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Freely jointed chain models with extensible links
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Analytical relations for the mechanical response of single polymer chains are valuable for modeling purposes,
on both the molecular and the continuum scale. These relations can be obtained using statistical thermodynamics
and an idealized single-chain model, such as the freely jointed chain model. To include bond stretching,
the rigid links in the freely jointed chain model can be made extensible, but this almost always renders the
model analytically intractable. Here, an asymptotically correct statistical thermodynamic theory is used to
develop analytic approximations for the single-chain mechanical response of this model. The accuracy of these
approximations is demonstrated using several link potential energy functions. This approach can be applied to
other single-chain models, and to molecular stretching in general.
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I. INTRODUCTION

The mechanical response of a single polymer chain can be
obtained by measuring the end-to-end length as a function of
an applied force. For small forces, this single-chain mechani-
cal response is primarily due to the reduction in entropy as the
chain is extended [1]. Idealized single-chain models, such as
the freely jointed chain model, allow quantification of these
physics. The freely joined chain (FJC) model consists of a se-
ries of rigid links connected by penalty-free hinges [2]. Using
statistical thermodynamics [3], the single-chain mechanical
response can be obtained exactly and closed-form in terms
of the Langevin function [4]. For large forces, bonds would
begin to stretch in the real chain, so the rigid links of the FJC
model should be made extensible using some potential energy
function [5]. Though the same thermodynamic principles ap-
ply [6], the necessary configuration integrals almost always
become analytically intractable. Currently, the only known
exactly solvable model is the particular case of harmonic
link potentials [7,8]. This is unfortunate, since exact relations
enable more efficient modeling and a deeper fundamental un-
derstanding. Analytic approximations are a good alternative,
since they are efficient and are often quite accurate.

There are a variety of approaches that have been devel-
oped to approximate the single-chain mechanical response
of freely jointed chains with extensible links. The simplest
approach is to directly modify the Langevin function of the
FJC single-chain mechanical response in order to yield the
correct high-force behavior for a given link stiffness [9].
This approach has become especially popular in capturing
data from single-chain pulling experiments, such as those
involving DNA, with success largely enabled by high link
stiffness [9–21]. Additional terms can be included to obtain
an improved approximation for harmonic potentials [7,22],
enabling better accuracy at lower link stiffnesses and therefore
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more robust modeling [6,23]. This simplest approach can be
generalized for anharmonic link potentials in order to capture
the mechanical response up until the chain breaks, which
is useful for large-deformation polymer network constitutive
models [5,24]. An alternative approach has been developed
by Mao et al. [25], where a constructed free-energy function
is minimized with respect to link length in order to obtain
an effective link length, and subsequently the single-chain
mechanical response. This approach has been utilized quite
frequently in polymer network constitutive models, using both
harmonic [26–31] and anharmonic [25,32–38] link potential
energy functions, though it is heuristic to minimize thermo-
dynamic free energies with respect to phase space degrees of
freedom [5].

Despite this effort and progress, a more complete approach
of approximating the single-chain mechanical response of
freely jointed chains with extensible links is still needed. Crit-
ically, there are currently no approaches that are demonstrably
accurate in a well-understood regime of model parameters.
Further, any reliable approach should begin from and closely
adhere to the principles of statistical thermodynamics. Here,
such an approach is developed using an asymptotically correct
statistical thermodynamic theory [39]. Beginning from the
partition function, relations for the single-chain mechanical
response are obtained that are asymptotically valid as the
link potentials become steep. A potential is considered to be
steep when both the potential energy scale and the stiffness
are large compared to thermal energy. These relations are
compared to existing relations in the literature, and additional
useful relations are provided in the Appendix, such as that for
the Helmholtz free energy. The accuracy of the asymptotic
approximations is then demonstrated using popular potential
energy functions for the links—harmonic, Morse [40], log-
squared [25], and Lennard-Jones [41] potentials—where it is
shown in each case that the approximations become accurate
as the link potential becomes steep. The model has been
implemented in the open-source PYTHON package ufjc [42],
which offers additional functionalities not shown here.
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II. THEORY

The freely jointed chain (FJC) model consists of Nb rigid
links of length �b; the links may pass through each other
or overlap, and they are connected in series by penalty-free
hinges [1,2,4]. This single-chain model is generalized to the
uFJC model through assigning some potential energy function
u to each link and allowing the link length � to fluctuate away
from its rest length �b [5]. Here the isotensional ensemble is
considered, where a fixed force f is applied to the chain, and
the expected chain end-to-end length ξ is calculated using the
partition function [6,8,22]. The temperature T is also fixed, or
equivalently β = 1/kBT is fixed, where kB is the Boltzmann
constant. Asymptotically correct relations, valid for steep link
potentials [39], are obtained for the isotensional partition
function and are subsequently used to obtain the isotensional
mechanical response. Steep potentials are characterized by
large scale and stiffness compared with thermal energy, i.e.,
steep potentials are both deep and narrow. An asymptotic
relation for low to intermediate forces is first obtained, then
another for high forces, and finally the two are matched in a
composite relation for all forces. A reduced form of this full
relation is provided, which also becomes accurate in the limit
of sufficiently steep link potentials.

A. Low-to-intermediate force asymptotics

First, consider the cases when the nondimensional force
η = β f �b is small compared to the nondimensional link po-
tential energy scale ε = βuc, as well as the nondimensional
link stiffness κ = β�2

bu′′(�b). Note that uc is the character-
istic energy scale for the potential u, and that apostrophes
denote derivatives, i.e., u′′ = d2u/d�2. This is succinctly
stated as η � ε, κ , and it encompasses both the low (η <

1) and intermediate (1 < η � ε, κ) force regimes, where
the link potential is assumed to be steep (ε, κ � 1). An
asymptotic relation for the single-chain mechanical response
γ (η) is desired for this force regime, where γ = ξ/Nb�b is
the nondimensional end-to-end length. Only the single-link
isotensional partition function (θ is the angle between the link
and the force),

z( f ) =
∫

eβ f � cos θe−βu(�) d3�, (1)

is necessary to obtain the single-chain mechanical response
of the uFJC model since the link degrees of freedom be-
come decoupled in the isotensional ensemble [5,6,22]. After
computing the angular integrals and nondimensionalizing the
integrand, the result is

z(η) = 4π�3
b

∫
sinh(sη)

sη
e−εφ(s) s2 ds, (2)

where φ(s) ≡ βu(�bs)/ε is the scaled nondimensional poten-
tial energy function, and s is a dummy variable of integration.
This full-system partition function can be rewritten as an
integral transform of the reference system partition function,

z(η) = �b

∫
z0(η, s) e−εφ(s) ds, (3)

where the reference system partition function z0(η, s) is that
of the FJC model with a link length of s�b,

z0(η, s) = 4π�2
b

sinh(sη)

sη
s2. (4)

The expected FJC partition function [4] is obtained for s =
1, and correspondingly, z0(η, 1) ≡ z0(η) is defined. Follow-
ing Buche [39], an asymptotic approximation for Eq. (3)
is now obtained in order to represent the full system in
terms of the reference system and small corrections. Since
absolute free energies will not be required here, φ(1) = 0
is assumed without loss of generality in order to simplify
results. Assuming that φ(s) achieves a unique, hyperbolic
minimum at the link rest length s = 1, i.e., φ′(1) = 0 and
φ′′(1) > 0, it has the Taylor series expansion near s = 1
given by

φ(s) = 1
2 φ′′(1)(s − 1)2 + 1

6 φ′′′(1)(s − 1)3

+ 1
24 φ′′′′(1)(s − 1)4 + · · · . (5)

The Taylor series of z0(η, s) about the same point is

z0(η, s) = z0(η, 1) + z′0(η, 1)(s − 1)

+ 1
2 z

′′
0 (η, 1)(s − 1)2 + · · · , (6)

where z0(η, 1) ≡ z0(η) is given by Eq. (4), and it allows the
ath derivative to be computed using the relation

∂az0(η, s)

∂sa

∣∣∣∣
s=1

= [ηa + aη coth(η)]z0(η). (7)

Laplace’s method for approximating integrals [43] is now
applied to Eq. (3). For ε � 1, e−εφ(s) decays extremely rapidly
away from s = 1, such that Eq. (3) is reasonably approximated
when expanding the integrand about s = 1. Accordingly,
within Eq. (3), z0(η, s) is given by Eq. (6), φ(s) is given by
Eq. (5), and e−εφ(s) is given by the Gaussian function [44]

e−εφ(s) ∼ e−κ (s−1)2/2

{
1 + ε

[
φ′′′(1)

6
(s − 1)3

+ φ′′′′(1)

24
(s − 1)4

]
+ ε2

72
[φ′′′(1)]2(s − 1)6 + · · ·

}
,

(8)

where κ ≡ εφ′′(1) is the nondimensional link stiffness. Using
Eqs. (5)–(7), and the substitution t = √

κ (s − 1), for ε � 1
the partition function in Eq. (3) is given by the asymptotic
relation

z(η) ∼ �b√
κ
z0(η)

∫
e−t2/2

[
1 + f (η, t )

κ

]
dt, (9)

where the function f (η, t ) is defined as

f (η, t ) ≡ t2

[
η2

2
+ η coth(η)

]
− t4

6

φ′′′(1)

2φ′′(1)
[1 + η coth(η)]

+ t6

72

[
φ′′′(1)

φ′′(1)

]2

− t4

24

φ′′′′(1)

φ′′(1)
+ · · · . (10)

The ellipsis here represents terms that are odd powers of t ,
which will not contribute to the Gaussian integrals in Eq. (9),
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as well as terms that are ord(κ−1) or higher [44]. These
higher-order terms are now neglected, tantamount to mak-
ing an additional asymptotic approximation based on κ � 1.
Notably, assumptions based on both ε � 1 and κ � 1 have
now been incorporated, consistent with the steep potential
requirement emphasized in this work. Substituting Eq. (10)
into Eq. (9) and computing the resulting Gaussian integrals
then yields

z(η) ∼ �b

√
2π

κ
z0(η)

[
1 + h(η)

κ

]
, (11)

where the correction function h(η) is given by

h(η) ≡ η2

2
+ η coth(η) − φ′′′(1)

2φ′′(1)
[1 + η coth(η)]

+ 5

24

[
φ′′′(1)

φ′′(1)

]2

− φ′′′′(1)

8φ′′(1)
. (12)

Equation (11) represents an approximation of the statistical
thermodynamics of the full system (the uFJC model) in terms
of that of the reference system (the FJC model), and it is
asymptotically valid for stiff potentials (ε, κ � 1). Again,
since absolute free energies will not be required here, the last
two terms in Eq. (12) are neglected without loss of generality.
When taking the logarithm of Eq. (11), which is needed for
the free energy and subsequently the mechanical response, it
is expedient to use another asymptotic approximation [39].
Applying κ � 1 again, these would take the general form
ln(1 + x/κ ) ∼ x/κ , a truncation of the Mercator series. This
is then used to make the final asymptotic approximation that[

1 + h(η)

κ

]
∼ eη2/2κ

[
1 + η

cκ
coth(η)

]
, (13)

where 1/c ≡ 1 − φ′′′(1)/2φ′′(1). As will become clear later
in Sec. II C, this step is necessary to ensure that the low-to-
intermediate and high-force regimes are readily matched, all
the while remaining consistent with the assumptions that lead
to the preceding asymptotic relation. Substituting Eq. (13) into
Eq. (11), obtains

z(η) ∼ �b

√
2π

κ
z0(η) eη2/2κ

[
1 + η

cκ
coth(η)

]
, (14)

where z0(η) is given by Eq. (4). The isotensional single-chain
mechanical response is given by γ (η) = ∂ ln z(η)/∂η [6,8],
so the corresponding asymptotic relation for γ (η) is then
obtained to be

γ (η) ∼ L(η) + η

κ

[
1 − L(η) coth(η)

c + (η/κ ) coth(η)

]
+ η

κ
. (15)

Equation (15) is asymptotically valid for steep link poten-
tials (ε, κ � 1) in the low-to-intermediate force regime (from
η < 1 to 1 < η � ε, κ), where L(η) = coth(η) − 1/η is the
Langevin function. Note that Eq. (15), in the case of harmonic
potentials (c = 1), has been obtained previously using other
approaches [7,22], but here it has been effectively generalized
to account for anharmonicity.

B. High-force asymptotics

Next consider the high-force regime, where the nondi-
mensional force is on the order of ε, the nondimensional
link potential energy scale [η = ord(ε)]; the link potential is
still assumed to be steep (ε, κ � 1). These limits are applied
in reconsidering the isotensional partition function, taking
sinh(η) ∼ eη and the scaled nondimensional force τ ≡ η/ε,
obtaining

z(η) ∼ 2π�3
b

η

∫
e−ε[φ(s)−τ s] s ds. (16)

Note that one is now effectively working with the scaled
nondimensional total potential energy φ(s) − τ s, i.e., the po-
tential energy minus the work, and that the reference system
is now a one-dimensional array of links in series. Also note
that if only γ (η) is desired, the asymptotic approach can be
applied either before or after computing γ (η) = ∂ ln z(η)/∂η,
which for Eq. (16) is

γ (η) ∼
∫

e−ε[φ(s)−τ s] s2 ds∫
e−ε[φ(s)−τ s] s ds

− 1

η
. (17)

The same asymptotic approach [39] used to get Eq. (11) is
now applied to each of the integrals in Eq. (17). The total
potential energy is expanded about the unique, hyperbolic
minimum at the link stretch s = λ, found via

∂

∂s
[φ(s) − τ s]s=λ = 0, (18)

i.e., the solution of φ′(λ) = τ = η/ε. Note that the unique
minimum assumption prevents the asymptotic approach de-
veloped here from being immediately applicable to cases in
which Eq. (18) has multiple solutions [45–47]. However, once
a method of choosing from or transitioning between partic-
ular solutions has been established [48–50], the asymptotic
approach could be applied separately to each particular so-
lution. Now, applying the same asymptotic approach from the
previous section to either (a = 1, 2) of the integrals in Eq. (17)
about s = λ,∫

e−ε[φ(s)−τ s] sa ds ∼ w(η)λa(η)

[
1 + ĥa(η)

κ̂ (η)

]
, (19)

where the instantaneous link stiffness is κ̂ (η) ≡ εφ′′[λ(η)].
The prefactor w(η) in Eq. (19) is

w(η) ≡
√

2π

κ̂ (η)
eηλ(η)−εφ[λ(η)], (20)

and the correction functions ĥa(η) in Eq. (19) are

ĥa(η) ≡ a − 1

λ2(η)
− φ′′′[λ(η)]

2φ′′[λ(η)]

a

λ(η)

+ 5

24

{
φ′′′[λ(η)]

φ′′[λ(η)]

}2

− φ′′′′[λ(η)]

8φ′′[λ(η)]
. (21)

When computing the ratio in Eq. (17) using the asymptotic
relations in Eq. (19), the prefactor w(η) cancels. This is a
benefit of computing γ (η) = ∂ ln z(η)/∂η before applying the
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asymptotic approach, and the result is

γ (η) ∼ λ(η) + λ(η)ĥ2(η)

κ̂ (η) + ĥ1(η)
− 1

η
. (22)

In the case of harmonic potentials (h2 = λ−2, h1 = 0, λ = 1 +
η/κ), the second term in Eq. (22) becomes 1/(κ + η), consis-
tent with high-force approximations obtained previously [22].
In general, the second term in Eq. (22) is quite complicated
due to many terms of the form φ(a)[λ(η)] via Eq. (21), and
it makes γ (η) impractical. To maintain the practicality of the
asymptotic relations obtained here and facilitate matching in
the next section, and since the second term in Eq. (22) is a
small correction, it is neglected, yielding

γ (η) ∼ λ(η) − 1

η
. (23)

Equation (23) is asymptotically valid for steep link potentials
(ε, κ � 1) in the high-force regime [η = ord(ε)]. Since 1/η is
then small here, Eq. (23) could be simplified further to γ (η) ∼
λ(η), but this is not necessary.

C. Matched asymptotics for all forces

A composite asymptotic approximation for the uFJC
isotensional single-chain mechanical response γ (η) is now
obtained, valid for all forces η when the link potential is steep.
This asymptotic matching of Eqs. (15) and (23) is done using
Prandtl’s method [51]. It is first verified that Eq. (15) under
η � 1 and Eq. (23) under η � 1 are equivalent, i.e., equal
to 1 − 1/η + η/κ . To match, Eqs. (15) and (23) are added
together and the common part 1 − 1/η + η/κ is subtracted.
Taking �λ ≡ λ − 1, the resulting composite asymptotic ap-
proximation is then

γ (η) ∼ L(η) + η

κ

[
1 − L(η) coth(η)

c + (η/κ ) coth(η)

]
+ �λ(η), (24)

which is valid for steep link potentials (ε, κ � 1). The asymp-
totic approximation in Eq. (24) is the sum of three distinct
terms: the first term is the fully entropic result for the FJC
model [1,2,4]; the second term represents corrections related
to rotation-vibration (entropic-enthalpic) coupling [39]; the
third term is the fully enthalpic incremental link stretch under
a direct force η. When Eq. (24) is simplified in the case
of a harmonic link potential (c = 1, �λ = η/κ), it matches
an existing relation for the EFJC model [7,22,23], which is
highly accurate even for only moderately large κ (as shown
in Appendix A, the error tends to be transcendentally small).
Here in Eq. (24), a more general asymptotic relation had
been systematically obtained that handles the arbitrary link
potentials of the uFJC model.

The reduced asymptotic approximation for the uFJC
isotensional single-chain mechanical response,

γ (η) ∼ L(η) + �λ(η), (25)

is reached when κ is sufficiently large and causes the second
term in Eq. (24) to contribute negligibly over all η. Physically,

this is equivalent to neglecting the coupling between link
stretching and link rotation. Equation (25) has been obtained
previously using a combination of physical and mathematical
arguments [5], but here it has been more rigorously obtained.
When Eq. (25) is simplified in the case of a harmonic link
potential (�λ = η/κ), it matches past expressions obtained
heuristically [10–12]. Since Eq. (25) is asymptotic to (1 +
�λ)L(η) for κ � 1, it also asymptotically matches many
other expressions used for the harmonic case [9,13–21]. The
developments here verify these reduced relations for suffi-
ciently steep potentials and offer applicability to arbitrary link
potentials. In Appendix B, the reduced asymptotic relations
for single-chain functions in the isometric ensemble (such as
the Helmholtz free energy) are additionally provided using the
Legendre transformation, which are asymptotically valid for
a sufficiently large number of links [6,8,52]. This additional
approximation is often necessary, since the FJC model is
analytically complicated to solve in the isometric ensemble.
To avoid making the Legendre transformation approximation,
one could use the FJC radial distribution function [53,54] to
obtain the reference system partition function within a con-
stant [6] and apply the asymptotic approach, but the result
would be highly impractical.

III. RESULTS

The full asymptotic approach [Eq. (24)] and the reduced
asymptotic approach [Eq. (25)] are now demonstrated in ap-
proximating the single-chain mechanical response of the uFJC
model. The harmonic link potential (the EFJC model) is con-
sidered first, followed by the log-squared potential [25], the
Morse potential [40], and the Lennard-Jones potential [41].
For each, the link stretch is calculated using Eq. (18). The
asymptotic approaches are compared with an exact solution
when available, and numerical quadrature otherwise. Calcula-
tions were completed using the PYTHON package ufjc [42].

A. Harmonic link potential

Using harmonic link potentials with the uFJC model pro-
duces the EFJC model; the scaled nondimensional potential
energy function in this case is

φ(s) = 1
2 (s − 1)2. (26)

Though the particularities may differ, the harmonic potential
is the most common way of rendering the rigid links of the
FJC model extensible [6–24,26–31]. The full asymptotic, re-
duced asymptotic, and exact (see Appendix A) approaches of
obtaining the EFJC single-chain mechanical response γ (η)
are plotted in Fig. 1 while varying the link stiffness κ . For op-
timal readability, these results are given in terms of the scaled
nondimensional force τ ≡ η/ε. The full asymptotic approach
is negligibly different from the exact approach for all values
of κ considered; as shown in Appendix A, this is due to the
full asymptotic approximation being exactly correct to within
transcendentally small terms in the case of harmonic links.
The reduced asymptotic approach tends to be inaccurate for
moderate κ , but quickly becomes accurate for large κ . Above
κ = 100, the difference between all three apparently vanishes,
where the reduced asymptotic approach could be used in place
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FIG. 1. The nondimensional single-chain mechanical response
γ (η) for the EFJC model, using the full asymptotic (dotted), reduced
asymptotic (dashed), and exact (solid) approaches, for varying nondi-
mensional link stiffness κ = ε.

of the exact approach for expediency since κ is often larger
than 100 when modeling experiments [5,11,12,24].

B. Other link potentials

When link stretches are expected to be large, the chosen
link potential energy functions are generally anharmonic and
escapable. Similarly to using true strain in place of engi-
neering strain in a continuum model, the harmonic potential
can be replaced with the log-squared potential [25,32–34,38].
The scaled nondimensional potential energy function in this
case is

φ(s) = 1
2 [ln(s)]2. (27)

Since the exact, analytic relation for γ (η) is not known in
this case (and the following cases), Eq. (2) is integrated using
numerical quadrature [55,56] in place of an exact approach.
The asymptotic approaches are compared with the quadrature
results for varying κ in Fig. 2, where η is scaled by ηmax =
ε/e. While the full asymptotic approach does perform better
(in matching the quadrature approach), neither asymptotic
approach is especially accurate until κ reaches 100 and above.

The Morse potential [40] is another common choice
for the link potential energy function of the uFJC model
[5,35,36]. The scaled nondimensional Morse potential energy
function is

φ(s) = [1 − e−α(s−1)]2, (28)

where α is the Morse parameter, related to the nondimensional
stiffness κ = 2α2ε. The asymptotic approaches are compared
with the quadrature results for varying κ in Fig. 3, where η

is scaled by ηmax = αε/2. Figure 3 illustrates an important
pathology of the quadrature approach that appears when deal-
ing with escapable potentials, such as the Morse potential.
For the partition function in Eq. (2) to converge in quadra-
ture methods, the integration must be constrained to prevent
links from breaking. For insufficiently steep link potentials,
this constraint is nonphysical and results in artificial strain-
stiffening in the anharmonic regime, rather than the expected

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

γ(η)

η
/η

m
a
x

κ = 25
κ = 100
κ = 250
κ = 1000

FIG. 2. The nondimensional single-chain mechanical response
γ (η) for the log-squared-FJC model, using the full asymptotic
(dotted), reduced asymptotic (dashed), and quadrature (solid) ap-
proaches, for varying κ = ε.

strain-softening of an escapable potential. As the link poten-
tial becomes sufficiently steep, this pathology vanishes, and
the expected behavior is obtained; all of this is seen clearly in
Fig. 3. In short, any approach for breakable links is only valid
when the link potentials are sufficiently steep. Figure 3 shows
that the full asymptotic approach matches the quadrature
approach more closely than the reduced asymptotic method
does, and that all three methods converge as κ becomes large.
In addition to being more interpretable and computationally
expedient, note that the asymptotic methods do not suffer from
the artificial strain-stiffening pathology. It would then be best,
in practice, to utilize the asymptotic approaches developed
here when stretching breakable molecules.

Lastly, the Lennard-Jones potential [41] can also be
used as the link potential energy function [37]. The scaled

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

γ(η)

η
/
η m

a
x

κ = 10
κ = 25
κ = 250
κ = 1000

FIG. 3. The nondimensional single-chain mechanical response
γ (η) for the Morse-FJC model (α = 1), using the full asymptotic
(dotted), reduced asymptotic (dashed), and quadrature (solid) ap-
proaches, for varying κ = 2α2ε.
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FIG. 4. The nondimensional single-chain mechanical response
γ (η) for the Lennard-Jones-FJC model, using the full asymptotic
(dotted), reduced asymptotic (dashed), and quadrature (solid) ap-
proaches, for varying κ = 72ε.

nondimensional potential energy function in this case is

φ(s) = 1

s12
− 2

s6
. (29)

The asymptotic approaches are compared with the quadrature
results for varying κ in Fig. 4, where η is scaled by ηmax =
12ε[(7/13)7/6 − (7/13)13/6]. Each asymptotic approach con-
verges for large κ , but interestingly, observe that the reduced
asymptotic approach tends to match the quadrature approach
more closely than the full asymptotic approach. The Lennard-
Jones potential is escapable, so the strain-stiffening pathology
of the quadrature approach is also observed in Fig. 4; these
two observations are related. Since the nondimensional stiff-
ness is nearly two orders of magnitude different from the
nondimensional energy scale (i.e., κ = 72ε), κ must be quite
large for ε to also be sufficiently large to consider the potential
steep. This results in higher values of κ being required for the
approaches to converge in Fig. 4 compared to the previous
cases. Note that the quadrature approach is not necessarily
accurate for lower values of κ , so the reduced asymptotic ap-
proach matching more closely in Fig. 4 could be misleading.
As shown next in Sec. III C, i.e., Fig. 5, the full asymptotic
approach is actually more accurate in this case once κ is
sufficiently large. To further analyze the steep potential re-
quirement, one can consider an opposing case in which the
energy scale is high but the stiffness is low, or even zero: the
square-well potential [3]. The asymptotic approach cannot be
applied at all in this case, even though the results do approach
that of the reference system (FJC) as the potential narrows
(see Appendix C).

C. Error analysis

The accuracy of the full [Eq. (24)] and reduced [Eq. (25)]
asymptotic approaches are now analyzed by computing the er-
ror relative to some baseline approach. The L2 norm is chosen
in defining the relative error e, which will be computed while
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FIG. 5. The relative error e as a function of the nondimensional
stiffness κ , using the full asymptotic (dotted) and reduced asymptotic
(dashed) approaches.

varying the nondimensional link stiffness κ . This is given by

e(κ ) ≡
√∫ ηmax

0 [γ (η) − γ0(η)]2dη∫ ηmax

0 γ 2
0 (η) dη

, (30)

where γ0(η) is the exact solution in the case of the harmonic
link potential (see Appendix A), and it is given by the numer-
ical quadrature otherwise. The results for either asymptotic
approach applied to the harmonic, log-squared, Morse, and
Lennard-Jones potentials are shown in Fig. 5. Note that ηmax

is chosen as 0.3ε for the harmonic link potential, consistent
with Fig. 1. Also note that the full asymptotic approach for
the harmonic link potential is not shown, as the error is
many orders of magnitude smaller due to it being correct
to within transcendentally small terms (see Appendix A).
Figure 5 shows in general that error trends can be somewhat
unpredictable at first, but they become quite predictable (in
terms of slope) as κ becomes large. The unpredictability at
lower values of κ can be attributed, at least partially, to the
inaccuracy of the quadrature approach in the same regime.
Other approaches for γ0(η) will have the same issue since
any approach for breakable links is generally invalid in this
regime. This is most apparent when comparing the harmonic
and Lennard-Jones potentials: the quadrature approach is ex-
act for the inescapable harmonic potential, so e(κ ) in log-log
is a predictable line. Conversely, the quadrature approach only
becomes accurate for the Lennard-Jones potential for very
large κ needed to ensure that ε = κ/72 is also sufficiently
large, so e(κ ) only becomes predictable above κ = 1000. For
sufficiently large κ , Fig. 5 shows that the relative errors in the
full and reduced asymptotic approaches have log-log slopes
of −2 and −1, respectively. These slopes seem to confirm
that the full [Eq. (24)] and reduced [Eq. (25)] asymptotic
approaches are correct within terms that are ord(κ−2) and
ord(κ−1), respectively, for sufficiently steep potentials.

IV. CONCLUSION

An asymptotically correct statistical thermodynamic the-
ory has been applied to develop analytic approximations
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for the single-chain mechanical response of freely jointed
chains with extensible links, i.e., the uFJC model. The full
asymptotic relation contains both entropic and enthalpic con-
tributions as well as the coupling between them; when this
coupling is neglected, the reduced asymptotic relation is
obtained. These asymptotic relations are valid as the link
potential energy functions become steep, meaning both the
potential energy scale as well as the stiffness become large
compared with thermal energy. For escapable potentials, this
steepness is also understood as the potential well being both
deep and narrow. These asymptotic approaches were verified
by comparing with the exact, analytic approach in the case
of harmonic link potentials, using both parametric study and
mathematical analysis. Parametric studies were performed for
the log-squared, Morse, and Lennard-Jones potentials, where
exact results were unavailable and a quadrature approach was
used. In each case, the asymptotic approaches became increas-
ingly accurate as the potentials became steep. It was observed
that the quadrature method suffers from an artificial strain-
stiffening pathology for escapable potentials before the steep
limit is met, which encourages use of the more robust asymp-
totic approaches. The success of this asymptotic approach
as demonstrated here, using the freely jointed chain model
as a reference system, indicates probable success for general
molecular stretching models. While even reference systems
are often analytically intractable, this asymptotic approach
can still be applied on an approximation for the reference
system to obtain one for the full system.
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APPENDIX A: THE HARMONIC LINK POTENTIAL

Here the exact isotensional partition function is obtained
in the case of a harmonic link potential, i.e., in the case of the
EFJC model. This exact result is then rewritten in terms of the
asymptotic relation for the isotensional partition function ob-
tained in the manuscript. The ratio of the exact and asymptotic
result is shown to be equal to unity plus terms that tend to be
transcendentally small, which explains the strong accuracy of
the asymptotic theory for harmonic potentials.

The isotensional partition function in Eq. (2) can be in-
tegrated exactly for the harmonic link potential in Eq. (26).

Using a symbolic toolbox, such as MATHEMATICA [57], this
exact result can be obtained:

z(η) = π�3
b

√
2π

κ

eη2/2κ

η

{
eη

(
η

κ
+ 1

)[
1 + erf

(
η + κ√

2κ

)]

+ e−η

(
η

κ
− 1

)[
1 − erf

(
η − κ√

2κ

)]}
. (A1)

Equation (A1) can be utilized effectively [8,42], but it is often
considered practically undesirable due to the presence of the
error function [7,22]. To simplify, Eq. (A1) can be rewritten
in terms of the asymptotic approximation in Eq. (14). After
defining g(η) as

g(η) ≡ y+(η) − y−(η)

4 sinh(η)[1 + (η/κ ) coth(η)]
− 1

2
, (A2)

where either function y±(η) is defined as

y±(η) ≡ e±η

(
η

κ
± 1

)
erf

(
η ± κ√

2κ

)
, (A3)

the exact result for z(η) can be written in terms of za(η), given
by Eq. (14) with c = 1, as

z(η) = za(η)[1 + g(η)], (A4)

so that g(η) is the correction to the asymptotic result. Recall
that ε = κ for the EFJC model, so κ � 1 is considered alone.
For κ � 1 and small to intermediate forces η � κ , the error
functions have the asymptotic relation due to their large argu-
ments [58]

erf

(
η ± κ√

2κ

)
∼ erf

(
±

√
κ

2

)
∼ ±1 ∓

√
2

πκ
e−κ/2, (A5)

which, after simplifying, means that g(η) is transcendentally
small (exponentially small) for η � κ and κ � 1:

g(η) ∼ − e−κ/2

√
2πκ

for κ � 1 and η � κ. (A6)

For large forces η = ord(κ ), y+(η) is transcendentally small
due to the large argument of the error function (similar
to the above), and y−(η) is transcendentally small due to
e−η = e− ord(κ ). Further, 1/ sinh(η) ∼ e− ord(κ ) is also tran-
scendentally small in this case. Therefore, g(η) tends to be
transcendentally small for all values of η when κ � 1, show-
ing why the asymptotic theory performs so well in the case of
harmonic potentials, even when only moderately stiff.

APPENDIX B: APPROXIMATE ISOMETRIC ENSEMBLE

Here the reduced asymptotic relation for the nondimen-
sional Helmholtz free energy per link is obtained for the uFJC
model, which is an isometric ensemble quantity. This relation
makes use of the reduced asymptotic relation for the isoten-
sional single-chain mechanical response from the manuscript,
as well as the Legendre transformation, and it is then valid
when κ � 1, ε � 1, and Nb � 1 are all simultaneously true.
This result is used to obtain asymptotic relations for the
equilibrium probability density distributions and reaction rate
coefficient function in the isometric ensemble.

The Helmholtz free energy is given by ψ (γ ) =
−(1/β ) ln q(γ ), where q(γ ) is the partition function in the
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isometric ensemble [6]. The nondimensional Helmholtz free
energy per link, ϑ (γ ) = βψ (γ )/Nb, is desired. The Legendre
transformation method, asymptotically valid for sufficiently
long chains [6,8,52] and appreciable loads [59,60], allows one
to write [5]

ϑ (γ ) ∼ γ η(γ ) −
∫

γ (η) dη. (B1)

Substitute in the reduced asymptotic approximation for γ (η)
in Eq. (25). The entropic term (the Langevin function) pro-
duces the Helmholtz free energy for the FJC model [5]. The
enthalpic term (link stretching), after integrating by parts,
produces the link potential energy. The result is then

ϑ (γ ) ∼ ln

{
η(γ ) exp{η(γ )L[η(γ )]}

sinh[η(γ )]

}
+ εφ{λ[η(γ )]}.

(B2)
Note that this decoupling of the entropic and enthalpic contri-
butions to the Helmholtz free energy is a product of combining
both the asymptotic approach and the Legendre transforma-
tion method, and additionally, the decoupling itself is not a
Legendre transformation. The nondimensional potential en-
ergy εφ = βu is a function of the link stretch λ, which is
a function of the nondimensional force η that would result
from the chain being extended to a nondimensional end-to-
end length of γ . Recall that this η is calculated as a function
of γ from inverting the isotensional γ (η) in Eq. (25). In
what follows, η will be written with the understanding that
η = η(γ ), i.e., Eq. (B2) would be

ϑ (γ ) ∼ ln

{
η exp[ηL(η)]

sinh(η)

}
+ εφ[λ(η)]. (B3)

This same relation was obtained by Buche and Silberstein [5],
but now it has been arrived at more rigorously. Equation (B3)
has several notable features: first, it has been obtained in
methodical fashion beginning from the basic principles of
statistical thermodynamics; second, it is assuredly asymptot-
ically valid in the limit of numerable and stiff links; third, it
separates the entropic contribution to the free energy from the
potential energy, facilitating a polymer network constitutive
model to allow the potential energy to govern chain rupture
[25].

Using the asymptotic relation for ϑ (γ ) in Eq. (B3), an
asymptotic relation for Peq(γ ) ∝ e−Nbϑ , the probability den-
sity distribution of end-to-end lengths at equilibrium, can
be written [5,6]. Since the probability density at equilibrium
where stiff links are stretched will be quite small, potential en-
ergy terms can typically be neglected [6,31]. One then obtains
the asymptotic relation

Peq(γ )∝∼

{
sinh(η)

η exp[ηL(η)]

}Nb

, (B4)

where η = η(γ ) is still evaluated using γ (η) in Eq. (25).
The corresponding radial distribution function is geq(γ ) =
4πγ 2Peq(γ ). If transition state theory is utilized to describe
the rate of breaking one of the Nb links in the chain, and
entropic effects are neglected compared to dominating en-
thalpic effects [5], an asymptotic relation for the reaction rate

0 0.2 0.4 0.6 0.8 1
0
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10

γ(η)/ς

η
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ς = 3
ς = 5
ς = 10
FJC

FIG. 6. The nondimensional single-chain mechanical response
γ (η) scaled by ς for the SWFJC model. For ς → 1, the SWFJC
model is equivalent to the FJC model.

coefficient function is obtained,

k(γ ) ∼ Nbk0eεφ[λ(η)], (B5)

where k0 is the initial rate of breaking for a single link.

APPENDIX C: THE SQUARE-WELL POTENTIAL

Here the exact isotensional partition function and single-
chain mechanical response is obtained in the case of a
square-well link potential. The scaled nondimensional po-
tential energy function φ(s) = βu(�bs)/ε for the square-well
potential is given by

φ(s) =
⎧⎨
⎩

∞, s < 1,

0, 1 � s < ς,

1, s � ς,

(C1)

where (ς − 1)�b is the well width, ς � 1, and ε is the nondi-
mensional well depth. Consistent with the manuscript, the
links are assumed not to break, which in this case bounds the
integral in Eq. (2) to s ∈ [1, ς ]. This can be computed exactly,

z(η) = 4π�3
b

∫ ς

1

sinh(sη)

sη
s2 ds, (C2)

= 4π�3
b

η3
[w(η, ς ) − w(η, 1)], (C3)

where w(η, ς ) ≡ ςη cosh(ςη) − sinh(ςη). As the width
of the well shrinks (h ≡ ς − 1 → 0), the square-well-FJC
(SWFJC) model should become the FJC model. This can be
directly verified by scaling Eq. (C3) by the scale of the lost
degree of freedom h ≡ ς − 1 and taking the limit h → 0,
which yields Eq. (4) with s = 1. The isotensional single-chain
mechanical response γ (η) = ∂ ln z(η)/∂η of the SW-FJC, us-
ing Eq. (C3), is exactly given by

γ (η) = ς2η sinh(ςη) − η sinh(η)

w(η, ς ) − w(η, 1)
− 3

η
. (C4)

This result is plotted in Fig. 6 parametrized over ς . Ap-
plying the same limit ς → 1 here results in γ (η) = L(η),
i.e., the FJC model, as expected. Note that the single-chain

024502-8



FREELY JOINTED CHAIN MODELS WITH EXTENSIBLE … PHYSICAL REVIEW E 106, 024502 (2022)

mechanical response in Eq. (C4) is independent of the well
depth ε. Additionally, note that there is no unique reference
system since φ(s) in Eq. (C1) is minimized for a continuous
distribution of arguments, which is because the square-well
potential is flat and therefore has no stiffness. For these rea-
sons, the asymptotic approach developed in the manuscript

cannot be applied to the square-well potential, or simi-
lar potentials. This example helps illustrate the necessity
of examining both the depth and the stiffness of a given
link potential when determining whether the potential can
be considered steep and the asymptotic approach can be
applied.
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