
mesoscopic corrections to the macroscopic theory are proposed. The resulting predictions are shown to be in a
very good agreement with a density-functional theory even for molecularly narrow pores. The limits of stability
of the bridge phase, controlled by the pore geometry, is also discussed in some detail.
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I. INTRODUCTION

It is well known that fluids which are subjects of narrow
confinements exhibit quite different phase behavior compared
to their bulk counterparts [1–5]. A fundamental example of
this is a phenomenon of capillary condensation occurring in
planar slits made of two identical parallel walls a distance
L apart. Macroscopically, the shift in the chemical potential,
relative to its saturation value μsat, at which capillary con-
densation occurs, is given by the Kelvin equation (see, e.g.,
Ref. [6])

δμ‖
cc = 2γ cos θ

L�ρ
, (1)

where γ is the liquid-gas surface tension, θ is the contact
angle characterizing wetting properties of the walls and �ρ =
ρl − ρg is the difference between the number densities of
coexisting bulk liquid and gas. Here, the Laplace pressure
difference δp across the curved interface separating the gas
and liquid phases has been approximated by δp ≈ δμ�ρ,
accurate for small undersaturation [7]. Microscopic studies
of capillary condensation based on density-functional theory
(DFT) [7–13] and computer simulation [14,15] have shown
that the Kelvin equation is surprisingly accurate even for
microscopically narrow pores. This is particularly so for walls
that are partially wet (θ > 0) where the Kelvin equation re-

mains quantitatively accurate even for slits which are only
about 10 molecular diameters wide [16]. For completely wet
pores (θ = 0), Eq. (1), which ignores the presence of thick
wetting layers adsorbed at the walls, is somewhat less accurate
but its mesoscopic extension based on Derjaguin’s correction
[17] provides excellent predictions for the location of capillary
condensation even at nanoscales.

Capillary condensation in planar slits can be interpreted
as a simple finite-size shift of the bulk liquid-gas transition
controlled by a single geometric parameter L, which also
determines a shift in the critical temperature Tc(L) beyond
which only a single phase in the capillary is present [10].
On a mean-field level, the transition can be determined by
constructing adsorption (initiated at a gaslike state) and des-
orption (initiated at a liquidlike state) isotherms which form
low- and high-density branches of the van der Waals loop
and which have the same free energies right at the chemical
potential μ‖

cc = μsat − δμ‖
cc.

However, the situation becomes significantly more sophis-
ticated for pores of nonplanar geometry. In those more general
cases the translation symmetry may be broken not only across
but also along the confining walls, which can make the phe-
nomenon of capillary condensation much more subtle. For
example, by considering a semi-infinite slit made of capping
the open slit at one end, the transition, which occurs at the
same value of μ‖

cc, can become second-order due to the for-
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mation of a single meniscus which continuously unbinds from
the capped end, as the chemical potential is increased toward
μ‖

cc [18–27]. If such a capped capillary is not semi-infinite
but of a finite depth D (measuring a distance between the
capped and the open end of the capillary), then asymmetric
effective forces acting on the meniscus from both capillary
ends round and shift the transition by an amount scaling with
D3 for systems with dispersion forces [28].

Another example of the impact of broken translation sym-
metry on phase behavior in narrow slits is when the walls
are no longer smooth but are structured chemically or geo-
metrically. If the width of such slits is considerably larger
than a length characterizing the lateral structure, then the
condensation scenario will differ from that for nonstructured
slits just quantitatively. For instance, if the walls are formed
of two species with different contact angles, then the location
of capillary condensation will be macroscopically given by
Eq. (1), in which Young’s contact angle is replaced by the
effective contact angle given by Cassie’s law [29,30]. How-
ever, for sufficiently narrow pores the walls structure may play
more significant role and can change the mechanism of the
condensation, which happens in two steps, such that the fluid
first condenses only locally by forming liquid bridges across
the pore [30–39].

In this paper, we study phase behavior of fluids in pores
formed of smoothly undulated and completely wet walls. The
particular emphasis is put on model pores formed by a pair
of sinusoidally shaped walls, where one of the walls is a
reflection symmetry of the other. In this way, the translation
symmetry of the system is broken along two of the Cartesian
axes (x and z, say) but is maintained along the remaining one
(y axis). Let P be the period and A the amplitude of the walls,
whose mean separation is L. Hence, the local width of the
pore smoothly varies (as a function of x) between L − 2A and
L + 2A. The model, together with a macroscopic illustration
of possible phases, which the confined fluid is anticipated to
adopt, is sketched in Fig. 1.

The purpose of this paper is to present a detailed analysis of
the phase behavior of (simple) fluids in such confinements. To
this end, we first formulate a purely macroscopic theory based
on geometric arguments. This allows us to determine the mean
separation of the walls Lt , which separates two possible con-
densation regimes. For L > Lt , capillary condensation occurs
in one step and macroscopically its location is given by a
trivial modification of Eq. (1), leading to a marriage of the
Kelvin equation with Wenzel’s law [40], such that the latter is
of the form

‘ cos θ∗’ = r cos θ. (2)

Here, r is the roughness parameter of the wall and the symbol
‘ cos θ∗’ characterizes an enhancement of the wetting proper-
ties of the wall due to its nonplanar geometry.

In contrast, for L < Lt , when the condensation is a two-
step process, the phase boundaries between gaslike (G) and
bridge (B) phases, as well as between bridge and liquidlike (L)
phases are macroscopically determined. This requires to find
how the location of the bridging film varies with the chem-
ical potential and we also examine the limits of metastable
extensions of B phase due to the pore geometry. Moreover,
in order to capture the effect of adsorbed wetting layers,

FIG. 1. A sketch illustrating three possible phases in a nanopore
of a mean width L formed by sinusoidally shaped walls with an
amplitude A and period P: (a) gas phase, (b) bridge phase, and
(c) liquid phase.

which the purely macroscopic theory neglects, the mesoscopic
corrections, incorporating the wetting properties of the walls,
are included. The resulting predictions will be shown to be in
an excellent agreement with a microscopic density-functional
theory (DFT), even on a molecular scale of the walls parame-
ters.

The rest of the paper is organized as follows. In Sec. II we
formulate a macroscopic theory determining phase boundaries
between all the G, B, and L phases using simple geometric
arguments. We start with considering a general model of a
nanopore whose shape is represented by a smooth function
ψ (x), before we focus specifically to sinusoidally shaped
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walls. The geometric considerations are further applied to esti-
mate the range of stability of B phase. In Sec. III we extend the
macroscopic theory by including the mesoscopic corrections
for walls exerting long-range, dispersion potentials. In Sec. IV
we formulate the microscopic DFT model, which we use to
test the aforementioned predictions; the comparison is shown
and discussed in Sec. V. Section VI is the concluding part of
the paper where the main results of this work are summarized
and its possible extensions are discussed.

II. MACROSCOPIC DESCRIPTION OF CAPILLARY
CONDENSATION AND BRIDGING TRANSITION

FOR COMPLETELY WET WALLS

A. General model

We consider a pore of a mean width L formed by a pair of
walls each of shape ψ (x), where x is a horizontal axis placed
along the pore, such as in Fig. 2. More specifically, the vertical
heights of the top and bottom walls measured along the z axis
are zw(x) and −zw(x), respectively, with

zw(x) = L

2
− ψ (x), (3)

assuming that ψ (x) is a differentiable, even and periodic
function of wavelength P with a global minimum at x = 0.
Furthermore, we assume that the walls are completely wet
which means that their Young contact angle θ = 0 and that the
pressure of the bulk reservoir, with which the confined fluid
is in equilibrium, is below the saturated vapour pressure, i.e.,
p < psat.

At low pressures, the pore is filled with a gaslike phase
of a low density ρg and the corresponding grand potential
per unit length over a single period can be approximated
macroscopically as

�g = −pS + 2γwg	w. (4)

Here γwg is the wall-gas surface tension, S = PL is the area
between the walls in the x-z plane over one period, and

	w = 2
∫ P/2

0

√
1 + ψ ′2(x)dx (5)

is the arc-length of the boundary of each wall in the x-z
projection over one period.

At sufficiently high pressures, however, the pore will be
filled by a liquidlike phase of a high density ρl , with the grand
potential per unit length

�l = −pl S + 2γwl	w, (6)

where pl is the pressure of the metastable bulk liquid and γwl

is the liquid-wall surface tension. The system undergoes first-
order capillary condensation from the gaslike to the liquidlike
phase when �g = �l . Using Young’s equation it follows that
the capillary condensation occurs when the pressure differ-
ence δp = p − pl is

δp = 2γ 	w

S
. (7)

FIG. 2. A scheme of a bridge phase inside a nanopore formed
by two walls of the local height zw (x) and −zw (x) relative to the
horizontal axis. The macroscopic picture assumes that the menisci
demarcating the liquid bridge are parts of a circle of the Laplace
radius R which meets tangentially the walls at the points [±x0, ±z0].

More conveniently, this can be expressed in terms of the
chemical potential

δμcc = 2γ 	w

S�ρ
, (gas-liquid), (8)

measuring the shift of the transition from saturation.
Provided the shape of the confining walls is only slowly

varying, this can be approximated by

δμcc = 2γ

L�ρ
(1 + δ), (9)

where

δ = 1

P

∫ P/2

0
ψ ′2(x)dx (10)

is a dimensionless parameter characterizing the wall undula-
tion, which is trivially related with the roughness parameter
(r ≈ 1 + δ) appearing in Eq. (2).

Apart from the gaslike and the liquidlike phases, the
nonplanar geometry may also enable a formation of an in-
termediate phase (or phases), where the fluid condenses only
locally near the adjacent parts of the walls, giving rise to a
periodic array of liquid bridges (see Fig. 2). For simplicity,
we will further assume that the pore geometry allows only for
a single bridge per period. The points [±x0,±z0] at which the
menisci of the bridges meet the walls are pressure dependent
and, macroscopically, are specified by two conditions: First,
the menisci are of a circular shape with the Laplace radius of
curvature R = γ /δp and, second, the menisci meet the walls
tangentially (since the walls are completely wet). This leads
to the implicit equation for x0:

z2
w(x0)

[
1 + z′2

w (x0)
] = R2, (11)
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which, together with (3), determines the location of the bridge.
This, in turn, allows us to obtain a macroscopic approximation
for the grand potential per unit length of the bridge phase

�b = −pSg − plSl + 2γwg	
g
w + 2γwl	

l
w + 2γ 	, (12)

where

Sl = 2

[
2

∫ x0

0
zw(x)dx − Sm

]
(13)

and Sg = S − Sl are the volumes (per unit length) occupied by
liquid and gas, respectively. Here the symbol

Sm = R2 sin−1

(
z0

R

)
− z0

√
R2 − z2

0 (14)

represents the area of to the circular segment highlighted by
yellow color in Fig. 2.

Furthermore,

	l
w = 2

∫ x0

0

√
1 + ψ ′2(x)dx (15)

and 	
g
w = 	w − 	l

w are the respective arc-lengths of the wall-
liquid and wall-gas interfaces. Finally,

	 = 2R sin−1

(
z0

R

)
(16)

is an arc-length of each meniscus.
First-order bridging transition from G to B occurs at the

chemical potential μgb = μsat − δμgb, when its shift from
saturation is

δμgb = 2γ
(
	l

w − 	
)

Sl�ρ
, (gas-bridge), (17)

as obtained by balancing �g and �b. If δμgb < δμcc, then the
bridge state is never the most stable phase and the bridging
transition is preceded by capillary condensation. However,
if δμgb > δμcc, then the condensation is a two-step process,
such that the system first condenses locally, when μ = μgb,
and eventually globally when �b = �l , which occurs for the
chemical potential μbl = μsat − δμbl, with

δμbl = 2γ
(
	 + 	

g
w

)
Sg�ρ

, (bridge-liquid). (18)

B. Sinusoidally shaped walls

We will now be more specific and consider models of
sinusoidally shaped walls by setting

ψ = A cos(kx), (19)

where A is the amplitude and k = 2π/P is the wave number
of the confining walls. In this special case, the geometric
measures (10), (13), (15), and (5) become

δ = A2k2

2
, (20)

Sl = 2Lx0 − 4A

k
sin(kx0) − 2R2 sin−1

(
z0

R

)
+ 2z0

√
R2 − z2

0,

(21)

	l
w = 2E (x0, iAk), (22)

and

	w = 4E (iAk)

k
, (23)

where E (·) and E (·, ·) are the complete and incomplete el-
liptic integrals of second kind, respectively, and i is the
imaginary unit.

1. Capillary condensation

It follows from Eqs. (8) and (23) that the global conden-
sation from capillary gas to capillary liquid occurs at the
chemical potential:

δμcc = 4γ E (iAk)

πL�ρ
, (24)

which is a simple modification of the Kelvin equation (1)
for planar slits with completely wet walls (θ = 0). This can
also be expressed as a series in the powers of the aspect ratio
a = A/P:

δμcc = δμ‖
cc[1 + π2a2 + O(a4)]. (25)

From Eq. (25) it follows that the sinusoidal geometry en-
hances condensation (as expected), i.e., occurs farther from
saturation compared to a planar slit. Clearly, this is due to the
fact that the area of the (hydrophilic) walls increases with a,
while the volume of the metastable liquid in the condensed
state remains unchanged. Equation (25) also implies that the
location of the capillary condensation in sinusoidal slits does
not depend on the wall parameters A and P independently
but only on their ratio in a roughly quadratic manner. The
relevance of these macroscopic predictions for microscopic
systems will be tested in Sec. V.

2. Bridging transition

From Eq. (11) it follows that the horizontal distance ±x0

determining the location of the bridge meniscus of radius R is
given implicitly by(

L

2
− Aφ

)2

[1 + k2A2(1 − φ2)] = R2, (26)

with φ ≡ cos(kx0). This is a quartic equation, the solution of
which is thus accessible analytically. However, for slightly
undulated walls, δ � 1, it is more transparent to express φ

as a power series in δ. To this end, we introduce an auxiliary
parameter ε:(

L

2
− Aφ

)2

[1 + 2εδ(1 − φ2)] = R2, (27)

such that the solution is sought in the form of

φ(ε) =
∞∑

n=0

φnε
n. (28)

When plugged into (27), the coefficients φn are easily deter-
mined by balancing the corresponding powers of ε:

φ0 =
L
2 − R

A
, (29)

φ1 = Rk2A
(
1 − φ2

0

)
2

, (30)
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FIG. 3. Illustration of the macroscopic estimation of the lower
(a) and upper (b) spinodals of bridging transition in sinusoidal pores.

etc. Substituting back to (28) and setting ε = 1, one obtains:

φ = L − 2R

2A
+ δ

2A

[
1 − (L − 2R)2

4A2

]
+ O(δ2). (31)

This can be further simplified by expanding φ ≈ 1 − k2x2
0/2,

which to the lowest order in δ allows for this simple
approximation:

x0 ≈
√

2(1 − φ0)

k2
, (32)

with φ0 given by (29).
Once x0 is known, Sl and 	l

w (as well as Sg = S − Sl and
	

g
w = 	w − 	l

w) can be determined from Eqs. (21)–(23). These
measures are eventually substituted into Eqs. (17) and (18) to
solve for the location of the gas-bridge and the bridge-liquid
transitions in terms of the corresponding Laplace radii, Rgb =
γ /(δμgb�ρ) and Rbl = γ /(δμbl�ρ).

3. Spinodals of bridging transitions

In contrast to G and L phases, which, on a macroscopic
level, have both infinite metastable extensions, the stability
of bridging films is restricted by the pore geometry. As is
illustrated in Fig. 3, for the given pore parameters there are
lower and upper limits in the values of the Laplace radius, R−

s
and R+

s , allowing for a formation of the bridging film.
The lower spinodal of B phase corresponds to the smallest

Laplace radius, which still enables a formation of the bridge,
such that the menisci just connect each other, cf. Fig. 3(a). In

order to determine R−
s , we will approximate the shape of the

crests by a parabola

zw(x) ≈ c1 + c2x2, (33)

corresponding to an expansion of zw(x) to second order
around its minimum. Specifically for the sinusoidal pores, the
coefficients in Eq. (33) are c1 = L/2 − A and c2 = Ak2/2.
This approximation seems adequate, since the menisci are
close to the origin.

Assuming a circular shape of the menisci, the contact
points must satisfy

R−
s = x2

0 + z2
0

2x0
(34)

and the continuity condition further implies that

R−
s = x0(2c2z0 + 1). (35)

Equations (34) and (35), together with Eq. (33) on substituting
for x0, form a set of three equations for three unknowns,
yielding the contact points of the menisci

x0 = c1√
2c1c2 + 1

, (36)

z0 = c1
3c1c2 + 1

2c1c2 + 1
, (37)

and its radius

R−
s = 2c2

1c2(3c1c2 + 2)

(2c1c2 + 1)
3
2

. (38)

As for the largest Laplace radius, R+
s , of a meniscus, which

can still fit into the pore, we simply adopt the approximation:

R+
s = L

2
+ A, (39)

which corresponds to the state, at which the meniscus meets
the walls at the widest part of the pore, see Fig. 3(b). This
estimation of the upper spinodal of B phase is justified by the
assumption that the aspect ratio a = A/P is not too large.

III. MESOSCOPIC CORRECTIONS

In this section we extend the macroscopic theory by taking
into account the presence of wetting layers adsorbed at the
confining walls.

A. Wide pores

We first consider wide pores experiencing one-step capil-
lary condensation from G to L. In general, the local thickness
	(x) of wetting layers is a functional of the wall shape, 	(x) =
	[ψ](x), which, in principle, could be contructed using, e.g., a
sharp-kink approximation for long-range microscopic forces
[41] or a nonlocal interfacial Hamiltonian for short-range
microscopic forces [42]. However, even for simple wall ge-
ometries, such as sinusoids as specifically considered here,
either approach would lead to complicated expressions whose
solutions would require numerical treatments. Instead, we
propose a simple modification of Derjaguin’s correction for
the Kelvin equation for planar slits [7,9]. Thus, specifically for
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long-range microscopic forces and for walls of small rough-
ness, we propose the following Derjaguin’s-like correction for
the generalized Kelvin equation (8)

δμcc = 2γ 	w

(L − 3	π )�ρ
, (40)

which for the sinusoidal model becomes

δμcc = 4γ E (iAk)

π (L − 3	π )�ρ
. (41)

Here 	π is the thickness of the wetting layer adsorbed at a
single planar wall at the given bulk state. We recall that the
factor of 3 is associated with the character of the long-range,
dispersion forces, which we will consider in our microscopic
model and which would be changed to 2 for short-range forces
[7,9]. Clearly, the approximation 	(x) ≈ 	π seems plausible
only for geometries of small roughness (aspect ratio) which
we focus on and for which we will test Eq. (41) by compar-
ing with DFT results. Furthermore, taking into account that
Eqs. (40) and (41) refer to wide pores, capillary condensation
is expected to occur near the bulk coexistence where 	π can
be described analytically in its known asymptotic form.

B. Narrow pores

For narrow pores of widths L < Lt , condensation occurs
via formation of capillary bridges. To account for wetting
layers in this case, we will adopt the geometric construction
due to Rascón and Parry (RP) [43], which is schematically
illustrated in Fig. 4(a). The construction consists of two steps:
(i) first, each wall is covered by a wetting film whose width
measured normally to the wall is 	π , and (ii) second, menisci
of the Laplace radius R = γ /(δμ�ρ) are connected tangen-
tially to the wetting layers (rather than to the walls). By
following this rule, we will first show explicitly what the shape
ψ̃ (x) of the wetting film interface is for a general shape ψ (x)
of the wall, before applying this result specifically for the
sinusoidal wall.

Let us consider an arbitrary point x′ on the horizontal axis,
at which the local height of the wall is ψ (x′). Thus, the unit
tangential vector at this point is t = (1, ψ ′(x′))/

√
1 + ψ ′2(x′),

where the prime denotes a derivative with respect to x′; hence,
the unit normal at ψ (x′) is n = (−ψ ′(x′), 1)/

√
1 + ψ ′2(x′).

According to the RP construction the local height of the wet-
ting film interface ψ̃ (x) is a distance 	π from ψ (x′) along the
normal vector [see Fig. 4(b)]. It follows that

ψ̃ (x) = ψ (x′) + 	π√
1 + ψ ′2(x′)

, (42)

where

x = x′ − 	πψ ′(x′)√
1 + ψ ′2(x′)

. (43)

Considering walls of small gradients, the difference x − x′ is
supposed to be small, thus

ψ̃ (x) ≈ ψ (x′) + 	π√
1 + ψ ′2(x)

(44)

FIG. 4. Illustration of the RP geometric construction of the
bridge phase in a completely wet sinusoidal nanopore by taking into
account the wetting layers [43]. (a) The walls are first coated by wet-
ting layers, whose normal width is 	π corresponding to a thickness
of the liquid film adsorbed on a planar wall at the given chemical
potential. In the second step, the circular menisci of the Laplace
radius R = γ /(δμ�ρ ) are drawn, such that they meet the wetting
layers tangentially; (b) the construction of the shape of the interface
ψ̃ (x) corresponding to the wetting layers. The unit vectors n and t
are normal and tangent to the wall at a given point x′, respectively,
using which the height of the wetting layer can be determined at the
point x, shifted from x′ according to Eq. (43).

and

x′ ≈ x + 	πψ ′(x)√
1 + ψ ′2(x)

(45)

to first order in x − x′. By substituting (45) into (44), one
obtains that

ψ̃ (x) ≈ ψ

[
x + 	πψ ′(x)√

1 + ψ ′2(x)

]
+ 	π√

1 + ψ ′2(x)
, (46)

which determines ψ̃ (x) explicitly. This can be further simpli-
fied by expanding the first term on the right-hand side to first
order:

ψ̃ (x) ≈ ψ (x) + 	π

√
1 + ψ ′2(x). (47)
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Specifically, for the sinusoidal wall, Eq. (47) becomes

ψ̃ (x) ≈ A cos(kx) + 	π

√
1 + A2k2 sin2(kx). (48)

Thus, within the mesoscopic treatment, we proceed in the
same manner as in the previous section, except that ψ (x) is
replaced by ψ̃ (x), as given by Eq. (48).

IV. DENSITY-FUNCTIONAL THEORY

Classical DFT [44] is a tool of statistical mechanics de-
scribing equilibrium behavior of inhomogeneous fluids. Based
on the variational principle, the equilibrium one-body density
ρ(r) of the fluid particles is determined by minimizing the
grand potential functional:

�[ρ] = F[ρ] +
∫

drρ(r)[V (r) − μ]. (49)

Here F[ρ] is the intrinsic free-energy functional, which con-
tains all the information about the intermolecular interactions
between the fluid particles, V (r) is the external potential,
which, in our case, represents the influence of the confining
walls and μ is the chemical potential of the system and the
bulk reservoir. The intrinsic free-energy functional is usually
separated into two parts:

F[ρ] = Fid[ρ] + Fex[ρ]. (50)

The first, ideal-gas contribution, which is due to purely en-
tropic effects, is known exactly:

βFid[ρ] =
∫

drρ(r)[ln(ρ(r)�3) − 1], (51)

where � is the thermal de Broglie wavelength and β = 1/kBT
is the inverse temperature.

The remaining excess part of the intrinsic free energy
arising from the fluid-fluid interaction, Fex, must be almost
always approximated and its treatment depends on the inter-
action model. For models involving hard cores, the excess
contribution can be treated in a perturbative manner, such that
it is typically further split into the contribution Fhs due to
hard-sphere repulsion and the contribution Fatt arising from
attractive interactions:

Fex[ρ] = Fhs[ρ] + Fatt[ρ]. (52)

The hard-sphere part of the free energy is described using
Rosenfeld’s fundamental measure theory [45]

Fhs[ρ] = kBT
∫

dr �({nα}), (53)

where the free-energy density � depends on the set of
weighted densities {nα}. Within the original Rosenfeld ap-
proach these consist of four scalar and two vector functions,
which are given by convolutions of the density profile and the
corresponding weight function:

nα (r) =
∫

dr′ρ(r′)wα (r − r′) α = {0, 1, 2, 3, v1, v2},
(54)

where w3(r) = �(R − |r|), w2(r) = δ(R − |r|), w1(r) =
w2(r)/4πR, w0(r) = w2(r)/4πR2, wv2(r) = rδ(R − |r|)/R,
and wv1(r) = wv2(r)/4πR. Here � is the Heaviside function,

δ is the Dirac function, and R = σ/2 where σ is the hard-
sphere diameter.

The attractive free-energy contribution is treated at a mean-
field level:

Fatt[ρ] = 1

2

∫
dr1ρ(r1)

∫
dr2ρ(r2)uatt (|r1 − r2|), (55)

where uatt (r) is the attractive part of the Lennard-Jones–like
potential:

uatt (r) =
⎧⎨
⎩

0 ; r < σ,

−4ε
(

σ
r

)6
; σ < r < rc,

0 ; r > rc.

(56)

which is truncated at rc = 2.5 σ . For this model, the critical
temperature corresponds to kBTc = 1.41 ε.

The external potential V (r) = V (x, z) representing the
presence of the confining walls can be expressed as follows:

V (x, z) = Vw(x, L/2 + z) + Vw(x, L/2 − z), (57)

where L is the mean distance between the walls and Vw(x, z)
describes a potential of a single, sinusoidally shaped wall with
an amplitude A and period P = 2π/k, formed by the Lennard-
Jones atoms distributed uniformly with a density ρw:

Vw(x, z) = ρw

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′

∫ A cos(kx′ )

−∞
dz′

× uw(
√

(x − x′)2 + y′2 + (z − z′)2), (58)

where

uw(r) = 4 εw

[(
σw

r

)12

−
(

σw

r

)6]
(59)

is the 12-6 Lennard-Jones potential.
Minimization of (49) leads to the Euler-Lagrange equation

δF[ρ]

δρ(r)
+ V (r) − μ = 0, (60)

which can be recast into the form of a self-consistent equa-
tion for the equilibrium density profile:

ρ(r) = �−3 exp[βμ − βV (r) + c(1)(r)] (61)

that can be solved iteratively. Here c(1)(r) = c(1)
hs (r) + c(1)

att (r)
is the one-body direct correlation function, whose hard-sphere
contribution,

c(1)
hs (r) = −

∑
α

∫
dr′ ∂�({nα})

∂nα

wα (r′ − r) (62)

and the attractive contribution,

c(1)
att (r) = −β

∫
dr′ uatt (|r − r′|) ρ(r′), (63)

are obtained by varying Fhs and Fatt w.r.t. ρ(r), respectively.
Equation (61) was solved numerically using Picard’s it-

eration on a two-dimensional (2D) rectangular grid with
an equidistant spacing of 0.1 σ (except for the calculations
presented in Fig. 8, where the considered wall parameters
required reducing of the grid spacing down to 0.02 σ ). For
evaluations of the integrals (54), (62), and (63), which are
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in the form of convolutions, we applied the Fourier trans-
form. To this end, we followed the approach of Salinger and
Frink [46], according to which Fourier transforms of ρ(r)
and ∂�({nα})/∂nα are evaluated numerically using the fast
Fourier transform, while ŵα are calculated analytically [47]:

ŵ3(k) = 4πR3 sin(2πkR) − 2πk cos(2πkR)

(2πkR)3
,

ŵ2(k) = 4πR2 sin(2πkR)

2πkR
,

ŵ1(k) = ŵ2(k)

4πR
, ŵ0(k) = ŵ2(k)

4πR2
,

ŵv2(k) = −2πkŵ3(k), ŵv1(k) = ŵv2(k)

4πR
,

where k = (kx, kz ) is the vector in the reciprocal space and
k = |k|. We applied the analogous approach to evaluate the
attractive contribution to the one-body direct correlation func-
tion, c(1)

att (r), as given by Eq. (63). To this end, the Fourier
transform of uatt (r) has been determined analytically:

ûatt (k) = 2 εσ 2

3 kr4
c

[
r4

c �(k; σ ) − σ 4 �(k; rc)
]
, (64)

where

�(k; ξ ) = 2πkξ (2π2k2ξ 2 − 1) cos(2πkξ )

+ (2π2k2ξ 2 − 3) sin(2πkξ )

+ 8π4k4ξ 4 Si(2πkξ ), (65)

where Si(x) = ∫ x
0 sin(t )/tdt is the sine integral.

Once the equilibrium density is obtained, the phase behav-
ior of the system can be studied by determining the grand
potential, as given by substituting ρ(r) back to (49), and the
adsorption, defined as

� = 1

LP

∫ P

0
dx

∫ zw (x)

−zw (x)
dz [ρ(x, z) − ρb], (66)

where ρb is the density of the bulk gas.

V. RESULTS AND DISCUSSION

In this section, we present our DFT results for conden-
sation of simple fluids confined by two sinusoidally shaped
walls using the model presented in the previous section for
the wall parameters εw = 0.8 ε and σw = σ . The results are
compared with the predictions based on the macroscopic and
mesoscopic arguments formulated in Secs. II and III. In order
to test the quality of the predictions, we will consider two
temperatures. We will first present our results for temper-
ature kBT/ε

.= 1.28 ≈ kBTw/ε, which is slightly below the
wetting temperature. At this temperature, the contact angle
of the considered walls is very low (about 1◦), which means
that macroscopically the walls can be viewed effectively as
completely wet, yet they remain covered by only a micro-
scopically thin wetting films (since the isolated walls exhibit
first-order wetting). The reason behind this choice is that we,

first, wish to test the quality of the purely macroscopic theory,
which ignores the presence of wetting layers adsorbed at the
walls. Clearly, if the theory did not work reasonably well
even in the absence of wetting layers, then any attempt of its
elaboration by including mesoscopic corrections accounting
for the presence of wetting layers would not be meaningful.
However, we will show that the macroscopic theory is in a
close agreement with the DFT results for all the types of
phase transitions the system experiences and provides thus
quantitatively accurate description of the phase diagrams for
the considered nanopores. In the next step, we will consider
a higher temperature, kBT/ε = 1.35, which is well above
the wetting temperature, and compare the DFT results with
both the purely macroscopic theory, as well as its mesoscopic
modification. If not stated otherwise, then the comparison will
be illustrated by considering walls with a period P = 50 σ

and amplitudes A = 2 σ or A = 5 σ . We deliberately avoid
systems with large aspect ratios for the reason discussed in
the concluding section.

A. T ≈ Tw

We start with presenting adsorption isotherms obtained
from DFT for nanopores with fixed wall parameters but for
different mean widths L (see Fig. 5). For the smallest L,
the adsorption isotherm exhibits two jumps separating three
capillary phases. As expected, these correspond to G, which
is stable sufficiently far from saturation; B, which is stabilized
at intermediate pressures; and L, which forms close to satura-
tion. The structure of all the capillary phases are illustrated in
Fig. 6 where the 2D equilibrium density profiles are plotted.
As the mean width of the pore L is increased, the interval of
δμ over which the bridge phase is stable becomes smaller and
smaller, as is illustrated in Fig. 5(b). Here the locations of G-B
and B-L transitions become almost identical, which means
that such a value of L is already very close to Lt allowing for
G-B-L coexistence. For L > Lt , the bridge phase is never the
most stable state, so that capillary gas condenses to capillary
liquid directly in a single step [cf. Fig. 5(c)].

Let us first focus on a single-step capillary condensation
at wide slits. Figure 7 displays DFT results showing a depen-
dence of δμcc on the wall amplitude up to A ≈ 20 σ (with both
P and L fixed to 50 σ ). The agreement between DFT results
and the Kelvin equation (24) is very good, and in particu-
lar the inset Fig. 7 confirms that the dependence δμcc(a) is
approximately quadratic for sufficiently small amplitudes, in
line with the expansion (25). We note that the results include
the case of A = 0 corresponding to a planar slit (in which
case the walls exert the standard 9-3 Lennard-Jones potential),
obtained independently using 2D, as well as a simple 1D DFT;
the resulting values of δμcc are essentially identical, which
serves as a good test of the numerics.

Next, instead of varying a, the aspect ratio (and L) will be
kept constant, such that A and P are varied simultaneously. In
Fig. 8 we show DFT results for μcc as a function of A (and P)
which are compared with the prediction given by the Kelvin
equation (24). Recall that according to the latter, μcc depends
on A and P only via their ratio and should thus be constant.
It reveals that although μcc is indeed almost invariable for
sufficiently large values of A and P and approach the limit,
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FIG. 5. Adsorption isotherms obtained from DFT for nanopores formed by walls with A = 2 σ and P = 50 σ . The mean distance between
the walls is (a) L = 8 σ , (b) L = 9 σ , and (c) L = 10 σ .

which is rather close to the Kelvin prediction (with the rela-
tive difference about 3%), we can also detect a microscopic
nonmonotonic regime below A ≈ 2 σ . Here μcc somewhat
contraintuitively drops well below μ‖

cc meaning that such a
microscopically small roughness prevents the fluid from con-
densation. However, this result is completely consistent with
the recent microscopic studies which report that molecular-
scale roughness may actually worsen wetting properties of
substrates, in a contradiction with the macroscopic Wenzel
law [48–51]. This can be explained by a growing relevance of
repulsive microscopic forces accompanied by strong packing
effects when the surface roughness is molecularly small [49].
The decrease of δμcc on reducing A (and P) terminates when
the amplitude is only a fraction of a molecular diameter (A ≈
0.2σ ), where it reaches its minimum; for even finer structure
of the wall the roughness becomes essentially irrelevant and
μcc approaches its planar limit μ‖

cc, as expected.

FIG. 6. Equilibrium 2D density profiles corresponding to (a) cap-
illary gas, (b) bridge, and (c) capillary liquid phases in the nanopore
with A = 2 σ , P = 50 σ , and L = 8 σ [cf. Fig. 5(a)].

FIG. 7. DFT results (symbols) showing a dependence of δμcc on
the aspect ratio a = A/P for nanopores with P = 50 σ and L = 50 σ .
The solid line represents the solution of the Kelvin equation (25) and
the dashed line shows the value of δμ‖

cc for capillary condensation
in the planar slit obtained from 1D DFT. The inset shows the log-
log plot of the DFT results and the straight line with the slope of 2
confirms the prediction (25).
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FIG. 8. DFT results for a dependence of δμcc on A and P, such
that a = A/P = 0.1. The horizontal dotted line indicates the predic-
tion given by Kelvin’s equation (24).
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FIG. 9. A comparison between DFT results (symbols) and the
prediction given by Kelvin’s equation (24) (line) for a dependence of
δμcc on L for walls with amplitudes A = 2 σ (a) and A = 5 σ (b) and
period P = 50 σ .

Finally, we test the Kelvin equation by examining the
dependence of δμcc on L. In Fig. 9 we compare the Kelvin
equation with DFT for nanopores with A = 2 σ and A = 5 σ .
In both cases the agreement is very good, especially for large
L. For the smallest values of L (but still greater than Lt , such
that the condensation occurs within one step), δμcc is slightly
underestimated by the Kelvin equation but the agreement is
still very reasonable.

We further consider narrow pores that experience conden-
sation in two steps via formation of liquid bridges. We start
with examining the location of the bridges and test the relia-
bility of Eq. (26) and its approximative perturbative solution.
Figure 10 shows a dependence of x0 specifying the location,
at which the menisci meet the walls, on δμ, as obtained from
DFT for nanopores with amplitudes A = 2 σ and A = 5 σ .
The values of x0 corresponding to DFT have been read off
from the density profiles in the following way. We approxi-
mate the liquid-gas interface by a part of a circle, zc(x), of the
Laplace radius R = γ /δμ�ρ. For this, we first determine the
point (xm, 0), where the interface intersects the x axis using
the mid-density rule ρ(xm, 0) = (ρg + ρl )/2 (see Fig. 2) [52].
This allows us to determine the center of the circle, xR =
xm + R, and the contact point x0 is then obtained using the
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FIG. 10. A dependence of x0, specifying the location where the
bridging menisci meet the walls, on δμ, for the slits with A = 2 σ

and L = 8 σ (a) and A = 5 σ and L = 14 σ (b). The period of the
walls is P = 50 σ in both cases. A comparison is made between
DFT results (symbols), the prediction given by the solution of
the quartic equation, (26), (full line), and its simple approxima-
tive solution, (32), based on the perturbative scheme (dotted line).
The DFT results include states where the bridges are stable (full
circles), as well as the states where the bridges are metastable (open
circles).

equal tangent condition, z′
w(x0) = z′

c(x0). The results include
the contact points of bridges which correspond both to stable
(full symbols) and metastable (empty symbols) states and are
compared with the solutions of the quartic equation (26) and
its approximative analytic solution given by Eq. (32). The
comparison shows a very good agreement between DFT and
Eq. (26), which systematically improves with increasing A
(as verified for other models, the results of which are not
reported here). This is because the location of bridges is more
sensitive to uncertainty in R for walls with smaller amplitudes.
The simple explicit expression (32) proves to be a reasonable
approximation, except for a near proximity of saturation; how-
ever, the bridge states are already metastable in this region.

We further test the macroscopic prediction given by
Eq. (17) for a dependence of δμgb on L. The comparison

024801-10



PHASE BEHAVIOR OF FLUIDS IN UNDULATED … PHYSICAL REVIEW E 106, 024801 (2022)

0.00

0.02

0.04

0.06

0.08

0.10

 6  7  8  9  10  11  12  13  14

(a)

δμ
gb

 / 
ε

L / σ

0.00

0.02

0.04

0.06

0.08

0.10

 12  13  14  15  16  17  18  19  20

(b)

δμ
gb

 / 
ε

L / σ

FIG. 11. Comparison of the location of G-B transition, δμgb, as
a function of L obtained from DFT (symbols) and the macroscopic
prediction given by Eq. (17) (solid line) for nanopores formed by
sinusoidally shaped walls with the amplitude A = 2 σ (a) and A =
5 σ (b) and period P = 50 σ . Also shown are the estimated lower
(red dotted line) and upper (red dashed line) spinodals of B phase,
as obtained from Eqs. (38) and (39), respectively. The DFT results
include states where the bridges are stable (full circles), as well as
the states where the bridges are metastable (open circles).

between the macroscopic theory and DFT is shown in Fig. 11,
again for the amplitudes of A = 2 σ and A = 5 σ . It should
be noted that in both cases the bridging transitions occur over
practically identical range of the distance between crests of the
opposing walls (4–8 σ ), although in some cases the transitions
lie already in a metastable region. The presence of the lower
bound can be interpreted as the minimal width between the
crests allowing for condensation and is comparable with the
critical width for the planar slit (Lc ≈ 5 σ at this tempera-
ture). On the other hand, the presence of the upper bound is
due to a free-energy cost for the presence of menisci, which
destabilizes the bridges, when L becomes large. The DFT
results are compared with the prediction given by Eq. (17)
[with x0 obtained from Eq. (26)] and overall the agreement is
very good, especially for A = 5 σ , owing to a very accurate
prediction of x0 (cf. Fig. 10). We also plot the estimated lower
and upper limits of the bridging states determining the range
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FIG. 12. Comparison of the location of B-L transition, δμbl, as a
function of L obtained from DFT (symbols) and the macroscopic pre-
diction given by Eq. (18) (line) for nanopores formed by sinusoidally
shaped walls with the amplitude A = 2 σ (a) and A = 5 σ (b) and the
period P = 50 σ . The DFT results include states where the bridges
are stable (full circles), as well as the states where the bridges are
metastable (open circles).

of stability of bridges for a given L, as obtained from Eqs. (38)
and (39). The predicted spinodals indeed demarcate the DFT
results for the G-B equilibrium.

We now turn our attention to the second step of the con-
densation process in narrow pores, which corresponds to B-L
transition. In Fig. 12 we compare the dependence of δμbl on
L between DFT results and the prediction given by Eq. (18).
Although still very reasonable, the agreement, compared to
the previous results for G-B transition, is now slightly less
satisfactory. This can be attributed to a more approximative
macroscopic description of L phase, which, unlike the low-
density G phase, exhibits strongly inhomogeneous structure
(cf. Fig. 6).

In Fig. 13 we further show a dependence of Lt , separat-
ing one-step and two-step condensation regimes, on the wall
amplitude A. The DFT results are compared with the macro-
scopic theory, according to which the dependence of Lt (A) is
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FIG. 13. Comparison of the threshold mean width Lt , allowing
for a three-phase coexistence, as a function of the wall amplitude A,
obtained from DFT (symbols) and from the macroscopic prediction
given by Eq. (67) (line).

given implicitly by solving

Sl

S
= 	l

w − 	

	l
w

, (L = Lt ). (67)

This equation follows by combining any pair of the three
phase boundaries conditions, δμcc(L), δμgb(L), and δμbl(L),
as given by Eqs. (8), (17), and (18), respectively. The compari-
son reveals that the macroscopic theory is in a close agreement
with DFT at least for the considered range of (small) ampli-
tudes.

The phase behavior in sinusoidal nanopores is summarised
in the phase diagrams displayed in Fig. 14 for A = 2 σ and
A = 5 σ , where the phase boundaries between G, B, and L
phases are shown in the δμ-L plane. Note that while all the
G-L, B-L, and B-G lines terminate at the triple point, only the
G-L line is semi-infinite. This is in contrast to the B-L line,
which is restricted geometrically by the condition L = 2A
and the G-B line which possesses the critical point, allowing
for a continuous transition between G and B phases; this
is demonstrated in Fig. 15 showing a continuous adsorption
corresponding to the green line in Fig. 14(a). The compari-
son of the DFT results with the macroscopic theory reveals
an almost perfect agreement for both cases, except for the
critical point, which the macroscopic theory does not capture.
Apart from the equilibrium coexistence lines, the borderlines
demarcating the stability of the B phase within DFT are shown
and compared with the lower and upper spinodals according
to the geometric arguments (38) and (39), respectively. Here,
perhaps somewhat surprisingly, the macroscopic prediction
for the upper spinodal is more accurate than for the lower
spinodal, especially for the larger amplitude.

B. T > Tw

Let us now consider a temperature corresponding to
kBT/ε = 1.35, which is well above Tw, to examine the impact
of the wetting layers on the fluid phase behavior in sinusoidal
nanopores and to test the mesoscopic corrections proposed in
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FIG. 14. Phase diagrams showing the phase behavior of fluids
in nanopores with the walls of amplitudes A = 2 σ (a) and A = 5 σ

(b) and the period P = 50 σ , in the δμ-L plane. The phase boundaries
between G, B and L phases correspond to the DFT results (black
solid line) and the macroscopic theory (black dashed line). Also
shown are the spinodals demarcating the limits of stability of B
phase, as determined by DFT (solid red lines) and the macroscopic
theory (dashed red lines). All the three phase boundaries meet at the
triple point T, for which L = Lt (cf. Fig. 13). The DFT results also
include the critical point Cgb, whose presence allows for a continuous
formation of bridges, cf. Fig. 15. The vertical dotted lines depicted in
the upper panel correspond to adsorption isotherms shown in Fig. 5
(blue) and in Fig. 15 (green).

Sec. III. We start by presenting the dependence of the film
thickness 	π adsorbed on a planar, 9-3 Lennard-Jones wall, on
δμ, as obtained from DFT (see Fig. 16); this is an important
pre-requisite for our further mesoscopic analysis requiring
an explicit expression for 	π (δμ). To this end, we fitted the
asymptotic form of 	π (δμ) to the DFT data obtaining 	π ≈
1.363δμ−1/3. Figure 16 shows that the asymptotic power law
is surprisingly accurate even far from the bulk coexistence and
will thus be used for the further analyzes.

We now turn to wide slits (with L = 50 σ ), for which the
condensation is a one-step process from G to L. Figure 17
shows the comparison of DFT results for a dependence of
δμcc on the aspect ratio a = A/P, with the predictions ob-
tained from the macroscopic Kelvin equation, Eq. (24), and its
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FIG. 15. Adsorption isotherm corresponding to the nanopore
with A = 2 σ , P = 50 σ , and L = 7.4 σ illustrating continuous for-
mation of B phase. The thermodynamic path corresponds to the green
line in the phase diagram shown in Fig. 14.

mesoscopic extension given by Eq. (41). While the shape of
the graphs δμcc(a) given by both theories is very similar, the
mesoscopic theory provides a substantial improvement over
the macroscopic theory and yields a near perfect agreement
with DFT especially for lower values of a. Clearly, the im-
provement is due to the fact that according to the mesoscopic
theory the nanopores are effectively thinner, which shifts the
predicted values of δμcc upwards (further away from satura-
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FIG. 16. DFT results showing the thickness 	π of the liquid film
adsorbed on a planar Lennard-Jones wall as a function of δμ. For
small values of δμ, the results are consistent with the expected
asymptotic power law, as is verified by the log-log plot shown in
the inset, where the straight line has a slope of −1/3. The line in the
figure corresponds to the fit of the power law to the DFT data, which
gives 	π = 1.363 δμ−1/3.

FIG. 17. Comparison of the dependence of δμcc on the aspect
ratio a = A/P between DFT (symbols), the macroscopic theory,
Eq. (24), (solid line) and the mesoscopic theory, Eq. (41), (dashed
line) for nanopores with P = 50 σ and L = 50 σ . The dotted line
indicates the value of δμ‖

cc for capillary condensation in the planar
slit obtained from 1D DFT. The inset shows the log-log plot of the
DFT results and the straight line with the slope of 2 confirms the
prediction (25).

tion) compared to the macroscopic treatment. In addition, the
horizontal line denoting 1D DFT results for a = 0 is again
completely consistent with the 2D DFT results, while the inset
of the figure confirms the predicted quadratic dependence of
δμcc on a for small values of the aspect ratio.

Similar conclusion also applies to the results shown in
Fig. 18, where we display a dependence of δμcc on L for
nanopores with amplitudes A = 2σ and A = 5 σ . A compari-
son between DFT, the macroscopic theory and its mesoscopic
correction is shown for a large interval of pore widths in-
cluding those, for which capillary condensation is a two-step
process and thus the G-L transition lies in a metastable re-
gion (open circles). In both cases, the mesoscopic correction
provides a considerable improvement over the macroscopic
theory.

Finally, we test the impact of the mesoscopic correction,
now based on the RP construction, for narrow pores, which
exhibit capillary condensation in two steps. The dependence
of the location of G-B and B-L transitions on L is shown in
Figs. 19 and 20, respectively. Again, the mesoscopic correc-
tion leads to a remarkable improvement over the macroscopic
theory over the entire interval of considered widths, including
those, where G-B and B-L transitions are already metastable
w.r.t. to G-L transition. In fact, the improvement is not only
quantitative. It is because that, at this temperature, the macro-
scopic theory hits the upper spinodal (for the G-B equilibrium)
and the lower spinodal (for the B-L equilibrium) within the
range of L where both DFT and the mesoscopic correction
allows for the presence of B phase.

VI. SUMMARY AND OUTLOOK

We have studied phase behavior of fluids confined in
nanopores formed by a pair of completely wet walls of
smoothly undulated shapes. The varying local width of such
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FIG. 18. Comparison of the dependence of δμcc on L between
DFT results (symbols), the prediction given by the fully macroscopic
Kelvin equation (24) (dotted line) and its mesoscopic correction
given by Eq. (41) (solid line). The nanopores are formed of sinu-
soidally shaped walls with the amplitudes of A = 2 σ (a) and A = 5 σ

(b), and period P = 50 σ . The DFT results include states which are
stable (full circles) and also metastable (open circles).

confinements implies that condensation from a low-density
phase of capillary gas (G) to a high-density phase of capillary
liquid (L) may be mediated by a sequence of first-order con-
densation transitions corresponding to a formation of liquid
bridges between adjacent parts of the walls. Our analysis fo-
cused on sinusoidally shaped walls of period P and amplitude
A, whose mean separation is L. The walls are placed such
that one is the reflection symmetry of the other, meaning their
local separation varies smoothly between L − 2A and L + 2A.
The nature of condensation in such pores is governed by the
mean distance between the walls and can be characterized by
the value Lt , which is shown to increase nearly linearly with
A. For separations L > Lt , the condensation is a single-step
process from G to L, similar to that in planar slits. However,
for L < Lt , the condensation is a two-step process, such that
the capillary gas first condenses locally to join the crests of
the walls by liquid bridges forming the bridge phase (B). On
further increase of the chemical potential (or pressure), the
system eventually experiences another first-order transition
corresponding to a global condensation from B to L. It is only
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FIG. 19. Comparison of the location of G-B transition, δμgb, as
a function of L, obtained from DFT (symbols), the macroscopic
prediction given by Eq. (17) (dotted line) and its mesoscopic correc-
tion based on the RP construction (full line), for nanopores formed
of sinusoidal walls with the amplitude A = 2 σ (a) and A = 5 σ

(b) and period P = 50 σ . The macroscopic results terminate at the
(macroscopically predicted) upper limit of B stability (denoted by
the cross), when the radius of the bridge menisci becomes R = R+

s .
The DFT results include states which are stable (full circles) and also
metastable (open circles).

for the walls separation L = Lt , which allows for a three-phase
G-B-L coexistence.

The phase behavior of fluids confined by sinusoidal walls
has been described in detail using macroscopic, mesoscopic
and microscopic models. On a macroscopic level, we assumed
that the confined fluid in G and L phases has a uniform density
corresponding to that of a stable bulk gas or a metastable bulk
liquid, at the given temperature and chemical potential. The
liquid bridges in B phase are separated from the surrounding
gas by curved menisci, whose shapes were modelled as a
part of a circle of the Laplace radius connecting the walls
tangentially. Based on this description we have obtained pre-
dictions for the pertinent phase boundaries. Furthermore, we
have imposed simple geometric arguments to estimate lower
and upper limits of metastable extensions of B phase.

The comparison with DFT results has shown that the
macroscopic description provides a very accurate prediction
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FIG. 20. Comparison of the location of B-L transition, δμbl, as
a function of L obtained from DFT (symbols), the macroscopic pre-
diction given by Eq. (18) (dotted line) and its mesoscopic correction
based on the RP construction (full line), for nanopores formed of
sinusoidal walls with the amplitude A = 2 σ (a) and A = 5 σ (b) and
period P = 50 σ . The macroscopic results terminate at the (macro-
scopically predicted) lower limit of B stability (denoted by the cross),
when the radius of the bridge menisci becomes R = R−

s . The DFT
results include states which stable (full circles) and also metastable
(open circles).

for the fluid phase behavior in sinusoidal pores even for micro-
scopically small values of the geometric parameters, provided
the influence of the wetting layers adsorbed at the walls is
insignificant. However, quite generally, their impact cannot
be neglected when the pores are formed by completely wet
walls of molecularly small separations. To this end, we have
proposed simple mesoscopic corrections of the macroscopic
theory, which take into account the presence of the wetting

layers, whose width has been approximated by 	π correspond-
ing to the film thickness adsorbed on the pertinent planar
wall. This approximation is thus consistent with Derjaguin’s
correction of the Kelvin equation for the location of capillary
condensation in planar slits. For the transitions involving B
phase, we employed the simple geometric construction due to
Rascón and Parry, which, too, assumes a coating of the walls
by a liquid film of thickness 	π , which modifies the effective
shape and separation of the confining walls. The comparison
with DFT results revealed that the mesoscopic corrections im-
prove the predictions considerably and provide a description
of the fluid phase behavior in sinusoidally shaped walls with a
remarkable accuracy, at least for the case of low to moderate
values of the aspect ratio a = A/P.

The reason why we have not considered high values of a,
is not because the geometric arguments would fail in such
cases—in fact, it was shown that the predictions for the lo-
cation of the menisci are more accurate for more wavy walls
than for flatter ones—although the mesoscopic corrections
might be expected to be more approximative as a increases.
There is, however, a qualitative reason, why the current de-
scription should be modified for such systems. This is related
with the phenomenon of the osculation transition [53] which
separates the regimes where the troughs in G and B phases are
filled with a gas (as assumed in this work), from that where
the troughs are partially filled with liquid. Allowing for this
phenomenon, and the accompanying interference between the
“vertical” and the “horizontal” menisci, would make the phase
behavior scenario even much more intricate and we postpone
this for future studies.

There are many other possible extensions of this work.
For models with high values of a, one should also per-
haps consider some improvement over the current mesoscopic
corrections that would lead to a geometry- and position-
dependent nonuniformity in the width of the wetting layers.
A more comprehensive description of the phase behavior
in sinusoidal nanopores should also take into account the
prewetting transition, at which the thickness of the adsorbed
layers has a jump discontinuity. For partially wet walls, the
extension of the macroscopic theory would be straightforward
but there is another interfacial phenomenon usually referred
to as unbending transition which should be accounted for
[54]. Natural modifications of the nanopore model include an
examination of the broken reflection symmetry on the stability
of the bridge phase. More intricate extensions of the current
model comprise pair of walls with different wavelengths or
walls with additional undulation modes.
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