
PHYSICAL REVIEW E 106, 024705 (2022)

Structure and Lehmann rotation of drops in a surfactant-doped bent-core liquid crystal
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The structure of the nematic (cholesteric) drops that form at the clearing temperature of a mixture of the
bent-core molecule CB7CB and the rodlike molecule 8CB doped with a surfactant is optically determined.
Using experimental observations and numerical simulations, it is demonstrated that the director field inside
these drops is not escaped concentric, as previously proposed, but twisted bipolar. The Lehmann rotation of these
drops in the presence of a temperature gradient is described. Their rotation velocity is shown to be proportional
to the temperature gradient and to the surface twist angle of the director field and inversely proportional to
the drop radius, thus revealing a fundamental scaling law for the Lehmann effect of nematic and cholesteric
twisted-bipolar droplets.
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I. INTRODUCTION

The Lehmann effect is the continuous rotation of liquid
crystal drops with a chiral structure subjected to a tempera-
ture gradient. Discovered by Otto Lehmann in 1900 [1], this
effect was reobserved recently by several authors, both in the
cholesteric phase of thermotropic liquid crystals (LCs) [2–4]
and in the nematic phase of a lyotropic chromonic LCs when
the director field inside the drops was twisted [5]. Although
known for a long time, the Lehmann effect still attracts a lot
of interest because it is far from being completely understood
and because it provides a fundamental model of microrotors
in the larger context of out-of-equilibrium anisotropic liquids
and active matter [6]. Several models have been proposed (for
a review, see [7]), but none of them is really satisfactory, par-
ticularly when the droplets thermodynamically coexist with
their own isotropic liquid. In this context, measurements in
an additional system are interesting and could help to better
understand this effect in the future.

An attractive system for such a study is the nematic
phase of the flexible bent-shaped molecule CB7CB [1,7-bis(4-
cyanobiphenyl-4-yl)heptane]. This molecule is known to give
an achiral nematic phase (N) with a giant elastic anisotropy
that is responsible for a transition to the nematic twist-bend
phase (NTB) with ultrafast dynamics [8] as temperature is low-
ered. Interestingly, this anisotropy can also be used to prepare
drops in which the director field is spontaneously twisted, a
necessary condition (but not always sufficient) to observe the
Lehmann effect. Such nematic drops were already observed
in LC-in-glycerine emulsions [9] and in the coexistence re-
gion with the isotropic phase of the LC, first in chromonic
liquid crystals [5,10] and more recently in mixtures of CB7CB
and long chain amphiphiles [11]. In the latter study by
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Krishnamurthy and collaborators, an attentive observation
showed that the drops were slowly rotating in the presence
of a temperature gradient, revealing the Lehmann effect. This
observation was interesting because the Lehmann effect was
never observed before in the nematic phase of a thermotropic
LC. In addition, the internal structure of the rotating drops was
suspected to be escaped concentric, which was remarkable,
as all the drops observed so far in the experiments on the
Lehmann effect had other structures.

Motivated by the preliminary study of Krishnamurthy
et al. [11], we characterize here the structures of uncon-
fined droplets and the Lehmann effect in this system, using
a combination of experimental, theoretical and numerical
approaches.

First, we measured the optical indices and the elastic con-
stants of the LC. These measurements proved to be much
more delicate than expected at the transition temperature.
Because they are crucial for the rest of this study—especially
for the comparison between simulated and experimental mi-
croscope images—we detail them in the body of the text
and, in particular, present a useful single-sample measurement
technique for the elastic constants K1−3 (Sec. II). We then
present our experimental results on the drops and their rota-
tion in the presence of a temperature gradient—the so-called
Lehmann effect—when the LC is doped or not with a chiral
molecule (Sec. III). From these measurements we conclude
that the drops are likely twisted bipolar rather than escaped
concentric. To confirm this point, we propose a theoretical
study of drops (Sec. IV) in two parts. The first one is devoted
to the calculation of their director field by two independent
methods—from a generalization of the Williams theory and
from a full-vectorial numerical simulation—and the second
one is devoted to the calculation of their optical contrast
under the microscope thanks to a powerful beam propagation
method. Finally, we propose an original experimental scaling
law which accounts for all the experimental results on the
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FIG. 1. Molecules used: (a) LC CB7CB, (b) LC 8CB, (c) surfac-
tant OP, and (d) chiral dopant R811.

Lehmann rotation of twisted-bipolar droplets (Sec. V). Con-
clusions and perspectives are drawn in Sec. VI.

II. LIQUID-CRYSTAL CHARACTERIZATION

It is well known that the Lehmann rotation velocity of the
drops crucially depends on their internal texture. To determine
the latter, the elastic constants must be known precisely, as
well as the birefringence and the spontaneous twist (when
the LC is doped with a chiral molecule). These quantities are
essential to calculate the director field and then reconstruct the
images of the drops under the microscope before comparing
them with those actually observed. In this section we detail
these measurements after describing the phase diagram.

A. Phase diagram

The LC used is the flexible dimer CB7CB. It was pur-
chased from Synthon (Germany) and used without further
purification. It was dusted off using Pall Nanosep MF centrifu-
gal devices with a pore diameter of 0.2 µm. All experiments
were performed with lot no. 01422-14680.19. In CB7CB, the
spacer between the two cyanobiphenyl (CB) groups contains
an odd number of carbons (7), resulting in a bent-shaped
molecule [Fig. 1(a)] [12]. This molecule is known to be
achiral. Because of its shape, this LC has a phase transi-
tion between an ordinary nematic and a twist-bend nematic
phase at TNB ≈ 100.4 ◦C. The nematic phase melts at TNI ≈
112 ◦C. By mixing CB7CB with a small amount of the rodlike
molecule 8CB [4-n-octyl-4’-cyanobiphenyl, Fig. 1(b)], it is
possible to substantially decrease both TNI and TNB without
increasing the domain of existence of the nematic phase too
much. The phase diagram of the mixtures CB7CB+8CB is
given in Ref. [13]. For practical reasons (see below), we used
the mixture CB7CB+15 wt % 8CB (C15 in the following).
The LC 8CB was purchased from Synthon (Germany) and
used as received. To further decrease the melting temper-

90

85

80

75

T 
(°

C
)

543210
C (wt%  OP)

I 

N + I

N

NTB

FIG. 2. Phase diagram of the mixture C15 + OP.

ature and favor a planar anchoring of the director at the
nematic-isotropic interface, C15 was doped with the surfac-
tant 2-octadecoxypropanol (OP). The phase diagram of the
mixture C15+OP is shown in Fig. 2. For this measurement
and those of the birefringence and elastic constants described
below, a homemade oven was used to fix the temperature
of the samples. The temperature was regulated to within
±0.01 ◦C thanks to an ATNE ATSR100 PID temperature con-
troller. Inside this oven the temperature is homogeneous to
within a hundredth of a degree over the entire surface of the
sample (10×10 mm in general). In practice, well-separated
spherical drops are observed at large concentrations of sur-
factant, typically more than 5–6 wt %. For this reason, all
our measurements on the Lehmann effect were performed
with a mixture C15+5.65 wt % OP. To compensate for a
small left-handed chirality of this mixture (see below), this
mixture was also doped with very small amounts of the chi-
ral molecule R-(+)-octan-2-yl 4-((4-(hexyloxy)benzoyl)oxy)
benzoate [R811 from Merck (Germany), Fig. 1(d)]. We noted
that adding R811 did not change the transition temperatures
in a measurable way.

B. Optical index measurement

The birefringence was measured using a Berek rotating
compensator following the protocol described in Ref. [14].
For this measurement, we prepared planar parallel samples.
The glass plates were treated for planar unidirectional anchor-
ing with the polyimide Nissan 0825. “Parallel” means that
the two glass plates were rubbed in the same direction, so
that the director is parallel to the glass plates in the middle
of the sample in spite of the pretilt angle on the glass plates
(of the order of 2◦). Nickel wires were used as spacers to
fix the sample thickness. The thickness was measured using
an USB2000 Ocean Optics spectrometer. Birefringence mea-
surements were performed in the vicinity of the transition
temperature, below and above the solidus temperature TNI

at which the nematic phase starts to melt. Typical measure-
ments in C15 at three different wavelengths (0.436, 0.546,
and 0.633 µm) are shown in Fig. 3(a). These data show
that birefringence strongly increases when the temperature
decreases below TNI but is almost constant in the coexistence
region between the two phases. For this reason, we will
use the values of the birefringence measured at the solidus
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FIG. 3. Birefringence at three different wavelengths: 0.436 µm
(filled triangles), 0.546 µm (empty squares), and 0.633 µm (filled
circles). (a) Variation as a function of temperature. The three different
colors correspond to three different samples. (b) Values measured at
TNI as a function of the concentration of OP. Solid lines are the best
fits with a third-order polynomial.

temperature in our optical calculation of the drop images
under the microscope (see below). In practice, the drops were
observed in mixtures of C15 and the surfactant OP. According
to the phase diagram, TNI decreases and the freezing range
increases when the concentration of OP increases. So one can
expect that the birefringence increases when adding OP, which
we checked experimentally by measuring the birefringence at
TNI as a function of the concentration of OP. This is shown
in Fig. 3(b). Experimentally, the most stable and spherical
drops were observed in a mixture C15+5.65 wt % of OP
(mixture M1 in the following). At this concentration of OP,
the birefringence was difficult to measure because OP starts
to precipitate just below TNI. For this reason we found it
more convenient to extrapolate our birefringence data at this
concentration. From the extrapolations shown in Fig. 3(b), we
found �n = 0.0929 at 0.633 µm, �n = 0.1011 at 0.546 µm
and �n = 0.116 at 0.436 µm. We then fitted these data to a
Cauchy law A + B/λ2 + C/λ4 to obtain the birefringence at
TNI in mixture M1 as a function of the wavelength given in
micrometers:

�n ≈ 0.063 82 + 0.013 215

λ2
− 6.266 × 10−4

λ4
. (1)
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FIG. 4. Optical index ni of the isotropic liquid as a function of
temperature in mixture M1 at two wavelengths: 0.633 µm (filled
circles) and 0.546 µm (empty squares). The solid lines represent the
best linear fits to the data. The two vertical dashed lines mark the
solidus and liquidus temperatures.

This formula will be used for calculating the image of
drops under a microscope. For this purpose we also need
to know the optical index ni of the isotropic liquid and the
ordinary index no in the nematic phase. We measured ni above
the solidus temperature in the mixture M1 using the wedge
cell technique [15]. A wedge cell was prepared between two
ITO glass plates of low resistivity. The angle of the wedge
was set with a gold wire of 50 µm diameter. Under a micro-
scope with a low power (4×) objective and monochromatic
illumination, succession of interference fringes was observed.
From the interfringe distances iair and iLC measured before
and after the cell was filled with the LC, we deduced the
index ni = iair/iLC. In practice, the fringes were visible un-
der the microscope at 0.633 µm and 0.546 µm but were not
detectable at 0.436 µm. Our measurements at the first two
wavelengths are shown in Fig. 4. From these measurements,
as a function of temperature above the liquidus temperature
we extrapolated the value of the index of the isotropic phase
in the middle of the coexistence region, at about 81.5 ◦C,
which is the temperature at which the drops were usually
observed in the mixture M1. This gave ni(0.546 µm) ≈ 1.61
and ni(0.633 µm) ≈ 1.597. The value of the index at the other
wavelengths was calculated by using a simplified Cauchy law
ni = Ai + Bi/λ

2. From the two values found at 0.633 µm and
0.546 µm, we calculated

ni ≈ 1.5592 + 0.015 139

λ2
, (2)

where λ is in micrometers. This yields ni(0.436 µm) = 1.648.
Finally, we deduced the values of the ordinary index no and

extraordinary index ne by assuming that no = ni − �n/3 and
ne = ni + 2�n/3. These relations are known to give ne and
no at the transition temperature with a typical error less than
1% [16]. By using the two previous relations (1) and (2), we
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found

no ≈ 1.538 + 0.010 734

λ2
+ 2.089 × 10−4

λ4
, (3)

ne ≈ 1.602 + 0.023 949

λ2
+ 4.178 × 10−4

λ4
. (4)

C. Pitch measurement

In principle, 8CB, CB7CB, and OP are not chiral materials,
so one expected to observe a nematic phase below TNI in C15
and its mixtures with OP. In practice, the situation turned out
to be different, as we noted immediately by observing that the
drops were all rotating in the same direction in the coexistence
region of the mixture C15+5.65 wt % OP in the presence
of a vertical gradient. This clearly indicated that the director
field was twisted in the same direction in all drops, showing
the existence of a chiral bias in our samples. For this reason,
we systematically measured the pitch in mixtures of C15 for
different concentrations of OP and found it was essentially the
same in all the mixtures studied, ranging between −150 µm
and −140 µm. This clearly indicated that OP was not chiral.
We then measured the pitch in the pure mixture C15 and found
the same pitch, showing that either CB7CB or 8CB was chiral.
After checking that our 8CB was not chiral, we concluded that
our lot of CB7CB contained a chiral impurity.

In practice, the classical Cano wedge technique [17] could
not be used to measure the pitch because it was too large. For
this reason we chose another method consisting of measuring
the rotatory power of thin samples sandwiched between a
plate treated for planar unidirectional anchoring and a second
one treated for planar sliding anchoring. The details of this
technique are given in Ref. [14]. In short, the sample was
placed under the microscope and was illuminated with a polar-
ized monochromatic light beam whose incident polarization
was parallel to the director on the bottom plate treated for
planar unidirectional anchoring. The rotatory power was de-
termined by measuring for which angle between the polarizer
and the analyzer the transmitted intensity Itr was maximum.
From this angle, the pitch was determined by using the Ong
formula [18,19], which allowed us to calculate Itr knowing the
birefringence at the wavelength chosen (in our measurements,
0.546 µm). Note that using this formula was necessary when
T was close to TNI, because the Mauguin condition for the adi-
abatic rotation of the light polarization was not fully satisfied
under these conditions.

A curve of pitch vs temperature for the mixture C15 is
shown in Fig. 5. As expected, the pitch is almost constant at
high temperature (close to −145 µm at TNI), and it strongly
increases (in absolute value)—without diverging—upon ap-
proaching the NTB phase. This result agrees with previous
measurements in the vicinity of the NTB phase [20,21].

In addition, we measured the helical twist power (HTP) of
the chiral molecule R811 in C15. The measurement was made
by using the classical Cano wedge technique with a sample of
C15 doped with 1 wt % of R811. It gave HTP ∼ 19 μm−1

wt %−1 at the transition temperature. From this measurement,
the concentration of R811 required to compensate our samples
was evaluated to be about 0.036 wt %. Hence from here for-
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FIG. 5. Pitch as a function of temperature in the mixture C15.
The pitch is negative, meaning that we are in reality dealing with a
long-pitch left-handed cholesteric phase.

ward we refer to the nearly compensated mixture, M1+0.036
wt % R811, as M2.

D. Elastic constants measurement

Precisely measuring the elastic constants is essential to
determine the director field inside the drops. In principle, the
elastic constants can be obtained from capacitance measure-
ments of planar samples. In general, two types of cells are
used: antiparallel planar cells to determine the splay and bend
constants K1 and K3, and π/2-twisted cells to determine the
twist constant K2, knowing K1 and K3. Apart from the fact that
it is necessary to prepare two types of cells, the main disadvan-
tage of this method is that one can never be completely sure
that the constants are measured exactly at the same tempera-
ture. This becomes a serious problem when measurements are
made in the vicinity of the melting temperature TNI, because
the elastic constants change rapidly with temperature in this
region. In addition, the larger the concentration of OP, the
larger the uncertainty in TNI. This can cause significant errors
in samples with a high concentration of OP. For these reasons
we looked for an alternative method allowing us to measure
the three constants simultaneously in the same cell (and conse-
quently, exactly at the same temperature with respect to TNI).

For this purpose we used planar parallel cells of typical
thickness 22 μm. The two ITO electrodes were treated with
the polyimide Nissan 0825 and rubbed in a single direction to
induce a planar unidirectional anchoring. The pretilt angle θa

was close to 2◦ (see Appendix). The protocol was the follow-
ing. First we measured the capacitance curve of the sample
between 0.1 and 3 V rms when the director field inside was
not twisted (this is the case when the sample is cooled from
the isotropic phase). In practice, measurements were taken
with a LCR meter HP 4284A controlled with a LABVIEW

program by using increments of 0.01 V rms between 0.1
and 2 V rms and of 0.1 V between 2 and 3 V rms and a
time interval between each measurement of 20 s. Note that
a little over an hour is needed to record a full capacitance
curve. From the fit of this curve we obtained K1 and K3 (see
Appendix). We then imposed a large electric field to form a
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FIG. 6. Normalized capacitance curves obtained with the same
planar parallel sample of CB7CB+2.25 wt % OP at 86.5 ◦C (TNI −
T = 0.4 ◦C). Data in blue have been obtained by increasing the
voltage and those in yellow by decreasing the voltage. d = 17.1 μm,
θa = 2◦, α = 0.283, K1 = 1.8 pN, K2 = 0.85 pN, K3 = 0.576 pN,
and P = −145 µm.

π wall [22] (in practice, a voltage of 20 V rms was always
sufficient near TNI). In all our samples, this wall formed af-
ter propagation on one plate of a +1/2 surface disclination
line [23] and not via a biaxial melting of the nematic order
in the midplane, as described in Ref. [24]. Once the wall
was formed, the voltage was switched to 3 V rms, resulting
in a director field twisted by 180◦, and a new capacitance
curve was obtained by slowly decreasing the voltage down
to 0.1 V by increments of –0.05 V. In that case, the curve
was recorded manually to minimize the measurement time
while being sure that the sample was equilibrated after each
voltage change. In this way it only took 10 to 15 minutes
to record the capacitance curve. This precaution was taken to
prevent the sample from reorienting during the measurement,
which could happen if the measurement time was too long.
From the fit of this new curve, the constant K2 was deduced
since both K1 and K3 were known from the analysis of the
previous curve. An example of capacitance data obtained this
way is shown in Fig. 6 with the corresponding fits. In this
graph the normalized capacitance is the capacitance divided
by the capacitance measured at very low voltage below the
onset of instability. The equations and the protocol used to
fit the two capacitance curves are recalled in Appendix. The
elastic constants measured for C15 are shown in Fig. 7(a).
From similar measurements in mixtures of C15 and OP, we
deduced the values at TNI of the elastic constants for different
concentrations of OP. The result is shown in Fig. 7(b). Note
that we did not measure the elastic constants in the mixture
C15+5.65 wt % OP, because OP tends to precipitate and form
small aggregates at TNI in this mixture. This phenomenon was
also observed in the other mixtures but at a temperature lower
than TNI .

III. DROPS AND LEHMANN EFFECT:
EXPERIMENTAL RESULTS

A. Drop observation

All observations were made with a Leica Laborlux 12
Pol microscope equipped with a Leitz NPL FLUOTAR L
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FIG. 7. (a) Elastic constants as a function of temperature in
C15. Filled and empty symbols correspond to two different samples.
(b) Elastic constants measured at TNI as a function of the concen-
tration of OP. In the two graphs, the circles correspond to K1, the
squares to K2, and the triangles to K3. The solid lines show the best
fits with a fourth-order polynomial. These fits give K1 = 2.67 pN,
K2 = 1.36 pN, and K3 = 0.77 pN at C = 5.65 wt %.

25 objective of numerical aperture 0.35 and a Guppy F-503
CMOS camera. The aperture diaphragm of the microscope
was closed to the maximum, resulting in a numerical aperture
of the illuminating beam of the order of 0.05. All observa-
tions were made in white light produced by a 100-W halogen
lamp, whose spectrum was measured with our spectrometer.
A Mettler oven FP85 was used to observe the drops in the
coexistence region. The samples were prepared between Du-
ran soda lime float glass slides of thickness 1 mm and optical
index 1.51. A thin film of a polymercaptan was deposited by
spin coating on the plates following the protocol described in
Ref. [25]. The sample thickness was fixed with nickel wires
and was close to 22.5 μm in all our experiments with the
drops.

The first observations of drops were made in the mixture
M1 (C15+5.65 wt % OP). By decreasing the temperature
from the isotropic phase to the coexistence zone, we observed
the nucleation and growth of drops similar to those described
in Ref. [11]. Two different textures corresponding to the same
drops oriented with their revolution axis either parallel or
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FIG. 8. Texture of nematic drops coexisting with the isotropic
phase in the mixture M1 at 81.5 ◦C. Observations in unpolarized
white light at focusing distances z = −16 µm (a), 0 (focus on the
bright band) (b), and 17 µm (c). Mixture M1, T = 81.5 ◦C. The white
bar is 20 µm long.

perpendicular to the plates are usually observed and are shown
in Fig. 8. The photo of Fig. 8(b) was taken under white light
without polarizers by focusing on the thin bright band that
forms under the microscope when the drop axis is horizontal.

R

(a) (b) (c)

(d) (e) (f )

FIG. 9. Observation of drops of different radii in unpolarized
white light. The bright band is visible in all of them, whatever their
size. The definition of the drop radius R is shown on the first image.
From (a) to (f), R = 11.2, 10.2, 8.6, 6.1, 5.1, and 3.5 µm. Mixture
M1, T = 81.5 ◦C.

The other two photos of Figs. 8(a) and 8(c) were taken at the
same location by defocusing by 16 µm down and by 17 µm
up, showing that the drop contrast crucially depends on the
focus, a point that we will explore further in the next sec-
tion. The bright band is visible in all the horizontal droplets,
whatever their radius, as can be seen in Fig. 9. We noted
that the vast majority of drops were oriented vertically when
they nucleated. They were then very small. By decreasing the
temperature, they grew and coalesced when they touched each
other, as shown in Fig. 10 and Supplemental Movie SM1 [26].
During this process they systematically changed orientation
and formed bigger droplets with their axes of revolution hori-
zontal.

In the literature this band was often interpreted as due to the
presence of a +1 disclination line along the drop axis. Two
models are possible in that case: either the line is singular
and the droplet has the ideal concentric (C) configuration
(also called toroidal configuration [27]) or the line escapes
in the third dimension, leading to a twisted nonsingular con-
figuration in the bulk, the so-called escaped-concentric (EC)
configuration [9,28]. Two other configurations are possible
when the director is planar at the drop surface: the bipolar (B)
configuration, in which the director field is not twisted, and the
twisted-bipolar (TB) configuration, in which the director field
is radially twisted by an angle αS at the drop surface different
from 0 (the limit αS = π/2 identifying with the previous
EC configuration). The four configurations are represented in
Fig. 11.

At this level it is difficult to know what is the actual
configuration. Further investigations are therefore necessary.
First we observed carefully the drops under the microscope
over long periods of time. While doing this, we observed that
all the drops with a bright band inside were slowly rotating
inside the oven, revealing the Lehmann effect already reported
in Ref. [11] (Fig. 12). This rotation was caused by the pres-
ence of a very small vertical temperature gradient directed
upwards in the oven. For symmetry reasons, the drop rotation
is only possible if the director field is twisted, allowing us to
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FIG. 10. The coalescence of two drops oriented vertically gives
a drop oriented horizontally. The time is indicated in seconds on the
images. The white bar is 20 µm long.
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FIG. 11. The four possible configurations: (a) ideal-concentric
(C) configuration, (b) escaped-concentric (EC) configuration,
(c) bipolar (B) configuration, and (d) twisted-bipolar (TB) config-
uration. Angle αS is the twist angle at the drop surface.

0

204

412

623

834

1046

1256

1742

G

FIG. 12. Lehmann rotation of a drop with its axis of revolution
horizontal observed in the Mettler oven. The time is indicated in
seconds on each photo. The bright band is rotating counterclockwise
and the temperature gradient is directed upwards. The white scale bar
is 20 µm long.

immediately exclude models C and B [Figs. 11(a) and 11(c)].
Moreover, consistent with our observation above that C15
had a chiral character, we saw that all droplets featured a
counterclockwise rotation, i.e., they were all twisted with the
same handedness. This result was confirmed by measuring
the pitch of our mixtures, which turned out to be negative
(left-handed cholesteric) and close to −145 µm at TNI (see
above). This confirmed that our batch of CB7CB contained
a chiral impurity. The reader will note that the sense of
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FIG. 13. Spontaneous reorientation of a drop in the Mettler oven.
The time is indicated in seconds on the photos. The bright band on the
photo at t = 0 is slightly curved, meaning the droplet axis is already
slightly tilted with respect to the horizontal plane. The white scale
bar is 20 µm long.

rotation observed in this experiment is compatible with all the
previous observations on the Lehmann effect, namely, that the
rotation vector and the temperature gradient are of the same
sign when the pitch is negative [7]. Finally, we noticed that
the horizontal droplets systematically tended to reorient them-
selves vertically after a certain period of time. This process of
reorientation is shown in Fig. 13 and in Supplemental Movie
SM2 [26]. The consequence was that after a few hours, all the
drops were oriented vertically in the sample.

B. Lehmann rotation

To check whether it was possible to suppress the chiral
bias, we compensated our mixture by adding 0.036 wt % of
the chiral molecule R811, and we measured the pitch of this
new mixture M2: as expected, we found it was very large,
close to –2 mm. With this mixture we observed that most of
the horizontal droplets were still rotating counterclockwise,
except for a few of them that were rotating clockwise (see
Supplemental Movie SM3 [26]), revealing there was still a
small chiral bias compatible with our pitch measurement. We
also observed that the rotation velocity was almost the same as
in the previous mixture M1 in absolute value. In other words,
the droplets were still rotating at the compensation point,
meaning that the director field was still twisted in the drops
in the compensated nematiclike phase. We also prepared two
other mixtures, M3 and M4, by adding larger concentrations
of R811 to M1. For M3 we measured P ≈ 167 µm and for
M4, P ≈ 44 µm. In these two mixtures, the droplets were all
rotating clockwise in the oven, as expected since the pitch is
now positive. On the other hand, we found that their velocity
at similar radius was similar to that found in the two other
mixtures. This observation was at first sight compatible with
the EC configuration insofar as in this configuration all the
drops are twisted in the same way. Another possibility would
be that we are dealing with droplets in the TB configuration in
which the twist angle is mainly fixed by the elastic anisotropy
and depends very little on the actual pitch of the phase (this
point will be discussed in the next section). In this second
case we should nonetheless observe differences between the
mixtures M1–M4.

To check this point, we thus performed precise system-
atic measurements of the drop rotation velocity in the four
mixtures M1–M4. To this end, we modified our vertical
temperature gradient setup already described in Ref. [2] by re-
placing the water-circulating top oven by a conventional oven
equipped with a sapphire window to minimize the horizontal
temperature gradients. In this way it was possible to work at
higher temperatures than with our previous setup. With this
new system the temperature of the top oven could be increased
well above 100 ◦C and regulated within ±0.01 ◦C using a
RKC HA400 controller; the temperature of the bottom oven,
also regulated within ±0.01 ◦C but with a water-circulating
bath, remained typically below 85 ◦C. This limitation explains
why we doped our CB7CB with 15 wt % 8CB to decrease the
melting temperature.

To measure the rotation velocity of the drops, we placed
our samples between the two ovens. The samples were sealed
on the sides with NO81 UV glue. A thin layer of glycerine
ensured good thermal contact between the ovens and the sam-
ples. We measured the period of rotation � of the drops in
the four mixtures as a function of their radius R. In practice,
measurements were only possible at a low temperature gradi-
ent, when the temperature difference �T between the top and
bottom ovens did not exceed 6 ◦C. At larger �T , the nucle-
ation rate of new drops was so high that it became impossible
to perform reliable measurements. We also limited our mea-
surements to droplets of diameters smaller than the sample
thickness (22.5 µm) and larger than 7 µm, as small droplets
were very unstable, changing radius or reorienting vertically

024705-8



STRUCTURE AND LEHMANN ROTATION OF DROPS IN A … PHYSICAL REVIEW E 106, 024705 (2022)

600

500

400

300

200

100

0

� 
(s

)

107.552.5 107.552.50

R ��m)

700

600

500

400

300

200

100

0

� 
(s

)

0

R���m)

600

500

400

300

200

100

0

� 
(s

)

107.552.5 107.552.50

R���m)

400

300

200

100

0

� 
(s

)

0

R� ��m)

)b()a(

)d()c(

FIG. 14. Period of rotation � of the drops as a function of their radius R. (a) Mixture M1, ◦ : �T = 3◦C, • : �T = 6 ◦C. The two solid
lines correspond to a global fit with two parabolas by assuming that � is proportional to �T . (b) Mixture M2, *: �T = 3 ◦C. The solid line is
the best fit with a straight line. (c) Mixture M3, � : �T = 3 ◦C. The solid line is the best fit with a parabola. (d) Mixture M4, + : �T = 3 ◦C.
The solid line is the best fit with a parabola.

too fast to allow us to measure precisely their rotation velocity.
In mixture M1, we measured the rotation velocities at two
temperature gradients by taking �T = 3 ◦C and 6 ◦C, while
in the other mixtures all measurements were performed by
taking �T = 3 ◦C. The temperature gradient inside the liquid
crystal is approximately given by G(K/mm) ≈ 7�T/3 by
assuming that the thermal conductivity ratio κglass/κLC ∼ 7,
as in usual cyanobiphenyls [2]. Our results are reported in
Fig. 14. The first graph measured with the mixture M1 shows
that the drop rotation velocity is proportional to the temper-
ature gradient, as in all earlier experiments on the Lehmann
effect [7]. The second graph measured with the almost com-
pensated mixture M2 shows that the period of rotation period
is proportional to the drop radius. This linear law was already
observed in the nematic phase of a chromonic LC in which
the droplets had a TB structure [5] with a twist angle at the
surface of the drop close to 70◦. By contrast, this linear law
fails for all the other mixtures in which the pitch has a finite
value. This is the case in mixtures M1, M3, and M4 for which
the data are well fitted with a parabolic law. Note that the
rotation velocities are almost identical (in absolute value) in
the two mixtures M1 and M3, which is expected because
the pitches measured in these two mixtures are quite close in
absolute value. These measurements show that the existence
of a spontaneous twist changes slightly, but measurably, the

value of the rotation velocity. More precisely, the larger the
pitch (in absolute value), the larger the period of rotation or the
smaller the rotation velocity. Such a dependency was already
observed in the LC CCN37, which featured TB droplets when
the LC was doped with a chiral impurity [29].

These results strongly suggest that our droplets are twisted
bipolar with a twist angle at the drop surface that weakly de-
pends on the pitch—-and not escaped concentric as proposed
before—because, in that case, all droplets should rotate in
a similar way in the four mixtures. To test this conclusion,
we calculated the director field inside the drops by using the
values of the elastic constants measured experimentally, and
we then computed the corresponding drop images to compare
them with the experimental images.

IV. DIRECTOR FIELD IN THE DROPS:
THEORETICAL RESULTS

To calculate the director field inside the drops, we first
generalized to cholesterics the Williams theory for tangen-
tially anchored nematic droplets [30]. From this calculation,
the twist angle at the surface of the drop was calculated as
a function of the cholesteric pitch by using MATHEMATICA.
Because this calculation is not exact and relies on a simplified
ansatz for the director field, we also extracted this angle from
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FIG. 15. Bispherical coordinate system with unit vectors used by
Williams. The vector �θ is normal to the paper (from Ref. [30]).

a full-vectorial numerical calculation of the director field. This
allowed us to test the accuracy of the Williams model.

A. Williams prediction

To calculate the director field inside bipolar droplets,
Williams proposed to use bispherical coordinates
(ξ, η, θ ) [30] (Fig. 15). In this system, θ is the polar angle
in cylindrical coordinates (z, r, θ ), where the z axis passes
through the poles. The lines of constant η are circles passing
through both poles, while the orthogonal set of constant ξ

are also circles. For calculating the director field, Williams
assumed that the director �n has no �η component and wrote

�n = �ξ cos[α(η)] + �θ sin[α(η)], (5)

where �ξ , �η, and �θ is the triad of unit vectors and α the twist
angle. By using this ansatz, Williams calculated the Frank
elastic energy and minimized it to obtain the Euler-Lagrange
equation that α(η) must satisfy. Redoing this calculation but
taking into account the spontaneous twist q = 2π/P in the
Frank energy we found

4K21

(
η

d2α

dη2
+ dα

dη

)
= sin(2α)[(4 − 2K21 + 3K31) cot η + (−4 + 2K21 + K31)η cosec2η + 2η cot2 η(K21 − 2K31 cos2 α]

−qR [cosec η (η + 2 cot η − 2η cosec2η) + (1 − η cot η) cot η cosec η cos(2α)], (6)

where K21 = K2/K1 and K31 = K3/K1 are the elastic anisotropies and R is the drop radius. We emphasize that Williams showed
that the Gauss (or saddle-splay) term contributes to a constant term in the free energy of the droplet [30], which is why the
associated elastic constant does not appear in the previous equation. We also note that although the free-energy density diverges
near the polar defects, the total free energy is always integrable and finite for the ansatz used by Williams. This can be directly
checked numerically by defining a cutoff integration radius around the defects and looking at the energy limit when this cutoff
goes to zero.

This equation must be solved with the boundary conditions

α(0) = 0, (7)

which ensures that the director field is not singular on the pole axis, and

α′(π/2) = 2qR/π, (8)

where α′ = dα/dη, which is the torque equation at the drop surface for a sliding planar anchoring.
The droplet energy in units of K1R is given by E = E1 + K21E2 + K31E3, where E1, E2, and E3 are the splay, twist, and bend

energies, respectively, given by

E1 = 4π

∫ π/2

0

dη

sin2 η
(η − cos η sin η) cos2 η, (9)

E2 = 2π

∫ π/2

0
dη η(α′ + sin α cos α cot η) + 4π

∫ π/2

0
dη (η cot η − 1)cosec η(α′ + cot η cos α sin α)qR + (4 − π )πq2R2,

(10)

E3 = π

∫ π/2

0
dη

[
η

sin2 η
(1 + sin2 α + 2 cos2 η cos4 α) − 3 cot η cos2 α

]
. (11)

These formulas generalize those of Williams to cholesterics.
We solved the differential equation (6) subjected to

boundary conditions (7) and (8) with MATHEMATICA by us-
ing a shooting method. Calculations were made by taking
K21 = 0.51 and K31 = 0.287, which are the values found

experimentally (see Fig. 7). Angle profiles α(r/R) in the
equatorial plane ξ = π/2 are shown in Fig. 16. They have
been calculated by taking R = 10 µm and the values of the
pitch corresponding to mixtures M1–M4. We recall that in
this plane, r/R = sin η/(1 + cos η). For the mixtures M1, M3,
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FIG. 16. Angle profiles α(r/R) calculated in the equatorial plane
(ξ = π/2) with the generalized Williams model (solid lines) and the
full numerics (dashed lines) for R = 10 µm and the values of the pitch
corresponding to mixtures M1–M4. (a) Red curves: P = −145 µm
(M1), green curves: P = 167 µm (M3), and blue curves P = 44 µm
(M3). (b) Magenta and cyan curves: P = −2000 µm (M2). The ma-
genta lines correspond to a drop twisted left-handed (stable solution)
and the cyan lines to a drop twisted right-handed (metastable solu-
tion). The two profiles are very similar except for the sign, because
the mixture is almost compensated. These two solutions are observed
experimentally because their energies are very close.

and M4 only the profiles corresponding to drops with a twist
of the same sign as the spontaneous twist are shown (only
these drops are observed) [graph (a)], while for the mixture
M2, which is almost compensated, profiles corresponding
to drops twisted in both directions are shown because the
two types of drops are observed. For mixtures M1, M3, and
M4, the drop energy in units of K1R for a droplet of radius
R = 10 µm calculated from Eqs. (9)–(11) is equal to 9.49, 9.6,
and 8.43, respectively. For mixture M2, the energies of left-
and right-handed twisted drops are close, equal to 10.38 and
10.55, respectively. We emphasize that in these mixtures, the
EC drops have always higher energy than the TB drops, as
we can check by solving Eq. (6) with the boundary condi-
tion α(π/2) = sgn(P)π/2 instead of Eq. (8). This calculation
gives 12.21 in units of K1R for the drop energy whatever the
radius R, which is indeed greater than all the values given
previously. Another interesting quantity is the twist angle
αS = α(π/2) at the drop surface. We found that this angle
varies almost linearly with the dimensionless quantity qR, as
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FIG. 17. Surface twist angle αS calculated with the generalized
Williams model as a function of the dimensionless product qR by
assuming q > 0. The solid line is the best linear fit to the calculated
points.

we can see in Fig. 17, plotted by assuming q > 0. The best
linear fit gives αs = 66.16 sgn(q) + 13.153qR.

These variations of the twist angle explain the velocity
changes between the drops of similar radius observed in the
different mixtures. This point will be detailed in the last sec-
tion once the Williams model and the twisted-bipolar structure
of the drops are validated.

B. Full-vectorial 3D numerical calculation

The Williams calculation is not exact and is based on an
ansatz for the director field according to which �n has no �η
component and α does not depend on ξ . For this reason, we
also calculated the director field using a completely vectorial
three-dimensional model to test the validity of this assump-
tion. We used the numerical method described in [32], which
is based on a finite-element discretization of the Frank elastic
free-energy and a robust trust-region minimization algorithm.
This method iteratively updates the director field solution by
ensuring that the free energy is always decreased after each
update and always converges to a local minimum of the free
energy.

We emphasize that the Williams model of the previous
section assumes an infinitely strong planar anchoring at the
surface of the droplet, which is valid if the droplet radius
is much bigger than the anchoring penetration length la ≡
K1/Wa (with Wa the surface anchoring energy). This may not
be a good approximation for our system, since la is usually
of the order of 1 µm for the nematic-isotropic interface of
thermotropic liquid crystals [33], which is of the same order of
magnitude as the radius of the smallest droplets studied here.
For this reason we decided to simulate the director field of
our droplets by assuming a finite anchoring strength and by
rescaling all length scales (droplet radius R, cholesteric pitch
P) by the anchoring length la. R/la and P/la are therefore
the only adjustable parameters in our simulations, while all
the other material constants were initialized with the values
measured in Sec. II. Note that we did not measure the elas-
tic constant K4 associated with the Gauss (or saddle-splay)
term −(K4/2)∇ · [n∇ · n + n × ∇ × n] in the free energy
(using the definition of Ref. [32], for which the one-constant
approximation is simply written as K1 = K2 = K3 = K4 =
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K). This constant is notoriously hard to obtain, which is why
we arbitrarily used the Nehring-Saupe formula K4 = (K1 +
K2)/2, but nevertheless checked that different values ranging
from K1/2 to 2K2 (the upper limit in the Ericksen inequalities)
were not changing the twist angle αs by more than 5%. We
also note that in the numerical simulation, the free-energy
density is always finite even near the (virtual) polar defects,
since the anchoring is finite and locally broken near these
defects. An example of a calculated director field is shown
in Fig. 18.

We first tried to determine if multiple metastable states
could be found in our system by varying the initial director
field in our simulations. We initialized the solution with a
double-twist cylinder director field with a given twist angle
at the surface of the droplet and found that the system always
relaxed towards a twisted-bipolar configuration whatever the
initial twist angle, except for very small droplets of radius
R typically smaller than the anchoring length. This indicates
that there exists a transition between bipolar and twisted-
bipolar structures at small radius, with some metastability
in the vicinity of the transition threshold in our numerical
code. To confirm this point, we then calculated the surface
twist angle αs as a function of the dimensionless parame-
ters P/la and R/la. The corresponding curves are shown in
Fig. 19. When q = 0, we found that all droplets with R < la
are simply bipolar, i.e., associated with a surface angle αs = 0.
Since all droplets are rotating in our experiments, we can
therefore safely assume that the anchoring length is smaller
than the smallest radius of our droplets, i.e., la < 2 µm. In
the following, we assume la ≈ 1 µm, which is the right order
of magnitude for the isotropic-nematic interface of common
thermotropic liquid crystals [33].

Finally, we note that the data of Fig. 19 are well fitted in
the range R/la ∈ [2, 30] with an equation of the type

αs =
2∑

i=0

[ai sgn(q) + biqR](la/R)i, (12)

with ⎧⎪⎨
⎪⎩

a0 = 76.51 ◦

a1 = −28.35 ◦

a2 = −27.48 ◦

⎧⎪⎨
⎪⎩

b0 = 19.46 ◦

b1 = −13.68 ◦

b2 = 92.18 ◦
, (13)

as we can see in Fig. 19. Note that the data in this figure only
include right-handed droplets with positive spontaneous twist.
The sgn(q) coefficient allows to extend, by symmetry, our re-
sults to left-handed droplets with negative spontaneous twist.
Note that for the almost compensated mixture M2, metastable
droplets which are right-handed despite the negative sponta-
neous twist can sometimes be observed (see Sec. III B and
Fig. 16), but our fit does not apply to such (rare) droplets.

This calculation shows that in the limit la → 0 (strong
anchoring) the angle αs is approximately given by
76.51 sgn(q) + 19.46qR, while the Williams calculation
gives αs = 66.16 sgn(q) + 13.153qR. We conclude that the
Williams calculation tends to underestimate the value of αs

by typically 15%, but is nevertheless in good qualitative
agreement with the full numerical calculation, despite the
simplifications. This is also confirmed when looking at the

FIG. 18. Two cuts of the director field of a twisted-bipolar
droplet along the yz and xy planes, numerically calculated by tak-
ing P/la = −145 and R/la = 5. We used here a color scheme that
associates in a quasiunique manner a director with a CIELAB color,
taking into account the �n → −�n symmetry [31]. Directors aligned
with the polar axis are dark, while tilted directors span the red, green,
and blue colors of the hue circle when varying the azimuthal angle.

curves α(r/R) calculated in the equatorial plane with the two
models, which are very similar, as shown in Fig. 16.

C. Drop image calculation and validation of the models

To determine if our experimental images indeed corre-
spond to a twisted-bipolar structure, we compared them to
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FIG. 19. Surface twist angle αs as a function of the dimen-
sionless parameters P/la and R/la. From top to bottom, P/la =
44, 58.7, 88, 176, ∞. The solid lines have been calculated by using
Eqs. (12) and (13).

simulated optical micrographs based on the calculated di-
rector fields of Sec. IV B. The optical simulations were
performed using the open-source software NEMAKTIS, which
one of us developed [34]. We used the BPM simulation back
end of this software; this back end is based on a generalized
beam propagation method [35], allowing the accurate prop-
agation of optical fields inside inhomogeneous birefringent
media, including diffraction and walk-off effects in addition
to phase propagation. A major advantage of this method is
that the diffraction and walk-off operators at the core of the
associated theory correctly model the deflection of light by
spatially varying director fields, contrary to the well-known
Jones method commonly used by researchers of the LC
community. For comparison, we also calculated a few Jones
images, thanks to the DTMM back end of NEMAKTIS [36].

Each optical simulation relies on the calculation of trans-
mitted optical fields through a virtual sample consisting of two
glass plates sandwiching the LC layer. We used the same sam-
ple parameters described in Sec. III and the refractive indices
measured in Sec. II, while the radius and orientation of the
droplet are varied between each simulation. We assumed the
same cholesteric pitch as in mixture M1, i.e., P = −145 µm.
The Koehler illumination setup of a real microscope is ap-
proximated by using 37 incoming plane waves, with a wave
vector uniformly distributed inside a cone of numerical aper-
ture 0.05 (as in the experiments). The spectrum of the white
lamp in our experiment was measured and evaluated at 11
wavelengths linearly spaced between 0.4 and 0.8 µm in our
simulations. The final monochrome images are obtained with
a weighted average of all intensity images for each incoming
wave vector and wavelength, taking into account the ampli-
tude point spread function of the microscope objective, as well
as the possible presence of any polarizer(s) along the path of
light.

In Fig. 20 we show a comparison between experimental
and simulated images of droplets with a horizontal polar axis
when the sample is illuminated with natural light without
polarizers. To demonstrate the effect of the focusing optics of
the microscope, three different focus settings were compared,

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 20. Images in white light without polarizers of a horizon-
tal drop of radius R = 10 µm. (a–c) Grayscale images of the drop
calculated with NEMAKTIS for three different focus adjustments. In
(b) the focus is on the bright band (z = 0 by definition), in (a) z =
−15 µm and in (c) z = 15 µm. Calculations were performed by tak-
ing P = −145 µm; (d–f) experimental images observed in the same
conditions in mixture M1.

characterized by the z position of the droplet with respect to
a reference position where the droplet is well focused, with
the z axis oriented from the microscope objective towards
the sample. As visible in our simulations, a negative z fo-
cus is associated with a bright elliptic ring near the droplet
edge, a focused droplet is associated with a central bright line
joining the two virtual surface polar defects, and a positive z
focus is associated with three central bright lines, in excellent
agreement with the experimental images. We emphasize that
the bright line visible in Fig. 20 is not due to a singular or
nonsingular defect with a sharp core but to a lensing effect
near the fully continuous core of the director field shown in
Fig. 18. In fact, such an effect is very similar to the lensing
effect that was recently observed when sending an in-sample
plane Gaussian beam near the continuous core of a toron
or baby skyrmion [37], which should come at no surprise
since the midsample plane of these structures is topologically
equivalent to the xy cut shown in Fig. 18. We also demonstrate
in Fig. 21 that the central bright band is visible on all focused
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FIG. 21. Calculated grayscale images in white light without po-
larizers of horizontal drops of radii R = 11.2, 10.2, 8.6, 6.1, 5.1, and
3.5 µm when the focus is made on the bright band. Calculations were
performed with NEMAKTIS by taking P = −145 µm. These images
are very similar to those observed experimentally in mixture M1 and
shown in Fig. 9.

droplets whatever their sizes, in very good agreement with the
experimental images of Fig. 9. Finally, we show in Fig. 22
a comparison between experimental and simulated images of
focused droplets with a horizontal polar axis when the sample
is illuminated with natural light between crossed polarizers.
Again, the agreement between computed images and exper-
iment is quite good, especially concerning the central bright
band which is not reproduced by Jones calculations, shown
for completeness on the leftmost column of Fig. 22. Note that
the bright band becomes invisible in the experimental config-
uration of Fig. 22(i) but is visible in the associated numerical
image, although dimmer than in Fig. 22(g). We think this
small disagreement is due to slightly wrong material constants
in the simulations that affect the twist profiles and optical
contrast of the droplet. We checked that the bright band in
Fig. 22(e) becomes even less visible by taking slightly smaller
elastic constants (associated with a smaller twist angle) within
the experimental accuracy of Sec. II D (10% for K2/K1 and
5% for K3/K1).

In Fig. 23 we show a comparison similar to Fig. 20 for
droplets with a polar axis aligned with the observation axis.
The agreement is correct when the focus z is negative or
zero but not perfect when z is positive: although two white
concentric rings can be seen in both the experimental and
simulated images, the intensity of the inner ring is much
dimmer in the experimental image. This discrepancy can be
due to slightly-off material constants, as above, or due to the
fact that the droplet is slightly wetting one of the plates of the
sample in our experiments, which is not taken into account in
our simulations. We also show in Fig. 24 a comparison be-
tween experimental and simulated images of focused vertical
droplets between crossed polarizers. Our simulation correctly
reproduces the bright ring and dark cross of the experimental
image, but again the agreement is not perfect at the center,
which may be due to the same wetting effect described above.
We note that the wetting of horizontal droplet does not cause
a very visible discrepancy when comparing experiments and
simulations, since the director field near the bottom and top

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)P

A

FIG. 22. Images in white light and between crossed polarizers
of a horizontal drop of radius R = 10 µm. (a–d) Grayscale images
calculated with the Jones matrices. With this method, the images do
not change with the focus. (e–h) Grayscale images calculated with
NEMAKTIS when the focus is made on the bright band (z = 0). All
calculations were made by taking P = −145 µm. (i–l) Experimental
images observed under the same conditions as for mixture M1.

part of a horizontal droplet is much more uniform than near
the same part of a vertical droplet, where a polar defect
is present. Modeling this effect is out of the scope of this
paper, since it would necessitate a precise measurements of
the surface tension potentials associated with both the surface
polymercaptan layer and the cholesteric-isotropic interface.

V. A NEW SCALING LAW FOR THE LEHMANN ROTATION

Finally, we looked for a master curve that would account
for all of our experimental results on the Lehmann effect.
We have seen that the rotation period is proportional to R in
mixture M2, which is almost compensated. In this mixture the
twist angle αS is constant (or almost constant). In the other
mixtures, which are no longer compensated, we have seen that
by increasing the twist angle αS the period of rotation � de-
creases, suggesting that the latter is inversely proportional to
αS . As the period is also inversely proportional to the tempera-
ture gradient, we sought to see if the combination ��T |αS|/R
could allow us to gather all our experimental results on the
same master curve. This is what we have verified by plotting
this quantity for all the experimental points obtained with the
mixtures M1–M4 as a function of the drop radius R. The final
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FIG. 23. Images in white light without polarizers of a vertical
drop of radius R = 10 µm. (a–c) Grayscale images of the drop cal-
culated with NEMAKTIS for three different focuses. In (b) the focus
is chosen as z = 0, as defined in Fig. 19. The inset shows a hor-
izontal drop of the same radius at the scale 1/4 for this focus. In
(a) z = −15 µm and in (c) z = 15 µm. Calculations were performed
by taking P = −145 µm. (d–f) Experimental images observed under
the same conditions as in mixture M1. The inset in (e) shows a
horizontal droplet of the same radius at the 1/4 scale observed in
the vicinity of the vertical drop with the same focus.

P

A

(a) (b) (c)

FIG. 24. Images in white light and between crossed polarizers
of a vertical drop of radius R = 10 µm. (a) Grayscale image calcu-
lated with the Jones matrices. With this method, the images do not
change with the focus. (b) Grayscale image calculated with NEMAK-
TIS when focusing at z = 0. All calculations were made by taking
P = −145 µm. (c) Experimental image observed for this focus. The
drop is the same as in Fig. 23 (mixture M1).
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FIG. 25. Combination ��T |αS|/R as a function of the drop
radius R. The symbols for the experimental points are the same as
in Fig. 14. This quantity is constant given the dispersion of the data.

result is shown in Fig. 25. Except for the dispersion of the
data, we see that all our points group together on the same
master curve and that this quantity is almost constant. This
scaling law completes our experimental results on the study
of the Lehmann effect with twisted-bipolar drops in strongly
anisotropic materials such as the mixtures studied here or the
chromonic liquid crystals studied previously [5].

VI. CONCLUSION

To summarize, we measured the optical indices and elastic
constants of a mixture of CB7CB and 8CB, doped with with
the surfactant 2-octadecoxypropanol by introducing a con-
venient single-sample measurement technique for the elastic
constants. We note that the latter technique could be used in
other systems where accurate measurements of all elastic con-
stants of the nematic phase near a phase transition are needed.
We experimentally characterized with optical microscopy the
structural and dynamical properties of droplets of the same
mixture subjected to a temperature gradient. By looking at
the scaling of the Lehmann rotation period with respect to
the droplet size in various mixtures with different amounts of
chiral dopant, we concluded that the previously conjectured
escaped-concentric structure was not possible in our system
and that the droplets were likely adopting a more general
twisted-bipolar configuration. We confirmed this hypothesis
by conducting director field and optical simulations of our
experimental droplets using the measured material constants
and obtained a good agreement between experimental and
simulated images of twisted-bipolar droplets with a horizontal
polar axis and a reasonable agreement for the same study
with a vertical polar axis. Finally, we used our numerical
results to introduce an original scaling law for the Lehmann
rotation period of twisted-bipolar droplets with respect to the
temperature gradient, twist angle, and droplet size, and were
able to collapse all our measurements on the same master
curve.

An interesting point to further explore would be the stabil-
ity of the polar axis of the twisted-bipolar droplet studied here:
our observations indeed suggest that the horizontal orientation
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of the polar axis is weakly unstable, contrary to the vertical
orientation. This instability could be linked to the partial
wetting of the droplet on the coldest plate of the sample.
The coalescence process of droplets with vertical polar axes
also deserves further investigation: as explained in this paper,
we observed that the final orientation of the polar axis after
coalescence is horizontal. Due to the Gauss-Bonnet theorem,
defects with a total topological charge of −2 are necessarily
created around the capillary bridge during the first stage of
coalescence, such that the total charge of the new droplet is
+2 when taking into account the four +1 polar defects of the
two coalescing droplets. It would be interesting to understand
how these defects rearrange during the coalescence process,
depending on the value of the twist angle, and would provide
further insight into structural transformation of confined liq-
uid crystal texture and defects [38,39]. Finally, it would be
interesting to explore the influence of an electric field on the
Lehmann rotation of the drops, both in the ac and dc regimes,
where different effects are predicted from the theoretical mod-
els [40–43]. This could be all the more interesting in the dc
regime, as giant flexoelectric effects have been reported in
CB7CB [44].
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APPENDIX: FIT PROCEDURE OF THE
CAPACITANCE CURVES

The equations to solve to fit the capacitance curves like
those shown in Fig. 6 are given in Ref. [45] and read

d

2
=

∫ θm

θa

f1(θ, θm, φ′
m,C)dθ

�

2
=

∫ θm

θa

f2(θ, θm, φ′
m,C)dθ

V

2
= D

ε0ε‖

∫ θm

θa

f3(θ, θm, φ′
m,C)dθ. (A1)

The first two come from the bulk torque equation, and the third
one comes from the Maxwell equation for the electric field.
In these equations, C = C/C⊥ is the capacitance normalized
with the capacitance C⊥ = ε0ε⊥S

d (with S the electrode surface
area). The functions f1, f2, and f3 are given by

f1(θ, . . . ) =
√

1 − γ1 sin2 θ

(cos2 θ − cos2 θm)g(θ, . . . )

f2(θ, . . . ) = K3 cos2 θm(1 − γ2 cos2 θm) + K2q(cos2 θ − cos2 θm)

K3 cos2 θ (1 − γ2 cos2 θ )
f1(θ, . . . )

f3(θ, . . . ) = 1

1 − α cos2 θ
f1(θ, . . . ), (A2)

where

g(θ, θm, φ′
m,C) = D2 α

K3ε0ε‖

1

(1 − α cos2 θ )(1 − α cos2 θm)
+ cos2 θm(1 − γ2 cos2 θm)(1 − γ2(cos2 θ + cos2 θm))

cos2 θ (1 − γ2 cos2 θ )
φ′

m
2

−2qK2 cos2 θm(1 − γ2 cos2 θm)

K3 cos2 θ (1 − γ2 cos2 θ )
φ′

m − q2K2
2 (cos2 θ − cos2 θm)

K2
3 cos2 θ (1 − γ2 cos2 θ )

. (A3)

Angles θ and φ are the polar and azimuthal angles, with
θ = θa and φ = 0 on the bottom electrode at z = 0, and θ =
θa, and φ = � on the top electrode at z = d; θm = θ (d/2);
φ′

m = (dφ/dz)(d/2); q = 2π/P is the measured equilibrium
twist; γ1 = 1 − K1/K3, γ2 = 1 − K2/K3, and α = εa/ε‖; and
D = CV/S = ε0ε⊥(V/d )C is the electric displacement, con-
stant within the sample thickness in the dielectric regime.

The fit procedure was as follows:
First we determined the two dielectric constants. This mea-

surement was performed when the sample was well oriented
and not twisted. The constant ε⊥ was obtained by extrapolat-
ing to 0 the capacitance curve measured below the onset of
the Freedericksz instability. This gave C⊥, from which ε⊥ was
deduced by dividing by the capacitance C0 of the empty cell.

Constant ε‖ was obtained by measuring the capacitance curve
between 3 and 20 V. In this voltage range, the curve C(1/V )
was perfectly linear in all our experiments. Capacitance C‖
was obtained by extrapolating this curve to 0, from which ε‖
was deduced by dividing by C0.

Second, we fitted the capacitance curve measured by in-
creasing the voltage when the director field was not twisted.
In practice, we chose to work with a parallel planar sample.
In a previous paper [23] we have shown that, within a very
good approximation, the measured curve is the same as that
which would be measured with a zero anchoring angle θ0.
This remarkable result therefore allowed us to fit our capacity
curves with the previous equations, only valid for symmetric
boundary conditions, by taking θa = 0. To solve Eqs. (A1)
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with unknowns θm, φ′
m, and C, we used MATHEMATICA and

proceeded by successive approximations by taking θ0 = 0.1◦
for numerical reasons (this does not change the final result).
In practice, K1 was obtained by adjusting the threshold of
instability and K3 by fitting at best the shape of the capacitance
curve above the onset of instability.

Third, we fitted the capacitance curve measured by de-
creasing the voltage after the sample had been twisted by π

at large voltage. In that case, the equations were solved by
taking � = π when q was positive and � = −π when q was
negative. The fit parameters were the anchoring angle θa and

the twist constant K2 determined by taking the values of K1,
K3, and P found previously. We emphasize that good fits could
only be obtained by taking into account the spontaneous twist
of the phase, which confirmed our mixture C15 was chiral.
In practice, K2 mainly determined the onset of instability,
while θ made it possible to adjust the shape of the curve in
the vicinity of the critical voltage. Good fits were generally
obtained by taking θa = 2◦. With this procedure it was pos-
sible to measure all the constants with the same sample, a
crucial point when measurements are made near the melting
point.
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