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Defect absorption and emission for p-atic liquid crystals on cones
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We investigate the ground-state configurations of two-dimensional liquid crystals with p-fold rotational
symmetry (p-atics) on fixed curved surfaces. We focus on the intrinsic geometry and show that isothermal
coordinates are particularly convenient as they explicitly encode a geometric contribution to the elastic potential.
In the special case of a cone with half-angle β, the apex develops an effective topological charge of −χ , where
2πχ = 2π (1 − sin β ) is the deficit angle of the cone, and a topological defect of charge σ behaves as if it had
an effective topological charge Qeff = (σ − σ 2/2) when interacting with the apex. The effective charge of the
apex leads to defect absorption and emission at the cone apex as the deficit angle of the cone is varied. For total
topological defect charge 1, e.g., imposed by tangential boundary conditions at the edge, we find that for a disk
the ground-state configuration consists of p defects each of charge +1/p lying equally spaced on a concentric

ring of radius d = ( p−1
3p−1 )

1
2p R, where R is the radius of the disk. In the case of a cone with tangential boundary

conditions at the base, we find three types of ground-state configurations as a function of cone angle: (i) for
sharp cones, all of the +1/p defects are absorbed by the apex; (ii) at intermediate cone angles, some of the
+1/p defects are absorbed by the apex and the rest lie equally spaced along a concentric ring on the flank;
and (iii) for nearly flat cones, all of the +1/p defects lie equally spaced along a concentric ring on the flank.
Here the defect positions and the absorption transitions depend intricately on p and the deficit angle, which we
analytically compute. We check these results with numerical simulations for a set of commensurate cone angles
and find excellent agreement.

DOI: 10.1103/PhysRevE.106.024704

I. INTRODUCTION

Two-dimensional liquid crystals with p-fold rotational
symmetry, denoted “p-atics,” are ubiquitous in nature. One
well-studied example is the hexatic (p = 6) phase, an interme-
diate phase that can appear when isotropic two-dimensional
liquids freeze into 2d crystals [1,2] within the KTHNY defect-
mediated melting scenario [3–5]. Hexatics may be of some
biological importance, because they have appeared in recent
computational models of epithelial monolayers [6] and be-
cause they arise as an intermediate phase of lipid bilayers
(see Ref. [7] and references therein). Continuous hexatic-to-
crystal transitions, as found in experiments for lipid vesicles
in Ref. [8], may be especially important, as they are ac-
companied by a tunable, continuously diverging 2d shear
viscosity [2]. Another well-studied example is thermotropic
liquid crystals, where frequently a nematic (p = 2) phase ap-
pears [9]. Liquid crystalline p-atics have also been realized in
colloidal systems, including monolayers of sedimented col-
loidal hard spheres in the hexatic phase [10], triatic (p = 3)
colloidal platelets [11], and possibly tetratic (p = 4) suspen-
sions of colloidal cubes [12]. Although one might expect
that steric repulsions could produce local antiferromagnetic
order for hard triangles and pentagons [13], longer-range
interactions could induce these objects to align ferromagnet-
ically, which is what we assume for p = 3 and p = 5 in this
paper.

Order characteristic of p-atics has also been studied in the
context of active matter [14]. Examples of active polar fluids
(p = 1), also known as Toner-Tu fluids [15–18], include bac-
terial suspensions [19], groups of animals such as bird flocks
[16], and Quincke rotors [20]; examples of active nematics
(p = 2) [21,22] include cell sheets [23–26], suspensions of
cytoskeletal filaments and associated motor proteins [27–29],
bacteria collectives [30–32], vibrated granular rods [33], and
developing organisms [34]; finally, the tissue of the brine
shrimp Parhyale hawaiensis during development provides an
example of a tetratic (p = 4) order [35].

An elastic description of p-atics was employed for p = 6
hexatics on fluctuating surfaces in Ref. [36] and later refined
in Refs. [37,38]. Much work on curved surfaces has focused
on effects of extrinsic geometry, such as how the surface is
embedded in three dimensions, and effects due to the mean
curvature [39]. Here, we find it convenient to focus on simpler,
but still quite challenging effects of intrinsic geometry, and
use isothermal coordinates, as recently done in the context
of morphogenesis of an active nematic [40]. (See Ref. [41]
for a brief discussion of the crystal-field-like effect of ex-
trinsic curvature for cones with free boundary conditions at
the base.) We are interested in the ground-state configura-
tions of liquid crystals on curved surfaces, in particular a
cone, given constraints on the total topological charge of the
defects. Ground-state defect configurations for the cases of
flat plane, hollow cylinder, sphere, and torus were derived in
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Ref. [37]. These geometries, however, are smooth and lack
curvature singularities such as sharp points or ridges, charac-
teristic of imperfect surfaces. In contrast, we study cones, the
simplest example of a curvature singularity. The interaction
between p-atic order and curved substrates has been studied
in Refs. [38,42] and it has been shown that curvature gives
rise to an effective topological charge density.1 In the special
case of a cone, this would correspond to negative topological
charge concentrated at the apex, and a simple argument was
recently presented in Ref. [41] for the case of free boundary
conditions. We rederive this induced charge result of Vitelli
and Turner [42] and use it to determine the ground-state
defect configuration with a fixed number of +1/p defects,
which appear naturally when tangential boundary conditions
are imposed at the cone base. In the ground state, we find that
the cone apex absorbs defects until the net topological charge
at the apex becomes positive, and the remaining defects lie
equally spaced on a ring optimally positioned, as a function
of the cone angle, between the apex and the boundary. We
derive both these transitions and the flank defect positions,
which depend intricately on the deficit angle and the charges
of the defects, and find excellent agreement with numerical
simulations for a set of commensurate cone angles.

This paper is organized as follows. We begin in Sec. II
with a review of isothermal coordinates, essential for our
formalism. Although we focus on cones, spheres and tori are
mentioned briefly to provide context. In Sec. III, we review
the formalism of p-atics on curved surfaces using isothermal
coordinates and set up the computation of the free energy. By
evaluating the free energy in Sec. IV, in analogy to electrostat-
ics, we show that topological defects interact with each other
via a two-dimensional Coulombic interaction, and that there
is a geometric contribution to the potential. In particular, the
cone apex develops an effective negative topological charge
of −χ where χ = 1 − sin β, with β being the half cone angle
[see Fig. 1(c)], and 2πχ is the deficit angle of the cone.
Moreover, a topological defect of charge σ , when interacting
with the apex, develops an effective charge Qeff = σ − σ 2/2,
as originally found in Ref. [42]. In Sec. V, we describe defect
absorption and emission at the cone apex, with transitions
and flank defect positions depending intricately on the deficit
angle of the cone and the defect charges, and find excel-
lent agreement between these analytical results and numerical
energy minimizations of lattice models laid down on cones
with special commensurate curvatures that allow precise com-
putations [41]. We conclude in Sec. VI by reviewing our
results and suggesting future directions of research, including
dynamics of active topological defects on curved surfaces,
alternative boundary conditions, and analogous phenomena
involving grain boundaries on cones. Some of the technical
details are relegated to Appendixes A–D.

II. ISOTHERMAL COORDINATES PRIMER

Since our formulation is based on isothermal coordinates,
we introduce them from the outset. From work dating back

1Related effects have been noted in quantum Hall states for elec-
trons on cones [43,44] and superfluid 3He on cones [45].

(a)

(b)

(c)

FIG. 1. Schematic of the three coordinate systems for cone used
in this paper: (a) Our preferred isothermal coordinates z = reiφ ,
which can be viewed as the result of squashing a cone into a plane,
in a way that preserves the azimuthal angle φ, 0 � φ < 2π . Here
R is the maximum radius down the cone flanks in our isothermal
coordinate system. (b) The also useful z̃ coordinates, the result of
isometrically cutting open and unrolling a cone into a plane, so that
the resulting azimuthal angle is φ̃, 0 � φ̃ < 2π (1 − χ ). (c) Three-
dimensional Cartesian coordinates xi, where β is the cone half-angle.

to Gauss [46], we know that in two dimensions it is always
possible to choose local complex coordinates z and z̄, known
as isothermal (or conformal) coordinates, such that the metric
can be written as,

ds2 = gzz̄dzdz̄ + gz̄zdz̄dz = 2gzz̄|dz|2 = eϕ(z,z̄)|dz|2. (1)

Note that in these coordinates, gzz̄ and gz̄z can be read off from
the off-diagonal components of the inverse metric

g−1 =
(

0 2e−ϕ(z,z̄)

2e−ϕ(z,z̄) 0

)
. (2)

Upon writing z = x + iy, z̄ = x − iy, we also have

ds2 = eϕ(x,y)(dx2 + dy2). (3)

Thus, the metric is conformally flat, i.e. proportional to the
identity matrix, where eϕ , known as the conformal factor,
represents a position-dependent isotropic stretching. We show
in Sec. IV that we can interpret −ϕ as a geometric contribution
to the defect potential, and thus call ϕ the geometric potential.
For a more detailed presentation of isothermal coordinates,
see, for example, Refs. [47] and [48].

In complex conformal coordinates, the only nonzero
Christoffel symbols are

�z
zz = ∂ϕ, �z̄

z̄z̄ = ∂̄ϕ, (4)

where the holomorphic partial derivatives are denoted as ∂ ≡
∂z = 1

2 ( ∂
∂x − i ∂

∂y ) and ∂̄ ≡ ∂z̄ = 1
2 ( ∂

∂x + i ∂
∂y ). The Laplacian

∇2 acting on a scalar f is given by

∇2 f ≡ gzz̄∂∂̄ f + gz̄z∂̄∂ f = 2gzz̄∂∂̄ f = 4e−ϕ∂∂̄ f . (5)

As an aside, we note that in analogy to the heat equation, coor-
dinates z and z̄ are harmonic, i.e., they satisfy ∇2z = ∇2z̄ = 0,
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and so constant coordinate lines are “isotherms”, hence the
name “isothermal”. Note also that the Gaussian curvature K
is given in terms of ϕ by

K = − 1
2∇2ϕ = −2e−ϕ∂∂̄ϕ. (6)

Note finally the property of holomorphic derivatives that
∂z f (z̄) = ∂z̄ f (z) = 0. We now provide a few examples.

A. Cone

On the surface of a cone, the geometric potential ϕ and the
metric are given by,

ϕ = −χ ln(zz̄), ds2 = |z|−2χ |dz|2, (7)

where we will show that 2πχ is the deficit angle. To do so, we
first go to a new coordinate system z̃ = r̃eiφ̃ [see Fig. 1(b)],
where the metric can be made flat with no stretching via the
change of coordinates

z̃ = z1−χ

1 − χ
, (8)

which leads to

ds2 = |dz̃|2. (9)

This is a flat metric except at the origin, where z̃ is not well
defined. To understand the geometry near the origin, note that
Eq. (8) gives the angle φ̃ corresponding to z̃ = r̃eiφ̃ , in terms
of the original complex conformal coordinate z = reiφ , as

φ̃ = (1 − χ )φ. (10)

Thus, the range of polar angle φ̃ in z̃ coordinates is 0 � φ̃ <

2π (1 − χ ), so this geometry has a conical singularity with
deficit angle 2πχ .

We now show that in terms of the cone half-angle β, χ =
1 − sin β. To show this relation, we go to one final coordinate
system xi [see Fig. 1(c)], which embeds the cone in three
dimensions, �x = �x(r, φ), with

x1 = r1−χ cos φ (11)

x2 = r1−χ sin φ (12)

x3 = −
√

1 − (1 − χ )2

1 − χ
r1−χ . (13)

With this change of coordinates, the metric can be expressed
as

ds2 = |z|−2χ |dz|2 = dx2
1 + dx2

2 + dx2
3 . (14)

Notice that since

x3 = −
√

1 − (1 − χ )2

1 − χ

√
x2

1 + x2
2 = − cot β

√
x2

1 + x2
2, (15)

where β is the cone half-angle, it follows that

χ = 1 − sin β, (16)

thus relating the deficit angle 2πχ to the cone half-angle β.

B. Sphere

For the surface of a unit sphere, ϕ is

ϕ = 2 ln
2

1 + |z|2 , (17)

which is equivalent to the stereographic projection, and can be
viewed as the mapping of the complex plane z onto the points
(x1, x2, x3) on the surface of the unit sphere in R3, via

x1 = z + z̄

1 + |z|2 (18)

x2 = 1

i

z − z̄

1 + |z|2 (19)

x3 = |z|2 − 1

1 + |z|2 . (20)

Hence the metric is

ds2 = dx2
1 + dx2

2 + dx2
3 = 4

(1 + |z|2)2
|dz|2 ≡ eϕ(z,z̄)|dz|2

(21)
and, using Eq. (6), the Gaussian curvature is computed to be
K = 1.

C. Torus

As the last example, we consider the standard torus T 2 in
R3, parametrized by:

x1 = (R1 + R2 cos θ2) cos θ1 (22)

x2 = (R1 + R2 cos θ2) sin θ1 (23)

x3 = R2 sin θ2, (24)

where θi (0 � θi < 2π ) is the periodic angular variable of
circle of radius Ri, with R1 > R2. Following Ref. [49], we now
express T 2 in isothermal coordinates. Let r = R1/R2. Then,
on making the following complex change of coordinates:

z = 1

2π

(
φ1 + i√

r2 − 1
φ2

)
, (25)

where φ1 and φ2 are given by

φ1 = θ1 (26)

r cos φ2 − 1

r − cos φ2
= cos θ2, (27)

the metric becomes

ds2 = eϕ|dz|2, (28)

where

ϕ = 2 ln(2πR2) + 2 ln

(
r2 − 1

r − cos φ2

)

= 2 ln(2πR2) + 2 ln

(
r2 − 1

r − cos
[

1
i π

√
r2 − 1(z − z̄)

])
.

(29)

In terms of τ = i√
r2−1

, the isothermal coordinate z is identified
with its shifts by 1 and τ (forming a parallelogram on the
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complex plane), i.e., z ∼ z + 1 ∼ z + τ . Here τ is known as
the parameter specifying the complex structure of the torus
[50]. Using Eq. (6), the Gaussian curvature is computed to be
(with, again, r = R1/R2)

K = 1

R2
2

r cos φ2 − 1

r2 − 1
= 1

R2
2

r cos
[

1
i π

√
r2 − 1(z − z̄)

] − 1

r2 − 1
.

(30)

III. MINIMAL MODEL

For recent discussions of p-atic tensor order parameters in
2d flat space, see Refs. [51,52]. Theories of p-atics on curved
surfaces were previously formulated in Ref. [38]. For this
work to be self-contained, we review the formalism and recast
it in terms of isothermal coordinates, which will prove to be
a powerful method. Following the presentation in Ref. [40]
and as described in Sec. II, we work with complex isothermal
coordinates z and z̄. Let Q be the p-atic tensor, a traceless real
symmetrized rank-p tensor. Since Q is traceless (contraction
of any pair of indices vanishes), Q has only two nonzero com-
ponents Q ≡ Qz...z and Q̄ ≡ Qz̄...z̄, where here ellipses denote
p copies. Also, by reality, Q = (Q̄)∗. For ease of notation,
let ∇ ≡ ∇z denote the covariant derivative with respect to z
and ∇̄ ≡ ∇z̄ denote the covariant derivative with respect to z̄.
Explicitly, covariant derivatives of the p-atic tensor are

∇Q = ∂Q + p(∂ϕ)Q, ∇̄Q = ∂̄Q. (31)

Results for a cone with half-angle β follow from substituting
ϕ = −(1 − sin β ) ln(zz̄) in Eq. (31).

To provide an intuitive explanation for the asymmet-
ric form of the two covariant derivatives written above in
Eq. (31), note that Eq. (31) looks like Q carries charge p under
a U (1) vector potential,

Az = i∂ϕ. (32)

Indeed, the rotation group in two dimensions is SO(2), and is
gauged by a geometric field corresponding to curved geome-
try (known as the spin connection) [47], which in holomorphic
coordinates splits into two U (1) gauge fields,

(Az, Āz̄ ) = (i∂ϕ,−i∂̄ϕ). (33)

The charge of the fields depend on the number of z and z̄
indices. In particular, Qz...z carries charge (p, 0) (because it
has p z indices and no z̄ indices), and similarly Qz̄...z̄ carries
charge (0, p). This explains that in Eq. (31), since Qz...z does
not carry any z̄ charge, it does not couple to Āz̄, thus explaining
the asymmetry in the above formulas [Eq. (31)]. Note that the
field strength of this U (1) gauge field, defined as

Fzz̄ ≡ 1

2i
(∂Āz̄ − ∂̄Az ) = −∂∂̄ϕ = Rzz̄, (34)

is nothing but the Ricci curvature [50].
To keep the model simple, in a way that corresponds to the

one Frank constant approximation in nematic liquid crystals
[9], and to the Maier-Saupe lattice model used in our numer-
ical calculations, we decouple the rotation symmetry of the
p-atic degrees of freedom from the local rotational invari-
ance in space. The only elastic terms are then gp−1

zz̄ ∇Q∇̄Q̄
and gp−1

zz̄ ∇̄Q∇Q̄, where we recall that gzz̄ = gz̄z = 1
2 eϕ(z,z̄) and

gzz = gz̄z̄ = 0. Then, our simplified free energy can be written
as

F = 2p−1
∫

d2z
√

g[K|∇Q|2 + K ′|∇̄Q|2 + ε−2(1 − c|Q|2)2],

(35)
where

|∇Q|2 = gp−1
zz̄ ∇Q∇̄Q̄|∇̄Q|2 = gp−1

zz̄ ∇̄Q∇Q̄|Q|2 = gp
zz̄QQ̄.

(36)

Here K, K ′ > 0 are elastic terms in the spirit of the one-Frank-
constant approximation (the K and K ′ terms are equivalent in
flat space), and the last term governs the amplitude of the p-
atic order parameter, with ε controlling the microscopic p-atic
correlation length. We take c = 2p, a normalization we choose
without loss of generality.

We now determine Q by minimizing the free energy. Deep
in the ordered limit (ε 	 1), we have

2p|Q|2 = 1. (37)

The substitution Qz...z = Sz...zeiγ = Seiγ , which endows our
tensor order parameter with a phase γ = pθ , where θ is the
angle the p-atic molecule makes with a local reference axis,
then leads to

S = (2gzz̄ )−p/2 = e− p
2 ϕ. (38)

Upon inserting ϕ = −χ ln(zz̄) into Eq. (38), we see that the
p-atic order parameter amplitude S, in isothermal coordinates,
vanishes like a power law near the cone apex, S ∼ |z|pχ , as if
near a defect core in flat space. However, the contribution of
the polynomial part of the free energy vanishes away from the
core apex and any defect cores, so the free energy simplifies
to2

F = 2p−1
∫

d2z
√

g[K|∇Q|2 + K ′|∇̄Q|2]. (39)

By integration by parts, it is easy to show that the K and
K ′ terms differ only by a term proportional to R|Q|2 [40],
where R is the scalar curvature. Near the minimum of the
potential, where |Q|2 = 1, this difference becomes a Gauss-
Bonnet term, which is a a total derivative and thus topological.
Thus, the K and K ′ terms are equivalent deep in the ordered
limit that we consider in this paper.

Upon substitution of Q [with the amplitude S given by
Eq. (38)] into Eq. (39), the free energy F reduces to

F = (K + K ′)
∫

d2z
(( p

2

)
∂ϕ + i∂γ

)(( p

2

)
∂̄ϕ − i∂̄γ

)
= J

∫
d2z

∣∣∣∂γ − i
( p

2

)
∂ϕ

∣∣∣2
, (40)

where we have used

∇Qz...z =
( p

2
∂ϕ + i∂γ

)
Q (41)

∇̄Qz̄...z̄ =
(
− p

2
∂̄ϕ + i∂̄γ

)
Q (42)

2Provided we introduce a phenomenological defect core energy Ec,
we could have instead started with Eq. (39) in combination with the
constraint Eq. (38).
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and where J = K + K ′. Note that Eq. (40) is much simpler
than Eq. (39). The only dependence of the free energy on the
geometry is through ∂ϕ: there are no factors such as eϕ or

√
g,

which in two dimensions cancel due to conformal symmetry.
The transparency and simplicity of Eq. (40) reflect the power
of isothermal coordinates in two dimensions: the free energy
looks as if the theory is formulated on flat space, with the
curved geometry entering as an azimuthal vector potential
az = i p

2 ∂ϕ. In the case of a cone, this term corresponds to a
magnetic monopole at the apex.

It is convenient to define a real-valued dual variable � to
the phase field γ of Q such that

∂� = −2i

p
∂γ (43a)

∂̄� = 2i

p
∂̄γ , (43b)

in terms of which the free energy [Eq. (40)] becomes

F = p2

4
J

∫
d2z|∂ (� − ϕ)|2. (44)

Note that in this paper, we freeze the geometry, which fixes
the geometric potential ϕ. The geometry then determines the
ground-state configuration of γ , or equivalently, its dual �.
Upon suppressing the frozen ϕ-dependent part, we write F as

F = F1 + F2, (45)

where

F1 = p2

4
J

∫
d2z|∂�|2 (46)

F2 = − p2

4
J

∫
(∂̄ϕ∂� + ∂ϕ∂̄�). (47)

Here, F1 is the elastic energy and F2 is the interaction energy
between the p-atic texture and the geometry. We will see
shortly that in analogy to electrostatics, � can be viewed
as the electrostatic potential, sourced by topological defects.
Using this idea, we show that F1 can be computed using the
standard Green’s function techniques, and F2 can be com-
puted exactly through integration by parts via evaluating ϕ

at the topological defects, multiplied by the topological defect
charges. Although it appears that F1 does not depend on ϕ, we
show in Sec. IV that there is a subtle dependence on ϕ coming
from the short distance physics embodied in the defect core
energies.

Before we evaluate F , we first review the description
of topological defects using isothermal coordinates and then
compute � in the presence of these singularities. For a p-
atic, for a closed loop around a topological defect of charge
σ ∈ Z/p, γ will wind by 2π pσ . Moreover, by minimization
of the free energy, γ satisfies (away from the defects)

∂∂̄γ = 1

4

(
∂2

∂x2
+ ∂2

∂y2

)
γ = 0. (48)

Note that in Eq. (48), there continues to be no ϕ dependence;
thus, the local physics is as if we are in flat space.

Near a defect at z j , we have

γ ≈ − ip

2
σ j ln

z − z j

z̄ − z j
, (49)

which manifestly solves Eq. (48) and has the correct wind-
ing number. It follows that the dual variable � [defined by
Eq. (43)] satisfies

∂∂̄� = −π
∑

i

σiδ
2(z − zi ), (50)

where defect i is at position zi with charge σi. In other words,
topological defects can be viewed as sources for �, which, in
analogy to electrostatics, behaves as the electric potential. In
particular, as expected, the standard Green’s function G(z1, z2)
is given by �(z1; z2), where the charge σ is placed at z2, i.e.,

G(z1, z2) = − 1

4πσ
�(z1; z2). (51)

Note that F2, upon integration by parts, can be written as

F2 = p2

4
J

∫
d2z2�∂∂̄ϕ = − p2

2
J

∫
d2z�Rzz̄, (52)

where Rzz̄ = −∂∂̄ϕ is the Ricci curvature. This implies that
curvature gives rise to an effective two-dimensional charge
density ρ, given by

ρ = −Rzz̄

2π
. (53)

Thus, in general, regions of positive (negative) curvature give
rise to negative (positive) charge density [38,39].

Now, to completely solve Eq. (48), we must specify bound-
ary conditions. We consider two different geometries: one
without a boundary, such as the infinite plane or sphere, and
the other with a boundary, such as the disk or cone.

A. Planes and spheres

To set the stage for disks and cones, we first consider
planes and spheres. Taking into account the winding due to
topological defects, the multidefect solution to Eq. (48) that
gives real values of γ = pθ is given by (see for example
Ref. [53])

γ = pθ = − i

2

∑
i

pσi[ln(z − zi) − ln(z̄ − z̄i )], (54)

where zi is the position of defect i and σi ∈ Z/p is its charge.
Thus, Q, �, and G(z1, z2) are given by

Q = Qz...z = e− pϕ
2

∏
i

( z − zi

|z − zi|
)pσi

(55)

� = −
∑

i

σi ln |z − zi|2 (56)

G(z1, z2) = 1

4π
ln |z1 − z2|2. (57)

Note that although the geometric potential ϕ that enters Q
differs for planes and spheres, the expression for G(z1, z2) is
the same for the plane and the sphere, independent of ϕ.
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B. Disks and cones

We next consider the case of a geometry with a boundary,
in particular a flat disk. We now must specify boundary con-
ditions. In Ref. [41], free boundary conditions were imposed.
Here, we consider tangential boundary conditions, by which
we mean that ∇γ (the gradient of the order parameter phase)
is tangential to the circumference of the base of the cone.
We will assume that the total winding is 2π , i.e., the total
charge of the topological defects inside the cone is 1. For
elementary defects, the solution to Eq. (48) with tangential
boundary conditions for p defects each with charge +1/p at
z j is

γ = pθ = − i

2

p∑
j=1

pσ j

[
ln

(
z − z j

z̄ − z j

)
+ ln

(
z − z̃ j

z̄ − z̃i

)]
, (58)

where the z̃ j = R2/z j are the positions of (like-signed) image
charges needed to impose the tangential boundary condition
at z = Reiφ , with φ being the azimuthal angle and R being the
maximum radius in our isothermal coordinate system. (Recall
that we encode the curved geometry through the geometric
potential ϕ and denote the azimuthal angle by φ). As shown
in Appendix A, like-signed image charges lead from Eq. (58)
to a phase angle γ (z) that is equal to the azimuthal angle φ(z)
when r = R, independent of the location of the defect charges.
The dual variable �, (by a suitable choice of the integration
constant), using Eqs. (43) and (58), is given by

� = −
p∑

j=1

σ j

[
ln

|z − z j |2
R2

+ ln

∣∣∣∣1 − z

z̃ j

∣∣∣∣2]

= −
p∑

j=1

σ j

[
ln

|z − z j |2
R2

+ ln

∣∣∣∣1 − zz j

R2

∣∣∣∣2]
, (59)

and hence the Green’s function is

G(z1, z2) = 1

4π

[
ln

|z1 − z2|2
R2

+ ln

∣∣∣∣1 − z1z2

R2

∣∣∣∣2]
. (60)

We would like to emphasize that the metric does not appear
here so that G(z1, z2) is the same for the disk and cone with
tangential boundary conditions, although it does appear in F2

[Eq. (47)].

IV. EVALUATION OF F

We are now ready to evaluate the free energy F . Integrating
Eq. (45) by parts and using Eqs. (59) and (60) lead to

F1 = −(π p)2J
∑
mn

σmσnG(zm, zn) (61)

F2 = −2π
p2

4
J

∑
m

σmϕ(zm). (62)

In analogy to electrostatics, we learn from F2 that ϕ behaves
as an additional contribution to the electrostatic potential due
to the surface geometry. In particular, upon substitution of ϕ =
−χ ln(zz̄) into F2, there is clearly an attraction (repulsion) of
the positive (negative) defects to (from) the cone apex that is
linear in the charge σ j .

Naively, it appears that there is no ϕ dependence in F1.
However, there is a subtlety in evaluating Eq. (61) due to the
self-energy term coming from the m = n terms in the double
sum, pointed out in Ref. [42], which we now examine.

A. Self-energy

The self-energy is formally infinite, but this ignores the
defect core size δ, which sets a natural UV cutoff. Therefore,
what we really mean by G(zm, zm) is

G(zm, zm) = lim
d (zm,zn )→δ

G(zn, zm), (63)

where d (zm, zn) is the distance between zm and zn and δ is the
minimum distance determined by hard core repulsion between
liquid crystal molecules. By definition of the metric,

d (zm, zn) = eϕ(zm )/2|zm − zn| = δ, (64)

and thus

|zm − zn| = δe−ϕ(zm )/2. (65)

Now, using the fact that for small point separation zm and zn,
the singular part of G(zm, zn) ∼ 1

4π
ln |zm − zn|2, we can write

G(zm, zn) ∼ 1
4π

ln |zm − zn|2 + Ĝ(zm, zm), (66)

where Ĝ(zm, zm) is nonsingular at short distances. Upon sub-
stitution of Eq. (65) into Eq. (66), we get

G(zm, zm) = 1

4π

(−ϕ(zm) + ln δ2
) + Ĝ(zm, zm). (67)

For example, for the plane or sphere, Eq. (57) gives
Ĝ(zm, zm) = 0. For a flat plane, ϕ = 0 as well, but for the unit
sphere, ϕ = 2 ln 2

1+|z|2 , thus contributing to Eq. (67). For the
disk or cone geometry Eq. (60) gives

Ĝ(zm, zm) = 1

4π
ln

∣∣∣∣1 − |zm|2
R2

∣∣∣∣2

. (68)

Thus, F (after dropping the constant term involving δ in F1)
becomes

F = −(π p)2J
∑
mn

σmσnG(zm, zn)

− π p2

2
J

∑
m

(
σm − 1

2
σ 2

m

)
ϕ(zm) (69)

= −π
p2

2
J

{∑
m<n

σmσn

[
ln

|zm − zn|2
R2

+ ln

∣∣∣∣1 − zmzn

R2

∣∣∣∣2]

+
∑

j

σ 2
j ln

(
1 − |z j |2

R2

)

−χ
∑

j

(
σ j − σ 2

j

2

)
ln

|z j |2
R2

}
, (70)

where we are now denoting Ĝ(zm, zm) as G(zm, zm) in the
double sum. The first equality holds in general, and the second
equality is specialized to the case of a cone with deficit angle
2πχ .

In other words, the self-energy term gives rise to σ 2
mϕ/2,

which represents an additional contribution to the geometric
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FIG. 2. Schematic of z̃ geometry for sin β = 1/n, for n = 10.
The conical singularity is represented by the star at the origin, the
topological defect is represented by the black dot in the black wedge,
and n − 1 image charges are represented by white circles in the
dashed wedges.

interaction, and depends quadratically on the defect charge
σm, in agreement with the general results of Refs. [38] and
[42]. We now provide some intuition for the σ 2

m term by
deriving the self-energy term explicitly in the context of a
cone.

1. Self-energy on a cone

Here we first explain the quadratic dependence of the
self-energy on the defect charge and see intuitively why it
is repulsive for a cone. Let us consider a cone with special
commensurate half-angle β such that sin β = 1/n for a given
integer n. As shown in Fig. 2, such a cone is equivalent to
R2/Zn. What this means is that if we have a topological
defect, then because of the Zn it is as if there are 1 physical
and n − 1 image charges, a charge in each of the n wedges (see
Fig. 2 for a schematic). Then, it is clear that the interaction
between a defect and the geometric defect charge of the cone
is quadratic in the topological charge and also repulsive.

We will now make this argument more quantitative. Let �

denote the distance between any defect and the origin, and
let r and s denote defects, where r, s = 0, . . . , n − 1. Then
the interaction energy between a pair of defects r and s on
a plane, [upon substituting Eq. (57) into Eq. (61)], is F1 =
−π

p2

2 Jσ 2
m ln d2

rs, where drs = �|e2π i(r/n) − e2π i(s/n)| is the dis-
tance between the defects. Since drs ∝ � for all pairs, the total
elastic energy is given by

E = −π
p2

2
J

1

n

(
n

2

)
σ 2

m ln �2 + const.

= −π
p2

4
Jσ 2

m(n − 1) ln �2 + const. (71)

The factor of 1/n is due to the fact that the physical space
is one of these n wedges, and the binomial factor (n

2) counts
all of the pairwise interactions. Now, on using the following

coordinate transformation [Eq. (8)]:

� = |zm|1−χ

1 − χ
, (72)

the energy is, up to a constant,

E = −π
p2

4
J (n − 1)(1 − χ )σ 2

m ln |zm|2. (73)

Using 1 − χ = 1/n (for the special case sin β = 1/n) then
leads to

E = −π
p2

4
Jσ 2

mχ ln |zm|2 = π
p2

4
Jσ 2

mϕ(zm), (74)

recovering for a cone the quadratic term in Eq. (69).

V. GROUND STATES OF DEFECTS ON DISK AND CONE

Here we compute the ground-state defect configuration for
the disk and cone with tangential boundary conditions. Tan-
gential boundary conditions provide a much richer arena than
the free boundary conditions of Ref. [41], because defects on
the cone flanks can be an intrinsic part of the ground state. For
a cone, substituting ϕ = −χ ln zz̄ and Eq. (60) into Eq. (69)
immediately gives (with χ = 1 − sin β)

F = −π
p2

2
J

{∑
m<n

σmσn

[
ln

|zm − zn|2
R2

+ ln

∣∣∣∣1 − zmzn

R2

∣∣∣∣2]

+
∑

j

σ 2
j ln

(
1 − |z j |2

R2

)
− χ

∑
j

(
σ j − σ 2

j

2

)
ln

|z j |2
R2

}
.

(75)

We interpret each term in turn. The first term (the double
sum) is the usual elastic interaction between pairs of defects,
including image charges. The second term is the self-energy,
which would need to be added to any microscopic defect
core energy Ec. The final term represents the interaction be-
tween a topological defect and the geometry [42], specialized
to the cone. Note that the cone apex develops an effective
topological charge of −χ . This is also compatible with the
recent results of Ref. [41] in finding the ground-state configu-
ration of a p-atic liquid crystal on a cone with free boundary
conditions, which is equivalent to minimizing the magnitude
of the effective charge at the cone apex. In particular, the
minimum energy configuration considered in Ref. [41] can
have some number s0 of charge +1/p defects at the cone
apex absorbed from the free outer rim. On keeping the |∂ϕ|2
term in Eq. (40), and converting to physical coordinates using
Eq. (8), we obtain a ground-state free energy of (πJ p2/2(1 −
χ ))q2

A ln R̃/a, where qA = −χ + s0/p is the effective charge
at the cone apex, s0 = argmin

s
| − χ + s/p| is the number of

defect charges that optimally screens out the geometric con-
tribution −χ , and R̃ the longitudinal length of the cone along
the flanks. The result is consistent with Ref. [41].

Moreover, a topological defect of charge σ j , when interact-
ing with the cone apex, behaves as if it had an effective charge

Qeff = σ j − σ 2
j /2. (76)
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Hence an elementary positive (negative) defect with charge
σ j = ±1/p will be attracted to (repelled from) the cone tip.
(We note in passing that these attractions and repulsions will
be reversed for hyperbolic cones, e.g., the surfaces formed
when negative disclinations are allowed to relax into the third
dimension [54].)

The general strategy for constructing ground states is
that topological defects (including possible image charges)
interact with each other via a 2d logarithmic Coulombic in-
teraction, i.e., same-sign defects want to be as far away from
each other as possible. Since the cone apex has a negative
effective topological charge, depending on the deficit angle, it
will absorb as many positive defects it can until the net charge
at the apex becomes positive, in which case no additional
defects will be absorbed. The remaining defects will then be
as far away as possible from the cone apex. It seems plausible
that they would lie equally spaced on a ring, a conjecture con-
firmed by our numerical simulations. We will now describe
this picture more quantitatively.

A. Disk

To set the stage for a cone, we first consider p-atics on disks
with tangential boundary conditions. In this case, setting χ =
0 in Eq. (75) reduces to

F = −π
p2

2
J

{∑
m<n

σmσn

[
ln

|zm − zn|2
R2

+ ln

∣∣∣∣1 − zmzn

R2

∣∣∣∣2]

+
∑

j

σ 2
j ln

(
1 − |z j |2

R2

)}
. (77)

We have suppressed a contribution to the core energy
of the defects, usually modeled by a term Ec

∑
j σ

2
j . This

term prefers elementary defects of minimal charge σ = ±1/p,
since 1/p2 + 1/p2 < (2/p)2, which motivates us to consider
only elementary defects in this paper.

For p defects each of charge σ j = +1/p equally spaced on
a concentric ring of radius d = xR in the isothermal coordi-
nates, i.e., z j = de2π i( j/p), j = 0, . . . , p − 1, the free energy
is computed to be

F = −π
p2

2
J

[
1

p2

p(p − 1)

2
ln x2 + p

p2
ln(1 − x2p)

]
+ const.

(78)
In deriving Eq. (78), we used the fact that for σ j = +1/p and
z j = de2π i( j/p), we have

∑
m<n

σmσn ln

∣∣∣∣1 − zmzn

R2

∣∣∣∣2

+
∑

j

σ 2
j ln

(
1 − |z j |2

R2

)

= p
p−1∑
j=0

1

p2
ln(1 − x2e2π i( j/p) )

= p

p2
ln

p−1∏
j=0

(1 − x2e2π i( j/p) ) = p

p2
ln(1 − x2p). (79)

Minimizing Eq. (78) over the dimensionless flank distance x
gives

x =
(

p − 1

3p − 1

) 1
2p

. (80)

B. Cone

We now return to the generalized case of the cone and con-
sider the following defect configuration: k defects of charge
+1/p equally spaced on a ring at a distance d = xR on
the cone flank, i.e., for these defects, z j = de2π i( j/p), j =
0, . . . , k − 1, and the remaining p − k defects at the cone
apex. Then the free energy becomes (up to a constant)

F = −π
p2

2
J

[
1

p2

k(k − 1)

2
ln x2+ k

p2
ln(1−x2k )+k

χ ′

p
ln x2

]
,

(81)

where

χ ′ = −
(

1 − 1

2p

)
χ + p − k

p
. (82)

The χ ′ term determines whether a defect is absorbed by the
core. These transitions happen at critical cone angles such that

χ ′
c = 0 ⇒ χc = 2(p − k)

2p − 1
, (83)

and F here is minimized when

x =
(

k − 1 + 2pχ ′

3k − 1 + 2pχ ′

) 1
2k

. (84)

On using Eqs. (8) and (16), the fractional distance x̃ along the
flank [for the unrolled coordinates in Fig. 1(b)] is

x̃ =
(

k − 1 + 2pχ ′

3k − 1 + 2pχ ′

) sin β

2k

. (85)

Note that here k is chosen such that

χ ′ − 1/p < 0 � χ ′, (86)

or equivalently,

2(p − k − 1)

2p − 1
� χ <

2(p − k)

2p − 1
. (87)

In other words, there are three general cases for ground-
state configurations:

(1) 2(p−1)
2p−1 < χ : the ground state consists of p defects of

charge +1/p that have been swallowed up by the cone apex.
(2) 2(p−k−1)

2p−1 � χ <
2(p−k)
2p−1 : the ground state consists of

p − k defects of charge 1/p at the apex and k defects at
z j = de2π i( j/k), j = 0, 1, . . . , k − 1 [d = xR is determined in
Eq. (84) by minimizing the free energy].

(3) χ < 0: the ground state consists of p defects of charge
1/p at z j = de2π i( j/p), j = 0, . . . , p − 1 [d = xR is deter-
mined in Eq. (84) with k = p by minimizing the free energy].

To summarize, we expect that the ground state of a p-atic
on a flat disk with tangential boundary conditions at r = R has
p defects of charge +1/p spaced out evenly on a concentric
ring at distance d = xR [Eq. (80)] from the disk center [see
Fig. 3(a) for p = 6]. As the cone angle increases (the surface
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(a) (b)

FIG. 3. Schematic illustration of ground-state defect configura-
tions on a disk and a cone. The positive Gaussian curvature at
the cone apex gives rise to a geometrical background charge that
attracts like-signed defects in the p-atic liquid crystal. (a) A hexatic
(p = 6) liquid crystal on a flat disk has six defects with charge +1/6
distributed evenly along the angular direction at positions given by
Eq. (80) with p = 6. (b) A cone with angle sin β = 4/6 absorbs two
of those defects onto the apex, leaving four defects on the flanks,
again evenly distributed along the azimuthal direction. Defects are
depicted by black dots.

deviates more from flatness), the cone apex absorbs the +1/p
defects one by one at certain values of χ , while the rest of the
defects lie equally spaced along a ring at some distance d (χ )
that depends on the cone angle [see Eq. (84)] from the apex
[see Fig. 3(b), which illustrates p = 6 and χ = 1/3].

C. Maier-Saupe model and numerics

We now check our continuum results above with
ground-state energy minimizations on lattices. The dis-
crete Hamiltonian follows from the Maier-Saupe model
for a two-dimensional system of p-atic liquid crystals on
curved surfaces, with interactions that align nearest neighbors
[55],

H = −J ′ ∑
〈i j〉

[Tp(m̂i · m̂ j )]

= −J ′ ∑
〈i j〉

[cos(p(θi − θ j + Ai j )) − 1], (88)

where i, j are site indices, 〈i j〉 indicates nearest neighbors,
m̂i is an orientational unit vector attached to a liquid crystal
molecule at site i, θi is the orientation angle of molecule
i in the local frame of site i, and Ai j is the rotation angle
induced by parallel transport between site i and j. Tp(x) is
the pth Chebychev polynomial [56], and J ′ is the microscopic
Maier-Saupe coupling strength between molecules at neigh-
boring sites. As shown in Appendix B, J ′ maps onto the
coarse-grained parameters in our free energy as J ′ = J/4 for
a square lattice and J ′ = J/4

√
3 for a triangular lattice. On

the surface of a cone, the vectors describing the orientation
of p-fold symmetric molecules need to be parallel transported
to the local frame of its neighbor before their dot product is
taken. As shown in Eq. (88), the interaction energy between
two neighboring molecules at sites i and j is hence modified
by a rotation angle Ai j that the molecule undergoes during the
parallel transport.

Using the interaction energy in Eq. (88) and fixing the
orientation vectors m̂i at the base of the cone to obey tangential

TABLE I. Apex defect charges extracted from numerical energy
minimizations of p-atics on commensurate cone angles.

χ p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

0 1 0 0 0 0 0
1
6 1 1

2
1
3

1
4

1
5

1
6

1
4 1 1

2
1
3

1
4

2
5

2
6

2
6 1 1

2
1
3

2
4

2
5

2
6

3
6 1 1

2
2
3

2
4

3
5

3
6

4
6 1 2

2
2
3

3
4

3
5

4
6

3
4 1 2

2
2
3

3
4

4
5

5
6

5
6 1 2

2
3
3

3
4

4
5

5
6

boundary conditions, we simulate p-atic liquid crystals on
lattices on the surfaces of cones using the PYTHON Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [57–60]. Our
numerical energy minimizations focus on the cone angles
for which a regular triangular or square mesh is especially
straightforward to generate [41]. The numerical ground-state
textures for a nematic liquid crystal on a disk χ = 0 and cones
corresponding to χ = 1/3 and 2/3 are shown in Fig. 4. The
total apex defect charge for all commensurate cones simulated
are tabulated in Table I.

Note that vectors at the cone apex do not have a well-
defined orientation, since the azimuthal coordinate φ is
undefined there. We thus perform all energy minimizations
with the orientation vector at the apex removed.

Table I summarizes our numerical finding for the defect
content of the apex for sin β = 1 − χ = 1/6, 1/4, 2/6, 3/6 =
2/4, 4/6, 3/4, and 5/6. Figure 5 shows excellent agreement
between theory and numerics on both the total number of
flank charges and their radial position as a function of χ . See
Appendix D (Figs. 11–16) for a complete summary of all
defect configurations in the ground state we have explored
numerically.

VI. CONCLUSION

Our simplified model coupling p-atic liquid crystal order
to geometry based on isothermal coordinates reveals that the
cone apex develops an effective topological charge propor-
tional to the deficit angle of the cone. This observation leads
to a mechanism of defect absorption and emission at the
cone apex with one important conclusion about ground-state
configurations: when tangential boundary conditions are im-
posed at the base, compared to the defect configuration on a
disk, positive (negative) defects are absorbed (emitted) by the
cone apex, with transitions and positions of the flank defects
intricately depending on the deficit angle and the charges of
the defects.

To connect to biological systems, we must include
nonequilibrium effects, such as activity. Recently, a ten-
sorial hydrodynamic theory of p-atics was investigated on
flat surfaces [51,52]. In the presence of activity, a motile
nematic +1/2 defect would interact with the cone apex
depending on its position and polarization relative to the az-
imuthal direction of the cone, which could lead to interesting
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(a) (c)(b)

FIG. 4. Ground-state numerical textures for a nematic (p = 2) liquid crystal with tangential boundary conditions for various values of
χ = 1 − sin β, where β is the cone half-angle. (a) On a flat disk (χ = 0), there are two +1/2 defects, labeled with green dots, at positions
given by Eq. (80) with p = 2. (b) On the surface of a cone corresponding to χ = 1/3, there is one +1/2 defect on the flank and another at the
cone apex. (c) On a cone corresponding to χ = 2/3, there are two +1/2 defects at the cone apex, leaving none on the flanks. For (b) and (c),
we show both top and perspective views of the cone.

orbits even in the absence of noise. For example, it is conceiv-
able that a nematic +1/2 defect could slingshot around the
cone apex on a trajectory approximating a geodesic as if under

the influence of gravity due to the negative effective charge
of the apex. It would be interesting to study the dynamics of
active topological defects on curved surfaces.
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(b)

FIG. 5. Top row: plots of number of flank charges as a function of χ = 1 − sin β, where β is the cone half-angle. Purple markers are from
numerical energy minimization, and blue line is theoretical prediction for defect absorption transitions [Eq. (83)]. Bottom row: plots of flank
defect positions in the ground states of p-atics on cones as a function of χ . Purple markers are from numerical energy minimization, and blue
curve is theoretical prediction [Eq. (85)].
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(a) (b)

FIG. 6. Nematic textures from numerical energy minimizations
of p = 2 liquid crystals on truncated χ = 1/6 cones with an inner
truncation of rinner = 3 lattice constants and router = 10, with (a) tan-
gential BC at the bottom rim and free BC at the top rim (b) tangential
BC at both the top and bottom rims. Green circles indicate σ = +1/2
defects.

It would also be worth exploring defect configurations on
cones with both tangential and free boundary conditions at
finite temperatures. Entropic effects might cause the cone
apex to cough up some of the defects it has swallowed with
increasing temperatures.

It is also interesting to consider variants of the boundary
conditions considered here. The topological nature of the ge-
ometrical frustration associated with the cone makes it clear
that slightly truncated cones would behave in a similar fash-
ion, provided we maintain tangential boundary conditions at
the base and impose free boundary conditions at the top. In our
numerical minimizations, we removed a single site at the cone
tip, which is a limiting example of free boundary conditions
at the apex. This point is illustrated by Fig. 6(a) below, which
shows both perspective and rolled out views of a p = 2 conical
texture with inner rolled out radius rinner = 3 and router = 10
lattice constants and a cone angle such that χ = 1/6. Both the
texture and the position of the single σ = +1/2 defect on the
cone flank are essentially indistinguishable from the defect we
find with only a single apex site removed. See Appendix D.

On the other hand, imposing tangential boundary con-
ditions at both the top and bottom of a truncated cone
does change the ground state. As one might expect, there
are now no defects on flanks, and the frozen p-atic texture
simply interpolates between the tangential boundary condi-
tions at the top and bottom [see Fig. 6(b)]. The case of
tangential boundary conditions at the top of a truncated
cone and free boundary conditions at the bottom is also in-
teresting. We leave a full understanding of this intriguing
problem for general p and arbitrary cone angles to a future
investigation.

Finally, we comment briefly on the challenging problem
of determining the ground states of, say, triangular crystals
on cones with arbitrary opening angles. It is natural to expect
grain boundaries, such as the grain boundary scars discussed
for spheres in Ref. [62], in the ground state. In the simple

(a)

(b)

FIG. 7. (a) A flat two-dimensional crystal with a five-fold discli-
nation at the origin can lower its energy by forming five grain
boundaries to screen the central disclination charge. Each grain
boundary itself is a row of dislocations. (b) If allowed to buckle
into the third dimension, the crystal with the disclination can lower
its energy further without needing to form any grain boundaries.
Adapted from Refs. [54,61].

disklike example shown in Fig. 7(a), there is a net rotation of a
hexatic order parameter in the crystal of 60 degrees around the
rim, (somewhat similar to the 360 degree rotation caused by
tangential boundary conditions applied to a crystal spanning
an annulus, considered in Ref. [63].) Without grain boundaries
in the disk, the energy on the left grows like Y R2, where Y is
the Young’s modulus and R is the radius. However, introduc-
ing dislocations will lower this energy. The highly anisotropic
interactions between dislocations on the right leads to five
grain boundaries with 12 degree jumps in crystal orientation,
and produces an energy, which grows linearly in R and hence
is preferred, at least in flat space [61]. In both cases, there is a
fivefold disclination at the apex of the disk.

However, if this disclination is put on a cone with just the
right cone angle, like this one with χ = 1/6 [54], all grain
boundaries vanish [see Fig. 7(b)], and the energy will be low-
ered even more, to now depend logarithmically on the system
radius R with a coefficient proportional to the bending energy.
Less pointy cones should produce intermediate numbers of
grain boundaries, somewhat similar to the variable number of
flank defects we have found for liquid crystal order on cones
with tangential BC on the rim. (Alternatively, the number of
grain boundary arms could remain fixed, with an increased
dislocation spacing in each arm.) We expect similar config-
urations and issues when the boundary conditions enforce a
360 degree rotation at the edge and the cone angle is varied.
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APPENDIX A: POSITIVE AND NEGATIVE IMAGE
CHARGES ON THE CONE

In this Appendix, we illustrate the utility of isothermal
coordinates by exploring the boundary conditions associated
with both positive and negative image charges for a p-atic
liquid crystal on a cone with p elementary defects, each with
minimal charge σ j = +1/p. The local angle of the p-atic or-
der parameter is given by a simple generalization of Eq. (58),

θ (z, z̄) = γ (z, z̄)

p

= − i

2

∑
j

σ j

[
ln

(
z − z j

z̄ − z̄ j

)
± ln

(
z − z̃ j

z̄ − z̃ j

)]
,

(A1)

where an equal number of image charges with charges ±1/p
are located at z̃ j = R2/z̄, and the ± signs correspond to pos-
itive and negative image charges, respectively. Note that the
denominators in the logarithms ensure that the phase angles
are real. It is straightforward to check that an isolated defect at
position z j causes θ (z, z̄) to rotate by 2π/p on a small contour
surrounding the defect.

We first show that positive image charges indeed reflect the
tangential boundary conditions associated with a p-atic that
rotates uniformly by 2π around the edge at z = Reiφ , where
R is the radius of the base of the cone, independent of the
location of the defects. We first use

∂z = 1

2

(
∂

∂x
− i

∂

∂y

)
, ∂z̄ = 1

2

(
∂

∂x
+ i

∂

∂y

)
(A2)

to evaluate the quantity

ẑ · (�r × �∇ )θ (x, y) = x∂yθ − y∂xθ = 1

i
(z̄∂z̄ − z∂z )θ (z, z̄),

(A3)
where �r = (x, y) = r(cos φ, sin φ) and we will eventually set
r = R. It is straightforward to show that

ẑ · (�r × �∇ )θ =
p∑

j=1

σ j

[
Re

(
z

z̄ − z̄ j

)
+ Re

(
z

z̄ − z̃ j

)]
, (A4)

where z̃ j = R2/z̄ j . Upon setting z = Riφ, z j = r jeiφ j , and
z̃ j = (R2/r j )eiφ j , we find that

Re

(
z

z − z j

)
= 1 − r j

R cos(φ j − φ)

1 + ( r j

R

)2 − 2r j

R cos(φ j − φ)
(A5)

and

Re

(
z

z − z̃ j

)
=

( r j

R

)2 − r j

R cos(φ j − φ)

1 + ( r j

R

)2 − 2r j

R cos(φ j − φ)
. (A6)

Upon inserting these results into Eq. (A4), we see immediately
that

ẑ · (�r × �∇ )θ
∣∣∣
r=R

=
p∑

j=1

σ j = 1, (A7)

independent of coordinate φ on the rim of the base of the cone
and of the locations {z j = r jeiφ j } of p defect charges on the
cone. Thus, the orientation of the p-atic molecules, even in
the presence of defects, rotate uniformly at the rim. For the
problem considered in this paper, with p positive defects each
with charge σ j = 1/p on the cone, we have∮

r=R

�∇θ · d �� = 2π

p∑
j=1

σ j = 2π, (A8)

which is a manifestation of Gauss’s law.
For the case of boundary conditions provided by negative

image charges, a very similar calculation shows that

�r · �∇θ

∣∣∣
r=R

=
(

x
∂

∂x
+ y

∂

∂y

)
θ

∣∣∣
r=R

= (z̄∂z̄ + z∂z )θ (z, z̄)
∣∣∣
z=Reiφ

= 0. (A9)

With these negative image charge boundary conditions, the
radial component of the phase gradient vanishes, so that the
phase gradient is again tangential. However, the tangential
component of the gradient now varies in a complicated fashion
as a function of the azimuthal position along the boundary.
Indeed, it is readily shown that

ẑ · (�r × �∇ )θ
∣∣∣
r=R

=
p∑

j=1

σ j

(
R2 − r2

j

R2 + r2
j − 2r jR cos(φ j − φ)

)
.

(A10)
Despite this complicated azimuthal variation, one can show
that the integral of the phase gradient along the rim still results
in this simple form, identical to the first equality of Eq. (A8),∮

r=R

�∇θ · d �� = 2π

p∑
j=1

σ j . (A11)

We must now decide on the value of
∑p

j=1 σ j , under these
more complex negative image charge boundary conditions. In
the ground state, we expect this quantity to vanish, because
any defects in the interior of the cone would be attracted to and
annihilate with their oppositely signed image charges outside
the cone, as shown for a planar boundary in Fig. 8. A possible
exception is defects at the cone apex, which is allowed be-
cause then the image charge would then be infinitely far away.
This absence of defects in the interior of the cone in the
ground state is consistent with the results of Ref. [41] for
free boundary conditions. In this case, the free energy is min-
imized when enough defects are added at the apex (denoted
by s0 in Eq. (53) of Ref. [41]) such that the magnitude of
the effective charge qA at the apex (including the geomet-
ric contribution) is minimal, i.e., qA = | − χ + s0/p| where
s0 = argmin

s
| − χ + s/p| (χ is related to the γ in Ref. [41]

as χ = 1 − γ ). It is appropriate to characterize the disks and
cones studied in Ref. [41] as having free boundary conditions,
because the orientations of the p-atic molecules are uncon-
strained at the boundary, except by their neighbors in the
tangential direction. Hence, the gradient of their phase angle
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+ +- -- -

FIG. 8. Electric field lines (without arrows) of two positive
charges inside a disk and their negative image charges outside the
disk.

will vanish normal to the boundary. This is indeed the case, as
shown in Eq. (A9). Note that the situation is quite different
from tangential boundaries, as defects near boundaries are
repelled by their images.

APPENDIX B: RELATION BETWEEN MAIER-SAUPE
LATTICE COUPLING AND J

In this section, we clarify the relation between the
continuum free energy in isothermal coordinates and the
Maier-Saupe lattice Hamiltonian [Eq. (88)] used for simula-
tions. Let � denote the angle of the liquid crystal molecule
on the isothermal cone relative to the real axis of the complex
plane [see Figs. 1(a) and 9]. We can write Eq. (40) in terms
of the angle �. For a p-atic, � is related to γ (the angle of
the p-atic tensor component Q) as (Q ∼ [n̂⊗p]T S , where MT S

indicates the traceless symmetric part of M, see, for example,
Ref. [51]),

p� = θ. (B1)

The free energy in Eq. (40) can then be written as,

F0 = p2J
∫

dzdz̄
∣∣∣∂� − i

2
∂ϕ

∣∣∣2

, (B2)

with J = K + K ′. Upon making the substitutions, which
follow from the relations r = √

zz̄ and φ = 1
2i ln(z/z̄), and

remembering that ϕ(z, z̄) = −χ ln(zz̄), we have

∂� = e−iφ

2

(
∂r� − i

r
∂φ�

)
(B3)

i

2
∂ϕ = −i

e−iφ

2

χ

r
, (B4)

and Eq. (B2) becomes

F0 = p2

4
J

∫ 2π

0
dφ

∫ R

0
drr

(
|∂r�|2 +

∣∣∣∣∂φ�

r
− χ

r

∣∣∣∣2)
. (B5)

On using the following relations between cone coordinates
[see Eq. (8) and Fig. 1],

rdr = [(1 − χ )r̃]
2

(1−χ ) −1dr̃,

|∂r�|2 = [(1 − χ )r̃]2− 2
(1−χ ) |∂r̃�|2, (B6)

FIG. 9. ω denotes the angle of the director field n̂ of the liquid
crystal molecule (blue arrow) relative to the local orthogonal axes on
the cone surface. � indicates the angle of the director field n̂ on the
squashed isothermal cone, relative to the real axis of the 2d complex
plane.

we can rewrite the free energy in terms of the longitudinal
coordinate r̃ of the conic surface as

F0 = p2

4
J

∫ 2π

0
dφ

∫ R̃

0
dr̃(1 − χ )r̃

×
(

|∂r̃�|2 +
∣∣∣∣ ∂φ�

(1 − χ )r̃
− 1

(1 − χ )r̃
+ 1

r̃

∣∣∣∣2)
.

(B7)

Next, upon rewriting � in terms of the angle ω that the direc-
tor field makes with respect to the êr̃ axis of the local frame,

� = ω + φ, (B8)

we obtain

F0 = p2

4
J

∫ 2π

0
dφ

∫ R̃

0
dr̃(1 − χ )r̃

×
(

|∂r̃ω|2 +
∣∣∣∣ ∂φω

(1 − χ )r̃
+ 1

r̃

∣∣∣∣2)
. (B9)

Equation (B9) is precisely the continuum version of the
Maier-Saupe lattice Hamiltonian in Eq. (88), with J ′ = 1

4 J
for a square lattice and J ′ = 1

4
√

3
J for a triangular lattice [41].

APPENDIX C: EFFECT OF TRUNCATION

Here we consider the geometry of a truncated cone. In
isothermal coordinates, without loss of generality, let the
radius of the inner boundary be R1 and the radius of the outer
boundary be R2 = 1, with r = R1/R2 = R1 < 1. Using the
method of images to impose free boundary conditions at the
inner boundary (z = reiφ) and tangential boundary conditions
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at the outer boundary (z = eiφ) leads to the following modified
Green’s function:

G(z1, z2) = 1

4π

[
ln |z1 − z2|2 −

∞∑
n=0

(−1)n ln
∣∣z1 − r2n+2z2

∣∣2

−
∞∑

n=0

(−1)n ln
∣∣r2n+2z1 − z2

∣∣2

+
∞∑

n=0

(−1)n ln
∣∣z1z2 − r−2n

∣∣2

−
∞∑

n=0

(−1)n ln
∣∣z1z2 − r2n+2

∣∣2
]
. (C1)

In terms of the q-Pochhammer symbol,

(a; q) ≡
∞∏

n=0

(1 − aqn), (C2)

the Green’s function can be expressed as

G(z1, z2) = 1

4π

[
ln |z1 − z2|2 − ln

∣∣∣∣∣
(
r2 z2

z1
; r4

)(
r4 z2

z1
; r4

) ∣∣∣∣∣
2

− ln

∣∣∣∣∣
(
r2 z1

z2
; r4

)(
r4 z1

z2
; r4

) ∣∣∣∣∣
2

+ ln

∣∣∣∣ (z1z2; r4)

(z1z2r2; r4)

∣∣∣∣2

+ ln

∣∣∣∣∣
(

r2

z1z2
; r4

)(
r4

z1z2
; r4

) ∣∣∣∣∣
2
⎤⎦, (C3)

or compactly as

G(z1, z2)

= 1

4π
ln

∣∣∣∣∣(z1−z2)

(
r4 z2

z1
; r4

)(
r4 z1

z2
; r4

)
(z1z2; r4)

(
r2

z1z2
; r4

)(
r2 z2

z1
; r4

)(
r2 z1

z2
; r4

)
(z1z2r2; r4)

(
r4

z1z2
; r4

) ∣∣∣∣∣
2

.

(C4)

Note that by using (a; 0) = 1 − a, it is easy to check that as
r → 0, the original Green’s function for the cone [Eq. (60)] is
recovered.

The defect configurations we find in this work appear ro-
bust to small truncations of the cone top. Figure 10 shows the

FIG. 10. Defect configurations for a nematic liquid crystal with
cone angle χ = 1/6 and inner truncation radii rinner = 2, 4, 6. When
the truncation radius of the cone is sufficiently small, a truncated
cone with free boundary conditions on the inner rim retains quali-
tatively the same distribution of defect charges on the flank and the
apex as that for the untruncated cones studied in this paper. When the
cone is truncated too sufficiently close to the outer rim, flank defects
get absorbed to the center of the inner rim.

numerical ground state textures of a nematic liquid crystal on
a cone with χ = 1/6 and flank length R̃ = 10. The number
of flank defects stay the same for truncation radius r̃0 < 6
and get absorbed to the center of the inner rim when r̃0 � 6
approaches more than halfway to the outer rim. In the latter
limit, the effect of boundary condition starts to dominate that
of geometry and the cone starts to behave more as a cylinder.

APPENDIX D: GROUND-STATE TEXTURES

Figures 11–16 summarize the results of our extensive nu-
merical calculations of ground-state configurations of p-atics
on disks and cones with tangential boundary conditions at the
base edges, obtained from numerical energy minimizations of
the Hamiltonian in Eq. (88). The configurations are arranged
by row according to χ = 1 − sin β, where β is the half cone
angle, and by column according to liquid crystal symmetry
parameter p. Additionally, although χ = 0/6, 3/6 are equiv-
alent in value to χ = 0/4, 2/4, the corresponding numerical
ground states are shown separately here, where χ = 0/6, 3/6
indicate simulations done on a triangular lattice mesh, while
χ = 0/4, 2/4 indicate those done on a square lattice mesh.
Minimal defects in the ground state of charge +1/p on the
disk and the cone flanks are marked with red circles. The
defect configurations corresponding to cone angles that admit
tilings with both square and triangular lattices are essentially
indistinguishable.
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FIG. 11. Ground state textures from numerical energy minimizations for various values of (p, χ ). Simulations for χ = 0/6 and 1/6 are
performed on a triangular lattice, and simulations for χ = 0/4 and 1/4 are performed on a square lattice. Red dots denote the presence of flank
defects.
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FIG. 12. Ground state textures from numerical energy minimizations for various values of (p, χ ). Simulations for χ = 2/6, 3/6 and 4/6
are performed on a triangular lattice, and simulations for χ = 2/4 are performed on a square lattice. Red dots denote the presence of flank
defects.
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FIG. 13. Ground state textures from numerical energy minimizations for various values of (p, χ ). Simulations for χ = 5/6 are performed
on a triangular lattice, and simulations for χ = 3/4 are performed on a square lattice. Red dots denote the presence of flank defects.
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FIG. 14. Ground state textures from numerical energy minimizations for various values of (p, χ ). Simulations for χ = 0/6 and 1/6 are
performed on a triangular lattice, and simulations for χ = 0/4 and 1/4 are performed on a square lattice. Red dots denote the presence of flank
defects.
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FIG. 15. Ground state textures from numerical energy minimizations for various values of (p, χ ). Simulations for χ = 2/6, 3/6 and 4/6
are performed on a triangular lattice, and simulations for χ = 2/4 are performed on a square lattice. Red dots denote the presence of flank
defects.
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FIG. 16. Ground state textures from numerical energy minimizations for various values of (p, χ ). Simulations for χ = 5/6 are performed
on a triangular lattice, and simulations for χ = 3/4 are performed on a square lattice. Red dots denote the presence of flank defects.
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