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Upper bound of fragility from spatial fluctuations of shear modulus and boson peak in glasses
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It is shown that the normalized rms fluctuation of the shear modulus on the medium-range order scale in
glasses correlates with fragility: the higher fragility, the smaller the fluctuation amplitude. The latter is calculated
within the heterogeneous elasticity theory using the data on the boson peak in glasses. On a smaller scale
corresponding to cooperative structural relaxation, the normalized rms fluctuation of the infinite-frequency shear
modulus was estimated using the data on the decoupling of viscosity and diffusion in supercooled liquids. These
fluctuations are much smaller in amplitude, and, in contrast, they increase with increasing fragility. Extrapolation
predicts intersection of both rms fluctuations and disappearing of the boson peak at the upper limit to fragility
≈180.
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I. INTRODUCTION

Due to disordered structure, glasses have much more com-
plex vibrational and relaxational dynamics than crystals [1].
The most noticeable feature that distinguishes the spectrum
of acoustic vibrations in glasses from that in crystals is the
boson peak [2–4]. It corresponds to excess acoustic vibrations
with a wavelength a few times larger than the molecular size,
which corresponds to the typical length of the medium-range
order (MRO). It was shown that the heterogeneity of the shear
modulus on the nanometer scale can explain the appearance
of these excess vibrations [3,5–9]. Other models have also
been proposed to describe the boson peak [10–25]. The struc-
tural disorder also leads to a complex pattern of structural
relaxation in supercooled liquids [1,26]. The main feature
here is the structural α relaxation. The slowing down of α

relaxation with decreasing temperature leads to glass transi-
tion at a certain temperature Tg, below which the structure
freezes on a laboratory time scale. One of the most important
parameters characterizing glass transition is fragility m, which
shows how much α-relaxation time τα or viscosity η changes
with a change in temperature near the glass transition temper-
ature Tg. The formal definition is m = dlogτα/d (Tg/T )|T =T g

[1,27]. Fragility changes from 18–22 for strong glass form-
ers like silica (covalent bonding) to 160–180 for the most
fragile molecular liquids and polymers [28,29]. It was found
that some properties of α relaxation in supercooled liquids
correlate with the elastic properties of corresponding glasses,
e.g., the boson peak correlates with fragility—its amplitude
is larger in strong glass formers and smaller in fragile ones
[30,31] and fragility correlates with the nonergodicity param-
eter [32] and Poisson’s ratio [31]. Note that the last correlation
does not hold in complex glasses like silicates, borates, etc.
[33–35], in highly fragile polymers [33], and looks different
in bulk metallic glasses [34–36].

The frequency of the boson peak νb and the transverse
sound velocity ct of plane-wave phonons define a length

Lb = ct/νb (1)

which corresponds to an acoustic wavelength of one to several
nanometers. The transverse sound velocity is used in Eq. (1)
because the vibrations responsible for the boson peak are
of the transverse type. This is known both from the high
depolarization ratio of the low-frequency Raman scattering in
glasses [37–39] and computer simulation of the boson peak
[40,41]. Lb is the wavelength that transverse vibrations of
frequency νb would have in a continuous elastic medium with
constant transverse sound velocity ct . In this paper, Lb is called
dynamical length because it is associated with a dynamical
property.

In Refs [3,5,7,42,43], it was argued that Lb with a coef-
ficient of the order of unity is equal to the typical length of
an elastic inhomogeneity or the correlation length of spatial
fluctuations of elastic constants on the scale of the MRO.
The latter can be characterized by a correlation length Lc. It
can be found from the static structure factor S(q) based on
the width �Q of the first diffraction peak that describes the
medium-range ordering of the main structural units [44–47]:

Lc = 2π/�Q. (2)

Here �Q is the half width at half maximum of the diffrac-
tion peak. The respective structural units might be of various
natures, in particular, basic structural units determined by the
short-range order [47], rings [48], or nanovoids [49].

The two lengths, dynamical and static structure correlation
lengths, are of the same order; they both are determined by the
MRO scale. However, their ratio is not universal in different
glasses but systematically changes with fragility. Figure 1
shows the ratio of the dynamical to static correlation length
Lb/Lc for glass-forming materials with different fragility. The
experimental data on ct , νb, and S(q) are available in Tables
S1 and S2 of the Supplemental Material [50].

As shown in the inset of Fig. 1, in log-log coordinates,
this correlation is a linear function. The ratio changes from
about 1.8 for strong silica to about 0.5 for fragile toluene and
propylene carbonate. In this paper, it is shown that this corre-
lation can be explained by the dependence of the mean-square
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FIG. 1. Correlation of the ratio Lb/Lc with fragility. Inset:
The same plot in log-log coordinates. The red solid line is a
linear fit of the log-log plot which corresponds to Lb/Lc =
(13.4 ± 2.4)/m0.67±0.05. In ascending order of fragility, SiO2, GeO2,
B2O3, (Li2O)0.08(B2O3)0.92, Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vit4),
(Li2O)0.14(B2O3)0.86, (K2O)0.22(B2O3)0.78, propylene glycol,
glycerol, (Na2O)0.22(B2O3)0.78, (Li2O)0.22(B2O3)0.78, Se, salol,
trisnapthylbenzene, orthoterphenyl, propylene carbonate, sorbitol,
and toluene.

amplitude of the shear modulus fluctuations γ 2
b = 〈(�G/G)2〉

on the nanometer scale on fragility. I found γ 2
b for various

glasses based on the heterogeneous elasticity theory using the
data on the position of the boson peak and the width of the
First Sharp Diffraction Peak (FSDP). As expected, γ 2

b is larger
in glasses with a strong boson peak and, respectively, with
smaller fragility.

The shear modulus and its spatial fluctuations are used also
in description of the α relaxation. According to one of the ver-
sions of the elastic theory of relaxation in supercooled liquids,
the activation energy of the α-relaxation time τα is determined
by the instantaneous shear modulus G∞(T ) [51,52]. The spa-
tial fluctuations of G∞ lead to decoupling in the temperature
dependence of the diffusion and viscosity [53–57]. This is an
alternative way to estimate shear modulus fluctuations. It pre-
dicts much smaller values of the elastic fluctuations than that
from the boson peak. Moreover, the respective mean-square
fluctuation increases with increasing fragility. Extrapolation
of both correlations to higher values of fragility shows that
they intersect at m ≈ 180, which is close to the upper bound
of fragility in supercooled liquids [28,58–61]. A spatial land-
scape of the shear modulus in glasses corresponding to these
results is proposed.

II. THEORY AND RESULTS

To find the relationship between the dynamical length Lb

and the static length characterizing structure heterogeneity
Lc, perturbation theory for fluctuations of elastic constants
of glass in combination with the Ioffe-Regel (IR) criterion
of localization [62–66] is used here. It is known that the IR
criterion is fulfilled for transverse vibrations in glasses at

the frequency of the boson peak [63]. The IR criterion for
transverse vibrations is

	t (ω) = ω/π, (3)

where 	t (ω) is the full width at half maximum of the vi-
brational line with the frequency ω [63–66]. In terms of
the vibration lifetime, this criterion is τ –1

t (ω) = ω/2π . Equa-
tion (3) connects the boson peak frequency, and hence the
dynamic length Lb, with the parameters of the elastic het-
erogeneity that determine the value of 	t . This approach has
already been used in Refs. [67,68], but in the approximation
used the medium had only one modulus of elasticity and,
respectively, one sound velocity.

The vibrational properties are described by the Green func-
tion:

Gα (k, ω) = ωkα

ω2 − ω2
kα

− ωkα�α (k, ω)
, (4)

where α corresponds to the transverse, t , or longitudinal, l ,
vibrational mode, and �α (k, ω) is the respective self-energy
function. Phonon lifetime is determined by the imaginary
part of the self-energy function. If �α (k, ω) = �1α (k, ω) +
i�2α (k, ω) then

τ−1
α (ω) = �2α (ω/cα, ω), (5)

where ct and cl are transverse and longitudinal sound veloc-
ities, respectively. To estimate the self-energy function, the
Hamiltonian of elastic waves for an isotropic solid in contin-
uum approximation is used:

H =
∫

d3r

[
π2

2ρ
+ G

(
s2

i j − 1

3
s2

ii

)
+ K

2
s2

ii

]
, (6)

where π and ρ are the momentum and mass density,

si j = 1

2

(
∂ui

∂r j
+ ∂u j

∂ri

)
(7)

is the strain tensor, u(r, t) is the displacement from equilib-
rium,

u j (r) =
√

h̄

�V

∑
k,α

Akαekα, j√
ωkα

eikr, (8)

where Akα = (akα + a+
−kα

)/
√

2, akα and a+
kα

are phonon anni-
hilation and creation operators, ekα is the polarization vector
of the phonon with momentum k, and the index α de-
scribes three acoustical modes. G(r) and K(r) are the spatially
fluctuating shear and bulk moduli, respectively, and G(r) =
〈G(r)〉 + δG(r), G(r) = 〈K (r)〉 + δK (r). In support of the
continuum approximation of elasticity in the model used, it
can be noted that the ratio of the frequency of the boson
peak to the Debye frequency is, for example, about 10 in
silica and 8 in glycerol. This is far enough from the end
of the acoustic spectrum that the continuum approximation
should be expected to work quite well. It is also known that
the spectral shape of the boson peak is practically universal
and does not depend on the microscopic features of the glass
structure.
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The perturbation term in the Hamiltonian is

δH =
∫

d3r

{
δG(r)

(
s2

i j (r) − 1

3
s2

ii(r)

)
+ 1

2
δK (r)s2

ii(r)

}
.

(9)
The perturbation term expressed in terms of phonons has

the form

δH = 1

2

∑
k,k1,α,α′

Vαα′ (k, k1)AkαAk1α′ , (10)

where

Vαα′ (k, k1)

= h̄

V ρ(ωkαωk1α′ )1/2

{[
(kk1)

(
ekαek1α′

) + (
kek1α′

)
(k1ekα )

−2

3
(kekα )(k1ek1α′ )

]

×(δG)k+k1
+ (kekα )

(
k1ek1α′

)
(δK )k+k1

}
. (11)

Here

(δG)k =
∫

d3reikrδG(r) (12)

and, respectively, for (δK )k. The spatial correlation function
of the fluctuations is defined as follows:

F (r) = 〈δG(R)δG(r + R)〉/〈G〉2 = γ 2
b e−κr . (13)

The Fourier transform of F (r) is

F (k) =
∫

d3reikrF (r) = 8πκγ 2
b

(κ2 + k2)2 , (14)

where κ
−1 is the correlation radius and γ 2

b is the mean-square
fluctuation of the shear modulus on the scale relevant to the
boson peak [Eq. (13)], normalized by the mean value of G:

γ 2
b = 〈(δG)2〉

〈G〉2 . (15)

In the second-order approximation, the self-energy func-
tion is equal to

�α (k, ω)

=
∫

d3k1

(2π )3

∑
α′

〈Vαα′ (−k, k1)G0α′ (k1, ω)Vα′α (−k1, k)〉

= 2h̄2v4
t γ

2
b κ

π

∫
k2

1d k1 sin θdθ(
κ

2 + k2
1 + k2 − 2k k1 cos θ

)3

×
∑
α′

G0α′ (k1, ω)Q2
αα′ (k, k1)

ωkαωk1α′
, (16)

where

Qαα′ (k, k1) = (kk1)
(
ekαek1α′

) + (
kek1α′

)
(k1ekα )

− 2
3 (kekα )

(
k1ek1α′

)
(17)

is symmetrical with respect to k, k1, as well as α, α’; θ is the
angle between vectors k and k1.

Note that Eq. (15) is a complete expression for �t only, and
in the case of �l there are also terms with 〈δK (r)δK (r + R)〉
and 〈δG(r)δK (r + R)〉 on the right-hand side (see Sec. II
of the Supplemental Material [50]). They are absent in �t

because of polarization symmetry. In addition, density fluc-
tuations at this nanometer scale were neglected, since their
contribution is much less than the contribution of the shear
modulus, i.e., in silica 〈(δρ/ρ )2〉 ≈ 0.01 [43] in comparison
with γ 2

b ≈ 0.36 of this paper (see below). Since G and ρ

enter the problem in the combination G/ρ = c2
t , considering

〈(δct/ct )2〉 as a small parameter instead of 〈(δG/G)2〉 allows
one to take into account density fluctuations more accurately.
Neglecting the latter gives 〈(δG/G)2〉 = 4〈(δct/ct )2〉.

The overbar in Q2
αα′ (k, k1) in Eq. (16) means averaging

over phonon polarization directions, which is done using rela-
tions

ekl,iekl, j = kik j

k2
(18)

for longitudinal phonons and

ekt,iekt, j = 1

2

(
δi j − kik j

k2

)
(19)

for transverse phonons. Taking into account these relations,
the functions Q2

αα′ (k, k1) are equal to

Qll (k, k1)2 = 4k2k2
1

(
x4 − 2

3
x2 + 1

9

)
, (20)

Qtt (k, k1)2 = k2k2
1

(
x4 − 3

4
x2 + 1

4

)
, (21)

Qlt (k, k1)2 = Qtl (k, k1)2 = 2k2k2
1x2(1 − x2), (22)

where x = kk1/kk1 = cosθ . As a result,

�t (k, ω) = 4γ 2
b κc3

t k

π

∫ kD

0
k4

1dk1

[
Z2(k, k1) − Z4(k, k1)

ω2 − v2
l k2

1 + i0

+Z4(k, k1) − 3
4 Z2(k, k1) + 1

4 Z0(k, k1)

ω2 − v2
t k2

1 + i0

]
(23)

where functions Zn(k, k1) are defined as

Zn(k, k1) =
∫ 1

−1

xndx(
κ

2 + k2
1 + k2 − 2kk1x

)2 . (24)

These integrals are estimated in analytical form in Sec. II
of the Supplemental Material [50]. The imaginary part of
�t (k, ω) is equal to

�2t (k, ω) = 2γ 2
b κkω3

c2
t

[
c5

t

c5
l

(Z2(k, ω/vl ) − Z4(k, ω/vl ))

+ Z4(k, ω/vt ) − 3

4
Z2(k, ω/vt ) + 1

4
Z0(k, ω/vt )

]
.

(25)
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Finally, using the IR criterion (3) and Eq. (5) for τ –1
t (ω),

one can obtain the expression for the mean-square shear mod-
ulus fluctuation responsible for the boson peak:

γ 2
b = κ

3R3
b

4π f
, (26)

where Rb = Lb/2π and f is a dimensionless function of
1/κRb and ct/cl :

f = c5
t κ

4

c5
l

[
Z2

(
1

Rb
,

1

Rb

ct

cl

)
− Z4

(
1

Rb
,

1

Rb

ct

cl

)]

+ Z4

(
1

Rb
,

1

Rb

)
− 3

4
Z2

(
1

Rb
,

1

Rb

)
+ 1

4
Z0

(
1

Rb
,

1

Rb

)
.

(27)

The parameter γ 2
b can be estimated using experimental data

on the boson peak frequency, sound velocities, and assuming
the MRO radius Rc = 1/κ is determined by the structure and
thus can be taken from the diffraction data, 2Rc = Lc, as it
was suggested earlier in Ref. [43]. The estimated values of
γ 2

b are in the interval 0.36–0.05 for various glasses (see Table
S2 of the Supplemental Material [50]). Interestingly, there is
a correlation between fluctuations and fragility: γ 2

b decreases
with increasing fragility (Fig. 2). In log-log coordinates the
dependence is a linear function (Fig. 2, inset) with a slope of
about −1. The fit of the γ 2

b (m) dependence by a power law
gives γ 2

b (m) ≈ (6.1 ± 1.3)/m0.97±0.06. Fixing the exponent in
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FIG. 2. Correlation of the normalized mean-square fluctu-
ation of the shear modulus with fragility: γ 2

b , found from
the boson peak; γ 2

rel, found from the decoupling of viscos-
ity and diffusion in supercooled liquids. Inset: The same data
in log-log scale. Blue squares: SiO2, GeO2, B2O3, propylene
glycol, glycerol, Se, salol, trisnapthylbenzene (TNB), orthoter-
phenyl (OTP), sorbitol, propylene carbonate, and toluene. Red
stars: Borate glasses (Li2O)0.08(B2O3)0.92, (Li2O)0.14(B2O3)0.86,
(K2O)0.22(B2O3)0.78 (Na2O)0.22(B2O3)0.78, and (Li2O)0.22(B2O3)0.78.
Magenta circle: Metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vit4).
Black triangles: Silica, polyoxybutylene, polyisoprene, TNB,
polypropylene glycol, OTP, atactic polypropylene, polystyrene, and
polycarbonate. Within each subgroup, materials are listed in ascend-
ing order of fragility. Solid lines are fits as described in the text.

the denominator at 1 gives in a good approximation

γ 2
b (m) = 6.7 ± 0.2

m
. (28)

Another way to estimate the mean-square fluctuation of the
shear modulus is given by the elastic theory of relaxation in
supercooled liquids in combination with data on the decou-
pling between viscosity and diffusion. According to one of
the versions of the theory, the structural relaxation time τα is
expressed via the instantaneous shear modulus G∞ as

τα (T ) = τ0exp
G∞(T )V0

T
, (29)

where V0 is a temperature independent parameter of the order
of molecular volume [51,52] and Boltzmann constant kB is set
equal to 1. Alternatively, τα (T ) = τ0exp(A/〈u2〉), where A is a
constant, and 〈u2〉 is particle mean-square displacement [52].
The quantity T/〈u2〉 can be interpreted as a local measure of
material “stiffness” when 〈u2〉 is considered on the plateau
of the initial, picosecond stages of its time dependence. It
is assumed here that the expression can be applied locally,
in independently relaxing domains like the cooperatively re-
arranged regions of Adam and Gibbs [69], at least in terms
of some effective local shear modulus that describes local
rigidity when escaping the cage. In more detail the local
rigidity and its relation to the macroscopic shear modulus
are discussed in Refs. [70–74]. The respective local diffusion
coefficient D(T ) ∝ τ –1

α (T ). It is well known that there is a
decoupling between relaxation time (or viscosity) and diffu-
sion in supercooled liquids, which increases with decreasing
temperature [53–57]. The experimental data show that the
temperature dependence of decoupling is well described by
a fractional Stokes-Einstein law [55,56]:

D̄(T )τ̄α (T ) ∝ [τ̄α (T )]ε (30)

with the exponent ε < 1. In Eq. (30), D̄ and τ̄α are ex-
perimental values of the diffusion and relaxation time that
correspond to volume-averaged local values. The dependence
of the exponent ε on fragility for a number of glass-forming
materials was found in Ref. [57]. It was shown that ε increases
with fragility, from about zero for silica, to ∼0.3 for fragile
molecular liquids, and up to 0.5–0.6 for very fragile polymers
[57].

Let us suppose that the distribution of the activation energy
E = G∞ V0 is flat between E = E0 and (1 − ε)E0. Outside
this interval, the distribution function is zero. The average
value 〈E〉 = 〈G〉V0 = E0(1 − ε/2). Then

τ̄α (T ) = τ0

(
T

εE0

)(
1 − e− εE0

T
)
e

E0
T , (31)

D̄(T ) = D0

(
T

εE0

)(
1 − e− εE0

T
)
e− E0

T + εE0
T . (32)

Note that, at the glass transition temperature, E0/Tg ∼
ln τ̄α (Tg)

τ0
≈ 39. Assuming that exp(−εE0/T ) 
 1 holds close

to Tg, with accuracy up to logarithmic terms in T in the ex-
ponent we have D̄τ̄α ∝ exp(εE0/T ) ∝ τ̄ ε

α in accordance with
the fractional Stokes-Einstein law (30). With this distribution
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of activation energies, 〈E2〉 = E2
0 (1 − ε + ε2/3), so

γrel =
√

〈(�E )2〉
〈E〉 =

√
〈(�G∞)2〉
〈G∞〉 = ε

2
√

3
+ O(ε2). (33)

As expected, a higher decoupling corresponds to a higher
mean-square fluctuation of the instantaneous shear modulus.
The correlation of the decoupling parameter ε with fragility
is quantified in Ref. [57] where both ε and fragility are given
for a number of materials (see Table S3 in the Supplemental
Material [50]). These data are used to plot γ 2

rel as a function of
fragility in Fig. 2. The γ 2

rel values are much less than those de-
termined by the boson peak, γ 2

b (e.g., 0.0016 from decoupling
compared to 0.12 from the boson peak for trisnapthylbenzene
and 0.0044 vs 0.10 for orthoterphenyl). Moreover, the decou-
pling data predict an increase in γ 2

rel with fragility, while an
estimate based on the boson peak predicts a decrease in γ 2

b
with increasing fragility. The fit of the γ 2

rel(m) dependence by
a power law gives γ 2

rel(m) = (1.04 ± 0.91)10−8/m2.9±0.2. The
exponent in this dependence on m practically does not differ
from 3. If one fixes it at 3, then

γ 2
rel(m) = (0.63 ± 0.16)10−8

m3
. (34)

In log-log scale, both γ 2
b (m) and γ 2

rel(m) correlations ap-
pear to be linear functions (Fig. 2, inset). Extrapolating both
linear functions to higher fragility one can see that they even-
tually intersect at m ≈ 185 ± 15, where γ 2

rel ≈ γ 2
b ≈ 0.04.

III. DISCUSSION

The following picture may describe two different types of
γ (m) behavior. γ 2

b corresponds to fluctuations of the shear
modulus on the MRO scale, and γ 2

rel corresponds to fluc-
tuations of smaller scale, related to escape from the cage.
The results show that the low-fragility glass formers have
lower amplitude of the normalized shear modulus fluctuations
on short scales. Smaller short-range fluctuations presumably
correspond to a higher short-range order. This is what one
would expect from covalently bonded materials like silica,
which have a strong bond directionality that determines the
short-range order. However, in such glasses, on a larger MRO
scale, a sharper and more abrupt fluctuation of the shear
modulus occurs. In fragile glass formers with van der Waals
molecular interactions, short-range fluctuations are larger, and
the gradual accumulation of disorder leads to a smother loss of
correlations and a lower amplitude of shear modulus fluctua-
tions on the MRO scale. As seen in Fig. 1, the ratio Lb/Lc

reaches ≈2 for the strongest glass formers, such as silica.
This means that in such materials the transverse vibration with
the frequency νb has a wavelength λ = Lb ∼ 2Lc, i.e., half
the wavelength is equal to the diameter of the MRO region.
This corresponds to the lowest-frequency vibration localized
in a region of this size, if it is separated as an independent
cluster. This situation is similar to the early ideas about the
boson peak as vibrations localized on clusters with a medium-
range order size [5,6]. In materials with higher fragilities, the
vibrations with frequency νb have a wavelength comparable
to (intermediate fragility materials) or shorter (high fragility

materials) than Lc, for example, for glycerol λ = Lb ∼ Lc and
for propylene carbonate and toluene λ ≈ 0.5Lc.

In materials with sufficiently high fragility, the difference
between the amplitude of the shear modulus fluctuations on
the scales of the medium- and short-range orders disappears
(Fig. 2). As seen from Fig. 2, this occurs when fragility
reaches values in the range of 185 ± 15. This value is close
to the upper limit to fragility mmax ≈ 170–190 predicted in
Refs. [58–60]. In Ref. [58] fragility was expressed in terms of
the thermodynamic parameters of the system, which are im-
portant for the glass transition. In particular, it was concluded
that fragility of the glass formers has an upper limit of mmax ≈
170–190. In Ref. [59], the enthalpy relaxation measurements
during cooling and heating across the glass transition were
used to determine mmax. The extrapolation of the relaxation
enthalpy to zero predicted the upper limit of fragility in the
interval ≈170–180. The value mmax ≈ 175–180 follows also
from the ratio of the relaxation widths of structural α and
β relaxations [59,60], and from the ratio of the configura-
tional heat capacity and the total heat capacity jump at glass
transition [59,61]. In terms of the present paper, the limiting
fragility corresponds to the situation when the relative ampli-
tude of the medium-range fluctuations of the shear modulus,
γ 2

b , becomes equal to the amplitude of the normalized short-
range fluctuations of α-relaxation activation energy, or instan-
taneous shear modulus, γ 2

rel, in the supercooled liquid state
near Tg. In different words, in materials with m = mmax, the
normalized amplitude of elasticity fluctuations between un-
correlated domains on the MRO scale is of the same order as
that of the activation energy of α relaxation (determined by the
instantaneous shear modulus) inside these domains. The latter
is much smaller than the former in materials with fragilities
m < mmax, by a factor ≈(m/mmax)4. Respectively, according
to Eqs. (28) and (34), the product of γrel by γ 3

b is a universal
constant for various glasses, γrelγ

3
b = (1.5 ± 0.1) × 10–3.

One of the consequences of this picture is that the boson
peak should disappear when fragility reaches its upper limit
value. The boson peak can be characterized by its normalized
amplitude ABP, defined as

ABP = g(ω)

gD(ω)

∣∣∣∣
max

, (35)

where g(ω) is the density of vibrational states, gD(ω) =
3ω2/ω3

D is the Debye density of vibrational states, ωD =
cD(6π2n)1/2 is the Debye frequency, and Debye velocity cD

is defined by the equation 3/c3
D = 2/c3

t + 1/c3
l . The absence

of the boson peak corresponds to ABP = 1. In Fig. 3 the cor-
relation of ABP with fragility for various glasses is shown. To
find ABP, the inelastic neutron scattering data from literature
are used. ABP is maximum for silica glass (ABP ≈ 6) and it
is only 1.6–1.8 for glass formers with fragility of about 100.
In log-log coordinates, the correlation ABP with fragility is
well represented by the linear function (Fig. 3). The solid line
in Fig. 3 corresponds to the power law ABP ∝ m–0.8, which
is a recent prediction of the heterogeneous elasticity theory
[75]. It is in reasonable agreement with the experimental data.
Only one point, corresponding to B2O3 (second point from
the left), noticeably deviates from the linear dependence of
the correlation in log-log coordinates. This point is at small
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FIG. 3. Amplitude of the boson peak ABP from neutron scat-
tering data [Eq. (35)] vs fragility in log-log coordinates. In order
of increasing fragility, SiO2, GeO2, B2O3, polyisobutylene (PIB),
propylene glycol, glycerol, Se, orthoterphenyl, Ca0.4K0.6(NO3)1.4

(CKN), sorbitol, and propylene carbonate. The solid line corresponds
to ABP ∝ m–0.8. Literature data and respective references for ABP and
fragility are in Table S4 of Supplemental Material [50].

values of fragility. The rest of the points quite clearly show
a linear correlation. Extrapolation of ABP (m) dependence to
higher values of fragility shows that the boson peak should
disappear from the vibrational spectrum at m ≈ 170 ÷ 200,
when ABP → 1. This experimental observation supports the
above prediction about the disappearance of the boson peak
when fragility reaches its upper limit.

Let us summarize the main assumptions and limitations
that are essential for the results obtained. Continuum ap-
proximation and perturbation theory with respect to γ 2

b were
already discussed in Secs. I and II. The parameter γ 2

b was
obtained in the range �1/10 for fragile glass formers to ≈1/3
for most strong glass formers, which supports the applica-
bility of perturbation theory. Another assumption concerns
the description of decoupling of viscosity and diffusion upon
cooling supercooled liquids. It was assumed, in agreement
with Refs. [55,56], that this effect, close to Tg, is caused by
the spatial heterogeneity of dynamics, which is regulated by
the local activation barriers. For the latter, the elastic theory
of the relaxation in supercooled liquids was applied, limited
by the region close to Tg. Another important assumption,
used for finding the upper limit of fragility, is that the linear
dependence of log γ 2

b on log m observed in the range of
fragilities ≈20–105 can be extrapolated to higher values of
fragility. The same assumption was used for log γ 2

rel vs log m
linear dependence. Note that the same assumption was applied
to find the upper bound of fragility in Refs. [58–61]. This
is the same as assuming that the mechanisms leading to the
linear behavior of correlation stay the same in materials which
have fragilities in the range between the last experimental
point in Fig. 2 and mmax. The accuracy of the predicted value
of mmax is limited by the number of materials for which all
the necessary data are available in literature. One needs to
know the position of the boson peak, its amplitude relative
to the Debye density of states, transverse and longitudinal
sound velocity, static structure factor, and fragility. For struc-

tural relaxation data, one needs to know the exponent of the
fractional Stokes-Einstein law and fragility. The lack of data
limits the number and variety of materials on the correlation
plots (Figs. 1–3). The list of studied materials includes some
covalently bonded, hydrogen bonded, molecular, polymeric
glasses; one bulk metallic glass; as well as some complex
borate glasses. However, the limited number and variety of
studied materials do not yet allow us to conclude how uni-
versal the correlations found are. Further investigations are
needed to clarify this question.

IV. CONCLUSIONS

In conclusion, the nanometer-scale dynamical length Lb

defined by the boson peak frequency and transverse sound ve-
locity was compared with the static medium-range correlation
length of the structure Lc. Their ratio Lb/Lc correlates with
fragility of glass formers, being higher in strong glass formers
and lower for fragile ones. The estimation of the dynamical
length using perturbation theory based on the fluctuations of
the shear modulus and the IR criterion for transverse vibra-
tions showed that the Lb/Lc ratio in glasses is determined
by two factors—the normalized strength of shear modulus
fluctuations γ 2

b and the ratio of the transverse and longitudinal
sound velocities ct/cl (or shear and bulk moduli). This rela-
tionship allows one to express γ 2

b on the length scale of the
MRO in terms of Lb/Lc and ct/cl . The parameter γ 2

b varies
in the range 0.06–0.35 for 18 different glasses with fragilities
in the range ≈20–110, and has a power-law correlation with
fragility, approximately, γ 2

b ∝ m−1. This is consistent with the
well-known observation that stronger glasses have a higher
boson peak amplitude [30,33], since the latter should increase
with the parameter γ 2

b .
The mean-square shear modulus fluctuations can be es-

timated also based on the structure relaxation properties of
glass formers. To this end, the elastic theory of relaxation
in supercooled liquids [51,52] is used here to describe the
decoupling between viscosity and diffusion in terms of shear
modulus spatial fluctuations. It is assumed that the decoupling
is caused by the spatial heterogeneity of dynamics [55,56]. It
is found that the respective normalized mean-square fluctua-
tion γ 2

rel is much smaller than γ 2
b and increases with increasing

fragility approximately as γ 2
rel ∝ m3. Extrapolation of the de-

pendencies γ 2
b (m) and γ 2

rel(m) to high fragilities shows that
they intersect at about m ≈ 185 ± 15, i.e., close to the upper
bound of fragility mmax found by other methods [28,58–61].
These results are explained in a model in which the spatial
heterogeneity of the shear modulus on the scale of MRO,
characterized by γ 2

b , determines the amplitude and, to some
extent, the position of the boson peak. At a shorter length,
within the correlated medium-range domains, fluctuations of
the barriers for structural relaxation, characterized by γ 2

rel and
determined by the local instantaneous shear modulus, are
significantly smaller than between domains. They determine
the decoupling of viscosity and diffusion in this model and
increase with fragility. In materials with m ∼ mmax, dispersion
of the shear modulus between the different medium-range
correlated regions becomes close to that for the shorter-range
fluctuations within the regions. In this sense, the medium-
range heterogeneity is not well defined in such glasses and
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there should be no boson peak in the vibrational spectrum.
This scenario is confirmed by the analysis of the experimental
data on the boson peak. However, the limited number and
variety of materials studied require further research in order
to understand how universal the correlations found are.
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