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Anomalous behavior of a two-dimensional Hertzian disk system
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The anomalous behavior of a two-dimensional system of Hertzian disks with exponent & = 7/2 has been
studied using the method of molecular dynamics. The phase diagram of this system is the melting line of a
triangular crystal with several maxima and minima. Waterlike density and diffusion anomalies have been found
in the reentrant melting regions. Noteworthy, a density anomaly has been observed not only in the liquid and
hexatic but also in the solid phase. The calculations of the phonon spectra of longitudinal and transverse modes
have yielded negative dependence of the frequency of transverse modes on density along all directions in the
regions with a density anomaly. This indicates an association of the density anomaly with transverse oscillations
of the crystal lattice. The regions of density and diffusion anomalies have been drawn on the phase diagram. It
has been found that the stability regions of anomalous diffusion extend to temperatures well above the maximum

melting point 7 = 0.0058 of the triangular crystal.
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I. INTRODUCTION

It is known that two-dimensional (2D) systems can demon-
strate a number of properties that are very different from
those of three-dimensional (3D) systems. The most common
example is melting of 2D crystals. While in a 3D space
melting always occurs through a first-order phase transition,
in 2D crystals there are known at least three different melt-
ing scenarios. To date, for microscopic description of 2D
melting there are three recognized scenarios [1,2]: (i) the
theory of Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-
Young (BKTHNY), according to which melting occurs via
two continuous transitions with an intermediary hexatic phase
with quasi-long-range orientational order and short-range
translational order [3-7]; (ii) melting in one transition of
the first order [8,9]; and (iii) the crystal-hexatic phase tran-
sition takes place by means of a continuous transition of
the Berezinskii-Kosterlitz-Thouless (BKT) type, whereas the
hexatic phase-isotropic liquid transition through a first-order
transition [10-14]. This makes 2D systems extremely com-
plex and interesting to study.

In addition, it is known that some systems may display
complex anomalous behavior. The most striking example
of such systems is water, in which dozens of different
anomalous properties were found, such as density anomaly,
diffusion anomaly, and others [15]. In the case of water, many
anomalies occur in the existence domain of liquid. How-
ever, anomalous properties may take place in the crystalline
phase as well. For example, there are many crystals known to
demonstrate a density anomaly (in the case of crystals, the
term “a negative coefficient of thermal expansion” is com-
monly used) [16].
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Many models have been proposed in literature to quali-
tatively explain the anomalous behavior of water and other
substances. An important class of models leading to anoma-
lous behavior in the liquid phase is the class of systems with
negative curvature potentials (core-softened systems) (see a
review paper [2], and references therein). Many different
model core-softened potentials have been proposed, some of
which exhibit anomalous behavior.

Another class of model systems in which anomalous be-
havior can occur is associated with the so-called bounded
potentials, i.e., those that do not show singularity at zero [17].
Despite the seeming simplicity of these potentials, they
can demonstrate very complex behavior, including reentrant
melting, formation of cluster crystals, numerous structural
transitions, etc.

In a 2D space, systems with bounded potentials also show
complex behavior. For example, in the work [18] melting of
a system with the Gaussian potential was studied. Melting
was shown to occur through an intermediate hexatic phase.
In addition, as in the 3D system with the Gaussian potential,
anomalies of structure, density, and diffusion were found in
two dimensions.

One of the most extensively studied systems with
bounded potential is the Hertzian sphere system (Hertzian
spheres) [19]. It is defined by the potential

Ur)y=¢(l—r/c)*H( —r/o), (D

where H(r) is the Heaviside step function and parameters &
and o set the energy and length scales. The value of parameter
o = 5/2 corresponds to the Hertz problem of energy during
deformation of two elastic spheres [19].

The Hertzian sphere system with various values of o was
studied in both three dimensions and two dimensions. In the
work [20], the phase diagram of a 3D system of Hertzian
spheres with o = 5/2 was calculated. It was shown that a
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large number of structural transitions among crystal phases
of different symmetries occurred in this system. At the same
time, all phases showed a maximum on the melting line. After
that, in the work [21] it was shown that a diffusion anomaly
and structural anomaly were also observed in this system;
moreover, there were two diffusion anomaly areas in the sys-
tem: at low and high densities. At the same time, the diffusion
anomaly at low density was more pronounced. Later, qual-
itatively similar results were obtained for a Hertzian sphere
system with o = 2.0 as well [22,23].

The phase diagram of a 2D system of Hertzian disks was
studied in even more detail. This issue was first addressed in
the paper [24]. In this article, the phase diagram of the system
was roughly estimated at three different values of the power
of a: @ =3/2,5/2, and 7/2. Despite some inaccuracies, this
article detected the main trend of change in the phase diagram
with an increase in the power of «: with an increase in «, the
number of stable crystalline and quasicrystalline phases in the
system decreases. This result was subsequently confirmed in
the paper [25].

In the work [26], the melting scenario of the triangular
phase with low density in a 2D system of Hertzian disks
with @ = 5/2 was calculated. It was shown that the melting
line had a maximum, in which the melting scenario changed:
at densities lower than the density at the melting line maxi-
mum, a first-order transition from the hexatic phase to liquid
and a continuous transition from hexatic to crystal (the third
melting scenario) were observed, while at higher densities
both transitions were continuous according to the BKTHNY
theory. However, this paper examined the melting of only one
triangular phase at low densities. A complete phase diagram
of the Hertzian disk system with « = 5/2 was built in the
article [27]. In the sequence of a density increase several suc-
cessive ordered phases are observed in the system, including
a dodecagonal quasicrystal. The melting lines were evaluated
for all phases.

The system with o = 7/2 deserves separate consideration.
As shown in [24], there is only one crystal phase in this
system, a triangular crystal. At the same time, the melting
line looks complex. It is “wavy” in nature, that is, several
maxima and minima occur on the melting line. This result was
significantly expanded and revised in the article [28]. In this
paper it was confirmed that only one crystal phase, a triangular
crystal, was observed in the system, and melting scenarios
were calculated for different parts of the melting line of this
crystal. It was shown that at the left branch of the melting
line at low densities a change in the melting scenario took
place from the third with a first-order transition from hexatic
to liquid to the first scenario with a continuous hexatic-liquid
transition according to the BKTHNY theory with the preser-
vation of the melting scenario along the entire melting line. In
addition, a mechanism was proposed that could lead to such
nonstandard behavior of the melting line [28].

Based on the complex behavior of the phase diagram of
the 2D Hertzian disk system with « = 7/2 and the presence of
regions with reentrant melting (a negative slope of the melting
line) of the triangular crystal, it can be assumed that certain
anomalous properties that were previously found in other 3D
and 2D systems with bounded potentials, will be observed in
this system. The purpose of this work is to search for such
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FIG. 1. The phase diagram of the Hertzian disks with o« = 7/2
and the areas of density and diffusion anomalies. The melting line
is taken from Ref. [28]. Gray is a crystal, olive is the hexatic phase,
magenta is the area of liquid-hexatic coexistence, blue hatch is the
area of the diffusion anomaly, and red hatch is the area of the density
anomaly. The calculation of the areas of the density and diffusion
anomalies is discussed in the text.

anomalies in the studied system and to mark the areas of
anomalous behavior on the phase diagram.

II. SYSTEM AND METHODS

In our work, using the molecular dynamics method a 2D
system of Hertzian disks with o = 7/2 was simulated in
a rectangular box with periodic boundary conditions. The
system consisted of 20 000 particles. A triangular crystal
was selected as the initial configuration. The simulation was
carried out in the canonical ensemble (constant number of
particles N, volume V, and temperature 7). The time step was
dt = 0.001. First, 30 x 10° steps were performed to thermal-
ize the system. Next, the system was simulated for another
20 x 10° steps to calculate its properties. Finally, the system
was simulated for more 20 x 10 steps in the microcanonical
ensemble (constant N, V, and internal energy E) to calculate
the diffusion coefficient. The diffusion coefficient was cal-
culated from the mean-square displacement by the Einstein
method.

In our previous paper [28] we showed that proper calcu-
lation of thermodynamic functions required large statistical
averaging. For this reason at some points close to the melt-
ing line we performed ten simulations starting from different
initial conditions. We observed that within the simulation time
the total energies and pressures of different replicas converged
to the same values, which means that the system is properly
equilibrated.

The work also included calculation of the phonon spectra
of the crystal at different densities. The calculations were
made in the ground state using the Born—von Karman method.
We calculated the Hessian matrix (Sz—aij where x; and x; are
the x, y, and z coordinates and found its eigenvalues by using
a numerical program written by us.
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FIG. 2. The equations of state along several isochores in the vicinity of reentrant melting of the first bump on the phase diagram.

All simulations were performed in the LAMMPS simulation
package [29].

III. RESULTS AND DISCUSSION

The phase diagram of the system under consideration was
calculated in our previous work [28]. Recall that this phase
diagram has a very unusual shape: despite the fact that there is
only one crystalline phase, the melting line has a wavy shape
with several maxima and minima. Part of the phase diagram
in the area of the studied densities is shown in Fig. 1. In
the present work, we continue studying the 2D Hertzian disk
system with @ = 7/2 and investigate into the origination of
various anomalies in it, which are observed in many systems
with anomalous phase diagrams.

Let us begin the description of the obtained results with
looking for a density anomaly in the system whose physi-
cal meaning consists in the negative coefficient of thermal
expansion. Using the thermodynamic relationship (g—?)v =
op/Kr, where ap is the coefficient of thermal expansion and
Kr is isothermal compressibility, and considering that K7 is
always positive and finite for systems in equilibrium outside
a critical point, it can be concluded that a density anomaly
corresponds to a decrease in pressure with an increase in
temperature along the isochores, and a minimum on this de-
pendence, to the boundary of the anomalous area [see Eq. (6)
in [30,31]]. The derivative (% )y in the anomalous area should
be negative. Therefore, we studied the equations of state along
the isochores. Recall that in the areas of reentrant melting

under consideration, the crystal melts via two continuous BKT

024602-3



GAIDUK, FOMIN, TSIOK, AND RYZHOV

PHYSICAL REVIEW E 106, 024602 (2022)

4.114

pest (a)
4112 _/'/
/'/
4.110 e /
~
o N
4.108 - /
4.106 / melting
4104
; ; ‘ ‘
0.0030 0.0035 0.0040 0.0045
T
5.754 - p=7.0 (c)
5.752 - rEEEEEEy
"
5.750 -
melting
5.748 /
Q 5746 !
5.744 -
5742 o
o
5.740 s
e
5.738 - e

T T T T T T T
0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050
T

7.624 | (e)
7.622 - N

7.620 -|
7618 melting

S '\_\ -

7.614

7.612

7.610

T T T T T
0.000 0.001 0.002 0.003 0.004
T

4.900 -| p=6.5 (b)
_/-/'*'\
.//
=
4898 Ve melting
I//.
./
./ /
Q. 4.896 -
4.894 -
l\.‘././.
4.892 -
‘ ‘ ‘ ‘
0.0025 0.0030 0.0035 0.0040
T
(d)
6.665 "y p=7.5
II.....
u
I....
6.660 - ., ...
L melting
Q. 6.655 - \ /
.
6.650 - \
n -'..
6.645 LI

T T T T T 1
0.000 0.001 0.002 0.003 0.004 0.005
T

8.6380 - -

p=8.5 /

8.6375 "
8.6370 '/.\'\ /
Q. 8.6365 - '/ / "
/

o .
8.6360 - / melting
o
8.6355 - /
o

8.6350 -

0.0016 0.0020 0.0024 0.0028 0.0032

T

FIG. 3. The equation of state along several isochores in the vicinity of reentrant melting of the second bump on the phase diagram.

transitions through the hexatic phase. Figures 2(a)-2(e) show
anumber of the system isochores. It can be seen that at density
p = 2.3, the pressure increases with increasing temperature
in both solid and liquid phases. Only in a very narrow tem-
perature range with width 0.0001 does the pressure decrease.
Density p = 2.3 is near the maximum of the melting line,
where melting passes through a very narrow region of the
hexatic phase. Therefore, it can be assumed that the observed
density anomaly occurs in the orientationally ordered liquid-
hexatic phase. At density p = 2.7, the pressure decreases to
a minimum in the temperature region, the width of which
is by an order of magnitude greater than at p = 2.3. At the
same time, the density anomaly area includes part of the
crystalline phase, full hexatic, and part of the liquid phase.
On the equation of state along isochore 3.1, starting with
temperature close to zero, a monotonous pressure decrease is

observed with an increase in temperature, which corresponds
to the anomaly of density in the crystal. Then a region of an
abrupt pressure drop appears as a function of temperature,
which mainly falls within the existence domain of the hexatic
phase. Next, a minimum appears on the equation of state that
corresponds to the boundary of the density anomaly area in
the liquid. With a further increase in temperature, pressure
increases, which indicates the disappearance of the density
anomaly in the liquid. Thus, at density p = 3.1 the domains of
existence of the crystalline and hexatic phases completely, and
of the liquid phase partially, fall within the area of the density
anomaly. On isochore p = 3.7 the maximum and minimum
correspond to the density anomaly area, which completely
covers the existence domain of the hexatic phase and a very
small area of the liquid phase. It should be noted that such
behavior of the equation of state along the above-mentioned

024602-4



ANOMALOUS BEHAVIOR OF A TWO-DIMENSIONAL ...

PHYSICAL REVIEW E 106, 024602 (2022)

G-M (a)

— p=1.2long
- - p=l2trans
— p=14long
- - p=l4trans
— p=1.6long
- = p=lé6trans

G-M (©)
— p=5.0long
- - p=S0trans
— p=5.4long
- - p=S54trans
— p=5.8long
- = p=58trans

G-M (b)

— p=3.0long
- = p=3.0trans

p=3.2long

p=3.2 trans
— p=3.4long
p=3.6 long
p=3.6 trans
p=3.8long
p=3.8 trans

G-K K-M G-M (d)

— p=7.4long
- - p=74trans
—— p=7.8long
- - p=78trans
— p=84long
- = p=84trans

FIG. 4. The phonon spectra of the longitudinal and transverse modes of the Hertzian disks with @ = 7/2 in several density intervals.

isochores, namely, a pressure drop with an increase in temper-
ature, is mainly characteristic of the reentrant melting regions
on the phase diagram. With a further increase in density (p =
3.9), normal behavior of pressure dependence on temperature
is observed, i.e., the density anomaly disappears. Thus, we see
that the density anomaly in the system under investigation is
observed not only in the liquid and hexatic but also in solid
phases.

Recall that the melting line of the system has a wavy shape.
This suggests that the behavior of anomalies may also be
periodic. Therefore, we studied the isochores corresponding
to the right branch of the melting line’s second maximum.
Corresponding graphs are shown in Fig. 3. We see that iso-
chore behavior is indeed similar to that at the densities around
the first peak. A density anomaly can appear in both solid and
liquid phase (densities p = 7.5 and p = 8.0). With a further
increase in density, the anomaly disappears.

It is known that in the case of a density anomaly in the crys-
tal, anomalous behavior of phonon frequencies is observed,
i.e., the frequency of phonons on one or several phonon
branches can decrease with increasing density [16]. In a nor-
mal crystal, the frequency of all phonon branches increases
with increasing density. We performed calculations of phonon
spectra (longitudinal and transverse modes) in several ranges
of densities, namely, in two regions where a density anomaly
was detected, and in two regions with a positive coefficient of

thermal expansion. The phonon spectra were calculated in the
Born—von Karman approximation. The calculation results are
shown in Figs. 4(a)-4(d). The density areas in panels (a) and
(c) correspond to normal mode. It can be seen that in these re-
gions the frequencies of all branches increase with increasing
density. The behavior of phonon spectra in the areas with a
density anomaly [panels (b) and (d)] is different from normal.
In both density intervals (o = 3.0-3.8 for the first area with a
density anomaly and p = 7.4-8.4 for the second), the trans-
verse modes along all directions show negative dependence
on density. This suggests a connection of the density anomaly
in the studied system with exactly the transverse oscillations
of the crystalline lattice.

Along with the density anomaly, we found a diffusion
anomaly, i.e., an increase in the diffusion coefficient of the
system with an isothermal increase in density. Figure 5
shows the diffusion coefficients of the system along several
isotherms. All points were averaged over ten independent
replicas. It can be seen that even at high temperatures, for
example, 7 = 0.015 (the maximum melting point in the sys-
tem is T = 0.0058), there are two areas with an anomalous
increase in the diffusion coefficient: from density p = 2.5 to
4.5 and from density 6.5 to 9.5.

In the 2D system of Hertzian disks with o =5/2, the
anomalous properties of the liquid in the reentrant melt-
ing region [27] between two different crystal phases can be
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FIG. 5. The diffusion coefficient of the system along several
isotherms.

explained by the restructuring of the liquid as a result of
melting of the triangular crystal and crystallization of the
square one. In the case of @ = 7/2, a diffusion anomaly was
detected in the reentrant melting regions of only one triangular
phase. Let us try to explain this phenomenon using the exam-
ple of the behavior of radial distribution functions (RDFs).
Figure 6(a) shows an example of the RDF of the system in an
anomalous region at 7 = 0.003 and densities from p = 3.3 up
to p = 3.7, which is the boundary of the diffusion anomaly.
One can see that upon an increase in density the RDFs of the
system become less structured, which makes the liquid more
mobile, i.e., the diffusion coefficient increases with a density
increase. When the density is further increased and starts to
approach the second bump of the melting line [Fig. 6(b)] the
behavior of the RDFs changes to the opposite, they become
more structured, which will lead to normal liquid behavior,
that is, a decrease in the diffusion coefficient with increasing
density.

The areas of density and diffusion anomalies are shown on
the phase diagram in Fig. 1. It can be seen from this figure
that the existence domain of the density anomaly is close
to the melting line, while the existence domain of the diffu-
sion anomaly reaches very high temperatures. This stability
of the diffusion anomaly evidences complex behavior of the

(a)
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<
S,
14
0 u T T T |
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dynamic properties of the Hertzian disk system with « = 7/2,
which was discussed above.

IV. CONCLUSIONS

It is well known that the Hertz potential can be used
as a model potential for the qualitative description of the
phase diagrams, structural and dynamic properties of soft
matter particles (micelles, star polymers, polymer globules,
colloids, etc.). Such studies would be of great interest for
polymer science and biological applications. Taking into ac-
count that 2D and quasi-2D systems are also of technological
importance, for example, due to their use in the synthesis
of advanced photonic materials [32-34], studying the Hertz
potential is interesting and important. The paper presents a
molecular dynamics simulation study of anomalous behavior
of a 2D system of Hertzian disks with exponent o = 7/2.
Previously, it has been shown [24,28] that in this system there
is only one crystalline phase, a triangular crystal, with several
maxima and minima on the melting line. We find waterlike
density and diffusion anomalies in the liquid phase in the
reentrant melting regions. Moreover, a density anomaly was
observed in both liquid and solid phase. We have calculated
the phonon spectra of longitudinal and transverse modes. The
transverse modes along all directions have been shown to
display negative dependence of frequency on density in the re-
gions with density anomalies. This indicates an association of
the density anomaly with transverse oscillations of the crystal
lattice.

The regions of density and diffusion anomalies have been
drawn on the phase diagram. It has been found that the stabil-
ity regions of anomalous diffusion extend to temperatures well
above the maximum melting point of the triangular crystal at
T = 0.0058.

The results of the present study and our recent works as
well as the works of other authors on a Hertz system in both
three dimensions and two dimensions demonstrate its very
complex behavior with strong dependence of the behavior of
the system on the value of exponent «. We believe that further
works on the intermediate dimensionality of a Hertz system
in confinement should give more insight into the behavior of
soft deformable particles in different conditions.

(b)

g(r)

FIG. 6. The radial distribution functions of the system at 7 = 0.003 (a) in an anomalous region and (b) in a region with normal behavior

of the liquid.
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