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Lane and band formation of oppositely driven colloidal particles in two-dimensional ring geometries
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We study the segregation phenomena for oppositely driven colloidal particles in two-dimensional ring geome-
tries by means of Brownian dynamics simulations without hydrodynamic interactions. The particles interact via
a repulsive Yukawa potential and are confined to a two-dimensional circular channel by hard walls, in which
half of the particles are driven clockwise and the other half are driven counterclockwise. In addition to lane
formation, which is commonly found in oppositely driven systems, we found band formation along the angular
direction in channels with a very large radius. This indicates that a formation of lanes is prevented in the limit of
channels with an infinitely large inner radius. The dependency of this segregation has been examined for the two
control parameters, the interaction strength between the particles and the width of the circular channel.
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I. INTRODUCTION

Colloidal systems in restricted microchannels [1–5] are
good model systems for the understanding of systems on
different length scales like atomic wires [6,7], lab-on-a-chip
devices [8,9], or the behavior of ants [10] despite their diver-
sity and complexity. Colloidal model systems are an important
approach to analyze and find dynamical phenomena [11–18]
in systems far from thermodynamic equilibrium. Thus it is
very interesting to study these systems for nonequilibrium
order phenomena which arise for different system sizes and
parameters.

For oppositely driven colloidal particles moving according
to Brownian motion, global lane formation for two- and three-
dimensional systems was found [19,20]. Similar behavior was
found in systems of pedestrians [21–23], which also show
lane formation. Local lane formation was also found in ex-
periments of oppositely charged colloids in an electric field
[24,25] as well as in an alternating electric field [26] or in
binary plasma [27]. In addition, phase diagrams of oppositely
charged particles in an electric field calculated in terms of
Brownian dynamics simulations [28] and the influence of the
hydrodynamic interaction [29] was investigated.

Recent publications [30] questioned whether lane forma-
tion in two-dimensional systems is a real transition in the
sense that it survives in the thermodynamic limit of an
infinitely long channel or if it is only a finite-size effect
supported by the periodic boundary condition. The systems
we examined in this work do not possess periodic boundary
conditions but rather an inherent periodicity that lies within
their circular shape. Since an experimental circular channel
setup is conceivable, this periodicity is not an artificial numer-
ical boundary condition, but a very real component and leads
therefore to fewer artifacts.

*peter.nielaba@uni-konstanz.de

In the case of particles driven oppositely by oscillating ex-
ternal fields for certain sets of parameters a formation of bands
orthogonal to the driving direction could be found as well
[26,31]. Such bands are the result of two particle fronts that
span the whole width of the channel colliding and then passing
through each other. Such a demixing along the driving direc-
tion has also been found in simulations of three-dimensional
channels with a constant driving force [13]. A similar forma-
tion of bands is also known from the Viscek model, which is a
simple model for anisotropic self-propelled particles [32]. The
so-called flocking transition occurs as a function of density
or noise in large systems [33,34]. It describes the formation
of bands of self-propelled particles moving collectively along
the direction orthogonal to the band.

In our work, we deal with the question whether these
ordering phenomena can be found in two-dimensional cir-
cular channels and how they depend on various parameters
like radius, width, and potential strength. The influence of
hydrodynamic interactions has been neglected in this study,
even though it has been shown to slightly modify the ordering
phenomena in similar studies [29,35]. In particular, study of
band formation in oscillating fields [35] reveals that the band
formation is blurred by including hydrodynamic interactions.
However, the system without hydrodynamic interactions is an
important simplified model, since they strongly depend on the
experimental realization, especially in two dimensions. They
are different when the particles are either aggregated in a
monolayer within a three-dimensional bulk fluid, assembled
close to a fluid interface, or even confined between two par-
allel plates [36]. This lane formation and the band formation
are not unique to colloidal system; in fact, they also occur in
systems where no hydrodynamic interaction is present.

This paper is organized as follows. Section II describes
the model, which shows how the simulations are set up. In
Sec. III the two order parameters that give numerical state-
ments about lane and band formation are explained. These
order parameters are used to quantify the observed phenom-
ena and compare different systems. Section IV presents the
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results from the simulations, how the systems arrange with in-
creasing driving forces, when lane formation occurs, and what
happens when the width of the system changes. It also demon-
strates in which parameter space the formation of bands of
particles perpendicular to the driving force occurs. In Sec. V
the results are summarized.

II. MODEL

In this study, the motion of colloids is modeled by Brow-
nian dynamics simulations in two dimensions, where the
hydrodynamic interactions are neglected. This can be de-
scribed by a stochastic Euler integration of the overdamped
Langevin equation. The positions of the particles are updated
according to [37] with

ri(t + �t ) = ri(t ) + D0�t

kT
F[r j (t )]

+
√

2D0�tR(t ), (1)

where �t is the time step, kT is the unit of the thermal energy,
D0 is a microscopic diffusion constant, and F[r j (t )] is the
driving force. R(t ) consists of Gaussian random numbers that
are defined by the properties 〈Ri(t )〉 = 0 and 〈Ri(t )Rj (t )〉 =
δi j . The starting positions of the particles in the simulation
are randomly distributed throughout the channel, respecting a
minimum mutual distance of σ .

The particles interact via the Yukawa potential

V (ri j ) =
{

V0
exp (−κri j )

ri j
: ri j � rc

0 : ri j > rc
, (2)

where κ is the inverse screening length, V0 is the interaction
strength, and ri j is the distance between two particles. To
reduce the computational effort, a cutoff radius of rc = 3.0σ is
introduced. The potential is continuous up to the cutoff radius.

The particles are confined to a ring geometry, which is
defined by its boundary consisting of two concentric circles
with an inner radius R1 and an outer radius R2. Compared
to a linear channel this circular geometry has the advantage
that periodic boundary conditions in a tangential direction are
implemented naturally. With such a system counterflow can be
realized in experiments as shown in Ref. [38]. The boundaries
in the simulations are realized as hard walls analogously to
Ref. [39]. Different system sizes were investigated by simu-
lations at a constant particle density n = N

A , where N is the
number of particles and A = π (R2

2 − R2
1) the area of the ring.

There is an external force which drives one half of the par-
ticles in the clockwise direction, and a further external force
which drives the other half of the particles in the counterclock-
wise direction. These forces on the particles are described by

Fi = (−1)i ·
(−yi

xi

)
· F

R1
, (3)

acting on the ith particle depending on its position ri =
(xi, yi ), the inner radius R1 of the system, and the absolute
value of the force F . The direction of motion is opposite for
even and odd particle indices. The value of the driving force
is highest at the outer edge while decreasing inwards, in a
way that all particles have the same absolute angular velocity
ω = F/R1. This has the advantage that each particle has the

FIG. 1. Schematic representation of the radial tube around a par-
ticle i inside of which all particles j contribute to the lane formation
parameter. Particle i and the channel wall are represented in black,
the small tube around i and the width d of the tube are displayed in
green.

same orbital period, which results in there being no internal
shear between particles of the same parity.

This model has five independent control parameters: V0 and
κ from the interaction, inner radius R1, the channel width W =
R2 − R1, and the external force F .

III. OBSERVABLES

To get accurate statements regarding the order in the sys-
tems, two order parameters �lane and �band are introduced.
These parameters represent a numerical value of the two
different ordering states. In the following we consider two
particle species which differ only by the direction in which
they are driven.

A. Order parameter for lane formation

The lane formation parameter is similar to the description
of the ordering in a linear system [13]. Here it describes
the radial segregation of the two particle species. Particles
of the same species having a similar radial coordinate ρi =√

x2
i + y2

i are considered as moving in a lane.
For each particle i a radial tube of width d = 1.5σ is con-

sidered. All the other particles that lie in the tube contribute
to the order parameter of the ith particle. In other words, each
particle j within this radial distance ρi j < d/2 contributes to
the order parameter of the ith particle. A schematic of this tube
can be seen in Fig. 1. Subsequently the radial distances in the
xy plane between particle i and j are determined by

ρi j = ρi − ρ j . (4)

For all particles j inside the neighborhood of particle i,
either Ni,+ is incremented by one if the particles are of the
same type or otherwise Ni,− is incremented by one. In ad-
dition, it is defined that ni,+ = |Ni,+| and ni,− = |Ni,−|. The
order parameter for lane formation is calculated by

�l,i = ni,+ − ni,−
ni,+ + ni,−

, (5)

�lane = 1

N

N∑
i=1

�l,i, (6)
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FIG. 2. Snapshot of the circular channel with radius R1 = 90 and
width W = 20 with different driving forces. The picture on the far
left (a) shows the system with a driving force of F = 15, in this
case there is disorder. Panel (b) shows the system with a driving
force of F = 60 in the critical area. In this area, the system starts to
organize itself. The image on the far right (c) was taken at a force
of F = 85. The particles separate completely into two lanes. The
red particles run in the clockwise direction, the blue particles run
counterclockwise.

where �l,i is the order parameter of the ith particle and �lane

is the global order parameter which is averaged over all N
particles. The value of �lane is zero if the particles are mixed,
and it approaches unity if the particles are radially segregated.
In order to visualize the two particle species, they are color
coded in red and blue in Fig. 2. The critical force for lane for-
mation Fc,lane is defined as the force where the order parameter
reaches a value of �lane = 0.5.

B. Order parameter for band formation

The band formation is a separation phenomenon where the
two particle species order in tangential direction. The band
order parameter �band is determined by the average value
of a histogram over the angular positions ϕ of the particle.
The histogram is calculated with nbin = 72 bins in the interval
ϕ ∈ [0◦, 360◦] and with a bin size of �ϕ = 5◦. The histogram
shows the particle number over the angular coordinate ϕ,
which is calculated for the two particle species separately.
This is shown in Sec. IV E.

To calculate �band the variance is divided by the squared
mean M of the number of particles N in each bin:

M = N

nbin
. (7)

The variance is obtained from the sum of the mean square
deviation of the results around their mean, where ni is the
number of particles in the respective bin:

S2 =
nbin∑
i=1

(ni − M )2

nbin
. (8)

To get a reasonable value for the ordering parameter we divide
the variance by the squared mean value

�band = S2

M2
. (9)

If the particles of the same species are equally distributed
along the tangential direction, the variance S2 and thus �band

is zero. The value of the band order parameter can be greater
than unity. The value of �band = 1 corresponds to a scenario
where half of the channel is empty, and in the other half of

FIG. 3. Band formation in systems of inner radius R1 = 400 with
width W = 20 and force (a) F = 35, (b) F = 50, and (c) F = 80. In
order to better recognize the particle distribution, a section of the
ring was enlarged. The red particles move clockwise against the blue
ones.

the channel the particles are evenly distributed. A band order
parameter greater than 1 indicates that the local density in
some bins is more than twice as high as the average den-
sity. The order parameter has a theoretical upper bound of
�band = nbin, due to the finite bin width. By evaluating the
simulations by eye we chose the critical value of the band
formation to be �band = 0.25 above which the system can
be considered ordered. Analogously to lane formation, the
critical force Fc,band is defined as the force where the critical
band formation parameter is reached.

IV. RESULTS

All results are given in units of the particle diameter σ ,
the unit of thermal energy kT , and the diffusion coefficient
D0. All simulations were done at a fixed density ntot = 0.32,
and a fixed inverse screening length κ = 3.0. The interaction
strength is solely regulated with the parameter V0. We chose
V0 = 37.0, which is similar to the interaction strength used in
Refs. [13,30].

In Sec. IV A, we study the order with varying system sizes
by increasing the inner radius from R1 = 10 to R1 = 100 with
an increment of 10 and from R1 = 100 to R1 = 600 with an
increment of 100. We also study four different widths W =
{10, 20, 35, 50}.

For each system the driving force F is increased in steps of
�F = 5 in the interval F ∈ [10, 85]. The respective simula-
tions for each force consist of 106 time steps at a step size of
�t = 7.5 × 10−5. To confirm that the given simulation length
is sufficient for our statements we performed test simulations
with a simulation time that was five times as long for four
data points in Fig. 4(b) below of the small systems. The
trends between the different systems stayed identical; only
the critical forces showed a decrease of 5%–10 %. A similar
test was done for the big systems with twice the simulation
length. Here the trends of the phase diagram in Fig. 11 below
stayed identical as well. However, since the critical forces
partially exhibited much larger deviations in these systems,
we show none of these critical forces in this work. Therefore,
we concluded the amount of simulation steps to sufficiently
support our findings. The simulations are performed consecu-
tively, which means that when a simulation is finished its final
coordinates will be used as the starting coordinates of the next
higher force. This process facilitates the formation of order
and therefore reduces the simulation time.
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(a)

(b)

FIG. 4. (a) Order parameter �lane in dependence on the force for
the system size with R1 = 40 and W = 35. This curve looks similar
for all system sizes. For wider systems the curve flattens slightly, and
the steep increase shifts to a higher value. (b) The critical force Fc

of widths W = 20, W = 35, and W = 50 for all simulated radii up
to R1 = 100. The red circles correspond to systems of width W =
20, the blue triangles to systems of width W = 35, and the orange
squares to systems of width W = 50. The average of all points is
plotted with the three lines in their respective colors.

A. Order in small systems

Once a force is applied to both particle species, its order is
formed in the system depending on the driving force F and the
interaction strength V0. For small system sizes the well-known
scenario of lane formation can be observed as it is known from
linear channels in two dimensions [30] and three dimensions
[13]. Figure 2 shows such systems for different driving forces
F . In the regime of weak driving forces, the system is still
disordered. Only locally particles of the same species move in
small chains one behind the other. As soon as the force rises
to a critical force however, the system starts to order itself. By
further increasing the force, the particles separate into lanes
spanning the full circle. This behavior can be found for all
systems with an inner radius R1 ∈ [10, 200].

B. Order in big systems

In systems with inner radii R1 � 300 a different kind of
order phenomenon can be observed by increasing the driving

force. As shown in Fig. 3, the particles do not separate into
lanes but form periodic bands perpendicular to the channel
walls of the same particle species. In contrast to the jamming
observed in the very narrow channels, the bands of different
particle species interpenetrate and pass each other.

The bands have similar sizes and distances to each other
but are still distinguishable. As a result of constantly losing
and gaining particles while orbiting, the bands themselves,
however, are not stable.

The number of bands depends on the radius and the width
of the system. By looking at the mechanism how the bands
form, we can recognize that the particles of the same species
accumulate together. At first, density fluctuations of a certain
length scale form, and as they pass through the channel, the
particles keep together despite there being no attractive forces.
The result of this accumulation is the formation of the bands.

Focusing on the regime of F ∈ [35, 50] in the simulations
in Fig. 3, we notice that the particles start to pile up and tear
small gaps. These gaps increase with the increasing force.

Because of this phenomenon, further simulations with
changed parameters were performed. For systems with inner
radii R1 = 300 and R1 = 400 widths of W = 20, 35, and 50
were considered.

C. Order parameter for lane formation and critical force

The order parameter �lane yields a numerical value be-
tween zero and unity. The critical force Fc is defined as the
force at which the order parameter reaches the value �lane =
0.5.

This can be reasoned by comparing the behavior of the
order parameter in Fig. 4(a) with the corresponding configura-
tions in Fig. 2. We notice that the value of �lane increases with
the driving force and thus the order in the system increases
as well. Furthermore we see that the order parameter �lane

begins to increase significantly with a driving force of F = 30
until it converges towards a value near unity at a force of
about F = 75. For a force of F = 60 [Fig. 2(b)] the system is
reasonably ordered, and the order parameter for the first time
exceeds the value �lane = 0.5.

To extract the critical force the order parameter for each
system is empirically fitted by the function

f (F ) = 1

4
(cos(a) + 1)

[
tanh

(F − c

b

)
+ 1

]
.

The first term of the function sets the boundaries of the fit
to stay in the range of f (F ) ∈ [0, 1], while the second term
yields the sigmoidal shape of the fit. a, b, and c are fit param-
eters, and F is the driving force.

Figure 4(b) shows the critical force as a function of the
inner radius in the range between R1 = 10 and R1 = 100 for
three widths W = 20, W = 35, and W = 50. In this range the
critical force does not depend on the length of the channel,
which is determined by the inner radius, and only weakly on
the width of the channel. For each data point 10 simulations
with different starting positions were performed, and their
respective critical forces Fc were averaged. Table I shows how
many of these 10 simulations form lanes. It can be seen that
for larger inner radii R1 and a width of W = 20 only a few
simulations form lanes (which is in line with Sec. IV F). The
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TABLE I. Amount of lane forming simulations nlane out of 10
different starting points. These data correspond to Fig. 4(b).

R1 W = 20 W = 35 W = 50

10 9 8 9
20 9 10 10
30 9 10 10
40 4 10 10
50 7 10 10
60 4 9 10
70 7 8 9
80 3 8 10
90 3 6 9
100 2 6 7

data point corresponding to a system with an inner radius
of R1 = 100 and a width of W = 20 was omitted because a
sample size of nlane = 2 was considered too small. Due to the
small width at W = 10 not all systems could arrange correctly.
The influence of the hard walls as described in Sec. IV A is
crucial. Therefore, the values with width W = 10 are missing
in Fig. 4(b).

By averaging the critical force Fc over all systems with
equal widths, the mean F̄c,20 = 61.1 for W = 20, F̄c,35 = 63.6
for W = 35, and F̄c,50 = 66.9 for W = 50 can be determined,
which results in differences of about �Fc,20−35 = 2.5 and
�Fc,35−50 = 3.3.

From these data it seems that the lane formation survives
for all channel lengths, since the critical force is constant with
increasing the radius R1. But for larger systems the behavior
suddenly changes. For systems with a larger inner radius band
order occurs, which prevents the system from ordering in
lanes. In the next section we want to answer the question how
the occurrence of bands depends on the system parameters.

D. Varying the width and interaction strength

For the systems with an inner radius of R1 = 300 and an
interaction strength of V0 = 35 we found band order for all
widths W = 20, 35, and 50. By increasing the interaction
strength to V0 = 65, the particles arrange themselves into
lanes again as seen in the small systems in Fig. 5(b).

These results were determined by using the histograms
in Sec. IV E and the order parameter �band. The structures
in Fig. 5 show which order exists and how many bands or
layers arise during separation. Here the biggest driving forces
are presented because the order of the particles is most pro-
nounced there.

If we analyze the band order in Fig. 5(a), we see that
the bands do not have the exact same sizes or the same dis-
tances between each other, but rather that they differ by slight
amounts. With this graph the number of bands can be easily
determined. The bands do not necessarily have the same size
for the two particle species. For the systems with R1 = 300
and R1 = 400 the bands have widths of about 10◦, which
means they are slightly larger for the system with R1 = 400. If
we increase the channel width W in the system with R1 = 300
and V0 = 35, it can be seen that the number of bands decreases
with the width of the system (see Fig. 6), whereas in the

FIG. 5. Particle positions in the system with R1 = 300, W = 35,
(a) V0 = 35, and (b) V0 = 65 for the driving force F = 85. The
graphic shows the position over the radius and the angular coordi-
nate. Red shows the positions of the particles which are moved in
a clockwise direction. The blue particles move counterclockwise. In
panel (a) we see band order, whereas in panel (b) the particles break
up into lanes.

system R1 = 300 and V0 = 65 the number of lanes increases
with increasing width (see Fig. 7).

What can be detected for both systems at V0 = 35 is that
for widths of W = 50 the bands start smearing. This means
that the band order and the order parameter �band decreases.

If we look at the systems with V0 = 65 in Fig. 7, we can see
lane formation. With a radius of R1 = 300 and a width of W =
20 three lanes are visible. If we increase the width to W = 35
another lane appears, and the same happens by increasing the
width again to W = 50. Thus it can be said that the number
of lanes increases with the system width. The width of the
lanes Wlane themselves differs only slightly and is in the range
Wlane = 10 and Wlane = 12. Narrower lanes are possible only
at the edges of the system; this depends on the overall width of
the system. The difference in the configurations for radii R1 =
300 and R1 = 400 is that the system with the larger radius and
the same width has one lane less.
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(a)

(b)

(c)

FIG. 6. Particle positions for the systems with R1 = 300, W =
20, 35, 50 for F = 85 and an interaction strength of V0 = 35. It can
be seen that in this system size the number of bands decreases with
increasing width. At a width of W = 50 the band order smears and
the order parameter decreases.

(a)

(b)

(c)

FIG. 7. Particle positions for the systems with (a) W = 20,
(b) W = 35, and (c) W = 50, R1 = 300 and an interaction strength
of V0 = 65 with a driving force of F = 85. The graphs show that by
increasing the width of the system, for every step of �W = 15 one
additional lane is created.

Comparing our results of circular channels to those of lin-
ear channels we can see general accordance. References [13],
[19], and [30] all showed a similar S-shaped increase of the
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(a)

(b)

FIG. 8. (a) Local particle density nloc plotted over the angular
coordinate of the system R1 = 300, W = 35, and V0 = 35 for a
snapshot at a driving force of F = 85. Here the two particle species
are counted and plotted as the local density in a 5◦ interval. The
density in the system is ntot = N

A = 0.32. (b) Force dependence of
the minimum and the maximum local particle density as a function
of the driving force F . The minimum and maximum values are
represented by the red circles and the blue triangles, respectively. A
high maximum value implies the existence of dense cluster, whereas
a low minimum value means that there are gaps in the system.

lane formation order parameter with an increase in force. The
3D systems from Ref. [13] with hard walls exhibited only two
particle regions, while the 2D and 3D systems from Ref. [19]
with periodic boundaries, and the 2D systems from Ref. [30]
all showed the emergence of multiple lanes. A potential differ-
ence, however,can be found in the dependence of the critical
force on the system sizes. While in the circular channels we
see an increase of the critical force only with an increase
of the channel width, the linear channels in Ref. [30] show
a logarithmic dependence of the critical force on the total
system size. It is, however, also possible that the increase in
the linear channels depends only on the channel width, which
would mean that these results show accordance as well.

E. Order parameter for band formation

In order to determine the order parameter �band the vari-
ance of the particle distribution is considered first. Figure 8(a)

shows the local density plotted over the angular coordinate,
whereby the two particle species are considered separately.
The local density for the same type of particles is summed
up and plotted every five degrees. For the band order a large
variance is observed. This means that we see big jumps in
the curve of Fig. 8. In the areas where a band is located
the number of particles is very high, whereas the number
of particles in the region of a gap is very low. Figure 8(a)
also confirms that the size and the distance of the bands
vary. At an angular coordinate of 180◦, two oppositely driven
bands pass through each other. At this point it comes to the
impoundment.

It is clearly visible that there is a nonzero density in the
gaps. Figure 8 shows that the minimum density is roughly
the same for all gaps and for both particle species. A value
for the minimum and maximum density of the system can be
extracted by averaging over all local minima, with a density
which is smaller than the mean density, and over all local
maxima, with a density which is higher than the mean density.

For the simulation, for which the local density is plotted in
Fig. 8(a), the density in the gaps is nloc,min = 0.026. The dense
bands have a peak density between nloc = 0.3 and nloc = 0.55,
but the big variance in the peak density is probably more due
to the finite bin size and dissolving bands. The average over
the maxima gives an estimation for the density of the bands of
nloc,max = 0.46.

Figure 8(b) shows these minimum and maximum densities
as a function of the force F . It shows that while the minimum
density converges to a finite value, the maximum density
grows further by increasing the force. We therefore have a
microphase separation of a phase of a high and one of a low
particle density.

As described in Sec. III, the order parameter �band is de-
termined in terms of roughness of the local particle density.
Figure 9(a) shows the order parameter �band for the system
with R1 = 300, W = 35, and V0 = 35, which orders in bands.
The order parameter grows with increasing driving force. In
the range of the critical force Fc = 53.2 it increases strongly,
flattens again at F = 75, and finally converges to a value of
�band ≈ 1.2. The order parameter �band has a similar S-shape
progression as the order parameter �lane for small systems.
Up to a threshold force of F = 35 the system is basically
disordered. Only if the force is further increased does the
system start to order. At the point of F = 50, band order can
be detected with the order parameter �band. By comparing
the big system with the small system, it turns out that the
critical force for band formation of between Fc = 50 and 55
is smaller by 10 than the critical force for lane formation in
the small system. This suggests that formation of bands in the
big system prevents the formation of lanes which would occur
only for higher forces.

Figure 9(b) shows the number of bands as a function of
external force, where a band is counted if the local den-
sity grows by more than a threshold value of �nloc = 0.08.
The number of bands is averaged over both species and
all time steps. The number of bands grows rapidly by in-
creasing the force over F = 50, and then stays at a constant
value, which in this system is Nband ≈ 13. This is in con-
trast to the behavior of the order parameter, which grows
further.
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(a)

(b)

FIG. 9. (a) The order parameter for band formation �band as a
function of the driving force for the system with inner radius R1 =
300, width W = 35, and potential strength V0 = 35. The critical force
is defined at the point where �band = 0.25 is extracted from the fit.
In this case the critical force is Fc = 53.4 ± 0.67. (b) The number of
bands Nband of one particle type as a function of the driving force for
the specified parameters. A band is counted if there is an increase of
the local density of �nloc = 0.08.

F. Transition from band formation to lane formation

In this section we show in which parameter range the
transition of band formation to lane formation takes place in
order to be able to restrict the occurring band order to a certain
area. To find such a range, the channel width W of the system
sizes with a radius of R1 = 300 was increased in steps of
�W = 5 in a range of W = 20 to W = 50. For each of these
systems, simulations with potential strengths from V0 = 35 to
V0 = 65 were performed in increments of �V0 = 3. Figure 10
shows a simulation in which the two orders can be recognized.
For values of the potential strength in the range of V0 = 50
and F = 60, there is an overlap of band formation and lane
formation. By increasing the driving force F the system will
switch into one of the two orders.

If we compare the two order parameters �band and �lane

for a system in which both bands and lanes exist [Figs. 10(b)
and 10(c)], we see that both order parameters are close to
their critical value. �band and �lane increase up to a critical
force of Fc = 65 and converge to a value from there. These
values are �band = 0.23 and �lane = 0.48. Thus both orders

FIG. 10. (a) A system with R1 = 400, width W = 25 and poten-
tial strength V0 = 59, and a driving force of F = 60. This system is
transitioning from band formation to lane formation. Evident are the
lanes of the two particle types and at the same time accumulations
of particles distributed in the ring. The comparison of the two order
parameters for (b) band and (c) lane formation shows that in this
system both orders exist.

are visible in the simulation. The value of the parameters
shows that neither lane nor band formation outweighs the
other. Only with a driving force of F = 80 does the order
parameter �lane exceed its critical value of 0.5, while the band
parameter remains at �band = 0.23. If we consider this system
for larger potential strengths the system orders in lanes, and if
we reduce the potential strength, band formation would occur.

For precise statements a statistical analysis was performed
to get a probability distribution; see Fig. 11. This graph shows
the distribution of all systems with radius R1 = 300. Due to
the large system size and their computing time, five simu-
lations with different starting positions were carried out for
each parameter combination in a force range of F ∈ [30, 85]
and a step size of �F = 5. The probability P is calculated by
examining the system for its order at the highest driving force.
If we observe band formation, unity is added, and if there
is lane formation, unity is subtracted from a counter. This
counter is then divided by five, and we get a value between
P = 1 equaling 100% band formation and P = −1 equaling
100% lane formation.

If we look at Fig. 11, we can see that for systems with small
width W = 20 and small potential strength V0 = 35 there is a
100% probability for band formation, whereas for large width
of W = 50 and high potential strength V0 = 65 lane formation
is found with a 100% probability. The probability distribution
shows that both the width and potential strength influence
the order in the system. If we investigate systems with a
constant width of W = 20 by increasing the potential strength,
the probability for lane formation increases. Similarly, the
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FIG. 11. Probability to find the system in the ordered state with
band or lane formation for all systems with inner radius R1 = 300.
The probability depending on the width W and potential strength
V0 of the system. A value of P = 1 (blue) represents 100% band
formation, and P = −1 (red) represents 100% lane formation. For
small widths W and small potential strengths V0, band formation
predominates. In systems with larger width and higher potential
strength, lane formation is found.

probability for lane formation increases by increasing the
width at constant strength of V0 = 35.

In the area of the white fields in Fig. 11 the transition
from band formation to lane formation takes place, where both
types of order have the same probability. For example, in the
system characterized by W = 30 and V0 = 57, it is impossible
to decide into which order the system will pass before the
simulation is finished.

The phase diagram (Fig. 11) reflects the phenomenon of
crossover from lane formation to band formation that we have
already seen in examining the width and interaction strength
for large radii in Sec. IV D. Figure 6(c) shows the system with
a small potential strength V0 = 35 and large width W = 50.
It can be seen that the order of the band formation decreases
in comparison to smaller widths of this system. In this case,
such a crossover from band formation to lane formation can
be recognized. Also Fig. 7(a) matches the scheme shown in
Fig. 11; by looking at the areas of θ = 80, 200, and 320, a
higher local density is found. There the system with a higher
potential strength V0 = 65 and a small width W = 20 is de-
scribed.

Comparing these results to Refs. [26] and [31] one can
clearly see the novelty of band formation with a static rather
than an oscillating driving force. Furthermore, in the linear 3D
channels with hard walls in Ref. [13] longitudinal demixing
was observed, an order formation similar to band formation
with only two particle fronts, and therefore no periodicity.
This phenomenon occurred only starting from high channel
lengths and in thin channels, which compares well to the high
radius R1 and small channel width W necessary in the 2D
circular channels. To check whether the dimensionality or the
shape of the channel is crucial in the formation of the band
structure, a simulation in a linear channel with hard walls
parallel to the drive direction (x direction) was performed.
The simulation was run with a potential strength of V0 = 35,
a channel width (y length) of W = 25, and a channel length (x
length) of L = 3000, and periodic boundary conditions were

FIG. 12. (a) Snapshot of a simulation in a linear channel. The
channel has a length of L = 3000 and a width of W = 25, and the
potential strength was set to V0 = 35. Since the channel is very long
and rather thin, only a segment is shown here. The phenomenon of
band formation can be clearly seen, and the bands also occur in the
whole channel. (b) Closeup of two bands penetrating each other. To
the left one can see a small red band that has almost completely
passed through the blue band already, and to the right one can see
the two fronts of different species hitting each other.

employed in the drive direction (x direction). These values
were selected because we found band formation in exactly this
parameter region in circular channels (see Fig. 11). Snapshots
of this simulation are shown in Fig. 12 in which we can
also clearly observe band formation. With these data one can
conclude that the shape of the channel plays no role in whether
or not bands can form. We also assume that the fact whether
the systems are in two or three dimensions plays a crucial role
in the formation of periodic band structures, as well as the
confinement of the system.

To answer the question whether both ordering phenomena
can be considered true phases with a phase transition, the
thermodynamic limit with particle number N → ∞ and area
A → ∞ has to been examined. The result will probably differ
when the circular area is increased by either just increasing the
radius R → ∞ at constant channel width W or by increasing
both, for example, with a constant ratio W/R � 1. It is further-
more unclear whether the dynamic system will then still reach
its steady state within a finite time frame. These substantial
aspects need further studies which are outside of the scope of
this work.

V. CONCLUSION

In this work we showed that in two-dimensional circular
channels of colloidal particles two kinds of dynamic order
phenomena can be found by driving half of the particles
clockwise and the other half counterclockwise: Either the lane
formation transition occurs or a formation, of bands can be
observed, depending on the control parameters.

For small systems with a radius of up to R1 � 200, mostly
lanes can be seen when increasing the driving force. The
particles separate from each other by forming lanes. Thus the
particles can move in opposite direction without encountering
each other. These lanes are of approximately equal width.
Therefore more and more lanes are created by increasing the
width of the channel. The effect of hard walls can be noticed
in channels with very small widths (W � 10) in which the
ordering phenomena are disturbed. To quantify the order and
to determine a critical driving force Fc at which the transition
to lanes starts, the order parameter �lane was introduced. The
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critical force for lane formation was defined as the force where
the order parameter exceeds the value �lane = 0.5 and was
extracted by a fit. The critical force Fc of lane formation is
in the range of Fc = 62 for narrower and Fc = 67 for wider
circular channels. It increases slowly with the width of the
channel, but seems to be nearly independent of the length of
the channel, which is determined by the inner radius R1.

For systems with radii larger than R1 � 300 and certain
sets of parameters, the formation of bands of particles occurs.
The bands consist of the same particles species, are oriented
orthogonal to the driving force, and have a regular pattern.
Such a band formation is known from oppositely charged
colloidal particles with alternating electrical fields. A simi-
lar behavior of demixing of the two particle species is also
recognized in three-dimensional channels [13], but there the
particles form only two blocks of particles. Furthermore the
formation of bands is also known from the Vicsek model. In
our system the band formation is unexpected since the bands
of different particle species have to regularly encounter each
other.

The band formation can be interpreted as a micro phase
separation of two coexisting phases. As can be seen from
the plot of the local density as a function of the angular
coordinate, the gaps have a small but finite constant density,
and the bands have also a nearly constant density, which is
introduced by the external driving force.

In large systems with a small interaction strength of V0 =
35 the particles begin to accumulate in bands with gaps in
between. The critical force for band formation, where the or-
der parameter exceeds the critical value of �band = 0.25, was
determined to be between Fc = 52 and Fc = 55, depending
on the width of the channel. Thus the critical force for band
formation is smaller than the critical force for lane formation.
It is noticeable that at widths of W = 50, the particles begin
to lose order and the order parameter decreases.

In large systems with a large interaction strength of V0 =
65 we found significantly more frequent lane formation than
band formation. Interestingly, the order of the particles de-
pends not only on the radius of the system or the driving force
but also the width W and the potential strength V0. Here the
critical force is also in an area of approximately Fc = 63 for

lane formation and Fc = 53 for band formation. Interestingly,
for larger widths and potential strength V0 = 65, more lanes
form. If we increase the width of the circular channel by 15
units, one additional lane was formed.

We varied these quantities of width W and potential
strength V0 for a fixed radius R1 = 300 to explore a broader
parameter range. A phase diagram depending on these two
parameters is given by the probability distribution that band
formation or lane formation is found. In order to obtain the
probability distribution, several simulations with the same pa-
rameter combinations but different start positions were carried
out.

In systems of small width and potential strength in 100%
of the simulations band formation occurred. In the systems
with large width and large potential strength, however, lane
formation occurred in 100% of the simulations. The transition
line from lane to band formation thus proceeds diagonally in
the W , V0 phase space.

As future work these parameter ranges could be exam-
ined in smaller systems with R1 � 200. Furthermore it seems
worthwhile exploring the influence of hydrodynamic inter-
actions on band formation to model more realistic colloidal
systems. In further studies hysteresis and bifurcation phenom-
ena should also be examined, since it seems that in some
configurations both orderings are stable depending on the
starting condition. It would also be very interesting to explore
systems with particles that are driven in the same direction to
see whether new experimental systems could be created that
use this kind of setup. Additionally, a closer look could be
given at the formation and stability of the bands and lanes that
form in these systems.
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