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Charge transfer mechanisms in DNA at finite temperatures:
From quasiballistic to anomalous subdiffusive charge transfer
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We address various regimes of charge transfer in DNA within the framework of the Peyrard-Bishop-Holstein
model and analyze them from the standpoint of the characteristic size and timescales of the electronic and
vibrational subsystems. It is demonstrated that a polaron is an unstable configuration within a broad range
of temperatures and therefore polaronic contribution to the charge transport is irrelevant. We put forward an
alternative fluctuation-governed charge transfer mechanism and show that the charge transfer can be quasi-
ballistic at low temperatures, diffusive or mixed at intermediate temperatures, and subdiffusive close to the
DNA denaturation transition point. Dynamic fluctuations in the vibrational subsystem is the key ingredient of
our proposed mechanism which allows for explanation of all charge transfer regimes at finite temperatures. In
particular, we demonstrate that in the most relevant regime of high temperatures (above the aqueous environment
freezing point), the electron dynamics is completely governed by relatively slow fluctuations of the mechanical
subsystem. We argue also that our proposed analysis methods and mechanisms can be relevant for the charge
transfer in other organic systems, such as conjugated polymers, molecular aggregates, α-helices, etc.
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I. INTRODUCTION

After the discovery of the DNA structure [1], its properties
have been an object of an intensive interdisciplinary research.
The interest in the DNA electronic properties increased con-
siderably after it was put forward as a possible building block
for the molecular electronics (see, for example, reviews [2,3]
and references therein). Consecutive aromatic rings compris-
ing the DNA double helix are coupled due to the overlap of
their π orbitals, which determines different important elec-
tronic properties of the molecule [4]. The original conjecture
was that these coupled states could provide a channel for
the electric current, converting the DNA in a conducting
nanowire, which was very promising for various applications.
The DNA electrical properties have been measured experi-
mentally revealing contradictory results, including insulating
[5,6], semiconducting [7–10], and metallic [11–14] behavior.
It was understood later that these differences were probably
related to different experimental conditions, such as sample
and contact types, measurement techniques, the DNA envi-
ronment, etc. The investigation of the DNA involved studies
of its optical [15–18], electronic [6,9,11,12,14,19–23], charge
transport and transfer [4,5,7,8,10,13,24–59], and mechanical
properties [60–63]. As far as the latter are concerned, one of
the key mechanical phenomenon in the DNA is its denatu-
ration, i.e., complete separation of the DNA strands, which
was known to have a threshold-like character. That problem
was successfully addressed theoretically in 1989 by Peyrard
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and Bishop (PB) who proposed a model describing the de-
naturation as a phase transition in this quasi-one-dimensional
(1D) system [60,61]. We note that the PB model is a partic-
ular case of a more general 1D model of a multicomponent
nonlinear classical field. The latter was put forward in 1964
by Suris [64,65] who studied and analyzed its thermodynamic
properties in detail, including the specific heat and correla-
tion functions, and predicted that such a model can exhibit
a phase transition. In the particular case of the PB model,
the nonlinearity is introduced through the on-site Morse po-
tential which accounts for the elastic energy related to the
inter-strand hydrogen bond stretchings. In this case, the phase
transition manifests itself in the divergence of these stretch-
ings at the critical temperature, resulting in the denaturation
phenomenon. The PB model has been widely used since then
because of its success in the description of such an important
biological process. Later, the model was extended by adding
an electronic subsystem and considering a coupling of the
lattice and electronic degrees of freedom [31,43,61], which al-
lowed for taking into account the possible impact of phonons
on the charge transfer processes.

Both purely ballistic transport [3,26] and the phonon-
assisted transport and charge transfer [23,25,27–40] have
been investigated thoroughly. In the latter case there are two
opposite limits: Those of weak and strong electron-phonon
interaction. In the former case the transfer is determined by
the electron hopping assisted by phonons, thus, a disordered
chain insulating at zero temperature can become conducting
at nonzero temperature because of the thermal activation of
the hopping mechanism (see, for example, Ref. [36] and
references therein). However, a strong electron-phonon cou-
pling can result in the formation of polarons which could
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determine the charge transfer [30–32,37,41,42]. A polaron,
being an electron dressed by virtual phonons, has a larger
effective mass than a bare electron [66,67], which is detri-
mental for the charge mobility. Although lower mobility is
unfavorable for transport efficiency, electron-phonon inter-
action should be taken into account, provided it is relevant
for the studied system properties. At zero temperature, a po-
laronic solution constitutes the ground state of the system.
However, the contribution of the polaronic configuration to the
partition function decreases at finite temperature, and it has
been an essentially unexplored question, whether the set of
configurations close to such a state is statistically meaningful.
In this paper, we address this question, studying the polaron
dynamics and its lifetime within a broad range of tempera-
tures. We show that at nonzero temperatures the polaronic
configurations are unstable and propose and analyze an alter-
native fluctuation-governed charge transfer mechanism which
enables us to describe the charge transfer dynamics in all
regimes at finite temperatures.

The paper is organized as follows. In the next two sections,
we introduce the Peyrard-Bishop-Holstein (PBH) model
which addresses a coupled electronic and DNA “lattice”
dynamics and calculate its minimum energy configurations
at T = 0. In the following sections, we address the system
dynamics at non zero temperatures, both below and above
the environment freezing point and consider two very
different initial conditions. In Sec. IV, we use the traditional
and somewhat artificial initial condition: The system in its
polaronic state at zero temperature is subjected to the action of
a heat bath, i.e., we address polaron dynamics during the chain
thermalization (heating up) and analyze the polaron lifetime.
In Sec. V, a more realistic initial condition is considered:
An electron is injected in a thermalized DNA chain and the
coupled system dynamics is studied. In the latter case, we
discuss different nonpolaronic charge transfer mechanisms
and regimes, in particular, quasiballistic, diffusive, mixed,
and anomalous subdiffusive ones. Conclusions summarize
the paper.

II. MODEL AND FORMALISM

In this section, we present the minimal set of equations of
motion describing the dynamics of a system of N base pairs
in the framework of the PBH semiclassical model: The elec-
tronic part is treated quantum-mechanically, while the lattice
dynamics is treated classically using the Langevin approach
(see Refs. [27,43,61] for more details). We use the follow-
ing equation of motion of the n-th base-pair hydrogen bond
stretching yn (which describes the relative motion of the two
base molecules of the pair):

μ
d2yn

dt2
= −d V (yn)

dyn
− d W (yn, yn−1)

dyn
− d W (yn+1, yn)

dyn

−μγ
d yn

dt
− χ |ψn|2 + fn(t ) , n = 1, 2, . . . N, (1)

where

V (y) = V0(1 − e−αy)2 (2)

is the on-site Morse potential and

W (y, y′) = K (y − y′)2

2
[1 + ρ e−β(y+y′ )] (3)

is the nearest-neighbor interaction potential which couples
consecutive DNA base pairs. The real-space coordinate of the
nth base pair is na0, with a0 ≈ 3.4 Å being the chain “lattice”
constant. In Eqs. (1)–(3), μ is the reduced mass of a base
pairs (as in the bulk of the literature, we consider a homo-
geneous sequence of base pairs with the same reduced mass;
we comment on possible impacts of the sequence inhomo-
geneity in Sec. V), γ is the friction constant, χ is the on-site
electron-phonon coupling strength, while V0, α, K , ρ, and
β are parameters characterizing the elastic potential energy.
These parameters can be obtained through the comparison to
the first-principle calculations [60,61,68] or experimental data
[69,70].

Finally, the force fn(t ) describes random action of the
environment (thermal bath); it has the following statistical
properties:

〈 fn(t )〉 = 0,

〈 fn(t ) fn′ (t ′)〉 = 2γ μ kBT0δn n′δ(t − t ′), (4)

where kB is the Boltzmann constant and T0 is the environ-
ment temperature. Such an approach is a microscopic model
characterizing an aqueous (water-type) environment in terms
of the collisions between the system and the “fast” reservoir
molecules [27,71].

The original PB model [60] of the DNA “lattice” dynam-
ics corresponds to Eq. (1) without the term χ |ψn|2 which
accounts for the coupling to the electronic subsystem. The
dynamics of the latter (within the framework of the Hol-
stein approximation) can be described by the the following
Schrödinger equation:

i h̄
∂ ψn

∂ t
= −J (ψn−1 + ψn+1) + Un ψn, (5)

where ψn is the charge carrier wave function at the nth site,
J is the nearest neighbor electron coupling, and the last term
with

Un = χ yn (6)

accounts for the interaction with the DNA “lattice,” where χ

is the electron-phonon coupling constant.
As we demonstrate below, from the point of view of the

relatively fast electronic subsystem, the interaction potential
Un is a random slowly varying on-site potential energy of the
charge. However, relatively slow base pairs experience the
electron-phonon coupling as an action of an external force
which is proportional to the local electronic density [see the
term χ |ψn|2 in Eq. (1)].

Some care should be taken while treating the interaction
terms in Eqs. (1) and (5) because they correspond to the first-
order expansion of the electronic energy with respect to the
deformation of the π orbital due to the hydrogen bond elon-
gation yn. For large deviations from the equilibrium position
such an approximation can fail. However, the Morse potential
makes large negative values of yn very unlikely, while large
positive values of yn, corresponding to broken bonds, give
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FIG. 1. Electronic wave function calculated for T = 0, N = 500,
and different values of the coupling constant χ specified in the plot.
The inset shows the dependence of the participation number on the
coupling constant χ : Dots give the numerical result while the solid
line is the best fit to the numerical data, given by the function 2.04 +
1.99 χ−1.96.

rise to large potential barriers for the electron. Broken bonds
are known to suppress the electronic transfer just like high
potential barriers do, resulting in a qualitatively correct impact
of large positive displacements on the charge transfer.

Computing the system dynamics requires specialized ap-
proach because of the presence of the stochastic term in the
lattice equation of motion. In such a case, generic numerical
calculation methods can become inaccurate while specialized
algorithms of numerical integration of the stochastic differen-
tial equations [72,73] tend to give much more reliable results.
Therefore, we used the 3o4s2g algorithm: The third order
Runge-Kutta method with four substeps and two random
Gaussian number generated in each integration step.

III. POLARONIC SOLUTION AT T = 0

Hereafter, we use the following set of parameters
(unless stated otherwise): μ = 300 amu, V0 = 0.04 eV, α =
4.45 Å−1, K = 0.04 eV/Å2, ρ = 0.5, β = 0.35 Å−1, γ =
0.005 ps−1, χ = 0.6 eV/Å, J = 0.1 eV, which are typical val-
ues used in literature [31,43,61]. We restrict ourselves to the
case of the homogeneous base sequence, which is the most
favorable for the long-range charge transfer and transport
and has been studied extensively (see, e.g., Refs. [26,59] and
references therein). We comment on the possible impact of the
differences in base pairs parameters in the Sec. V F.

The minimum energy configuration at zero temperature
can be obtained by either iteration procedures [20,28] or by
integrating Eq. (1) with an initial wave function ψn(0) and dis-
placements yn(0), which are similar in shape to the expected
minimum configurations. Then, the drag term in Eq. (1) de-
creases the total energy of the system which finally relaxes to
its ground state. In this study we used the latter method; the
result is presented in Fig. 1 which shows the electronic wave
function of the polaronic ground state for different values of
the coupling constant χ .

To analyze the spacial extent of the electronic state quan-
titatively, we use the participation number (PN) of the state

defined as

P(t ) =
[

N∑
n=1

ψ4
n (t )

]−1

. (7)

The physical interpretation of the PN is as follows. If the
wave function is localized at N� sites (let N� = const � N),
then its typical value at a site within it’s localization volume is
on the order of 1/

√
N� and the PN is on the order of N�. So, it

will remain finite in the thermodynamic limit N → ∞. How-
ever, if the wave function is extended over the whole system,
then the PN is on the order of the system size N diverging
in the thermodynamic limit. Thus, the PN characterizes the
spacial extent of the corresponding state and it is a very
convenient quantity to study localization and delocalization
properties and phenomena. Speaking more strictly, the PN
gives the number of sites which provide the main contribution
into the normalization of the wave function, i.e., the number of
sites where the wave function has appreciable amplitude. The
latter is very important for the electron-phonon interaction too
because the coupling term in the lattice equation of motion
(1) is proportional to the local electronic density |ψn|2, so
the coupling is significant only at the sites where the wave
function has appreciable amplitude. In particular, significant
negative displacements yn (characteristic for a polaronic con-
figuration) can only exist at such sites and therefore the PN
can characterize also the size of a polaron if the latter exists.
If the extent of the wave function increases, then the electron-
phonon coupling is reduced [74], which can manifest itself in
the breakup of the polaron, as we show below.

The dependence of the polaronic ground state PN on
the coupling constant χ is shown in the inset of Fig. 1.
As expected, the size of the polaron reduces as the cou-
pling increases. Simple analytical estimates of the polaron
characteristic parameters can be obtained by the variational
calculation, using Gaussians for both the polaronic deforma-
tion yn and the charge wave function ψn in the continuous
limit:

y(x) = −dp exp

(
− x2

a2
p

)
,

ψ (x) = 1

π1/4a1/2
p

exp

(
− x2

2a2
p

)
, (8)

where x is the continuous coordinate along the chain. In this
case the optimized polaronic deformation amplitude dp, the
polaron energy Ep, and its “size” ap are as follows:

dp = χ3

8
√

2π J V 2
0 α4

,

Ep = χ4

64π J V 2
0 α4

, (9)

ap = 4
√

2πJ V0 α2

χ2
,

while the corresponding polaronic wave-function participa-
tion number P0 is

P0 =
√

2πap = 8π J V0 α2

χ2
. (10)
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FIG. 2. Time dependence of the averaged temperature T of the
chain calculated for different bath temperatures T0 indicated in the
plot (the chain was initially at rest: yn(0) = ẏn = 0). Straight dashed
black lines are best fits to the data for t � 10 ps. The dependence of
the slope a of these lines on the bath temperature T0 is shown in the
inset.

For the used set of parameters the above estimate of the PN
evaluates to P0 ≈ 1.99 χ−2 which is in very good agreement
with the numerical result 2.04 + 1.99 χ−1.96 (see the inset
of Fig. 1). The discrepancy at large values of the coupling
constant χ is expectable: As the interaction increases, the
polaron size shrinks down to few lattice constants and the
continuous approximation becomes inadequate.

Equations (9) give the following estimates of the polaronic
deformation amplitude, polaron energy, and its PN:

dp ≈ 0.1 Å, Ep ≈ 10 meV, P0 ≈ 5.5 a0, (11)

which are also in very good agreement with the values ob-
tained numerically. Based on the value of the polaron energy
Ep, one might assume that the polaron can exist up to temper-
atures on the order of Ep/kB ∼ 100 K, which does not prove
to be the case as we show below.

IV. POLARON DYNAMICS DURING THE CHAIN
THERMALIZATION

In this section, we study the polaron dynamics during
the chain thermalization. First, to obtain the characteristic
timescale of the chain thermalization process itself, we ad-
dress the dynamics of the DNA “lattice” uncoupled from the
electronic subsystem (which corresponds to the original PB
model). Hereafter, the chain length N = 100 is used unless
otherwise stated.

We found that the thermalization process is described by a
simple exponential law for the current chain temperature T as
a function of time:

T (t ) = T0(1 − e−t/τ0 ), (12)

where τ0 gives the timescale of the heating process. The above
dependence can be verified numerically. Figure 2 shows the
time dependencies of the configuration-averaged chain tem-
perature T for different bath temperatures T0. The temperature
of the chain is estimated using the virial theorem, which
relates the kinetic energy of the system with its temperature,

Ekin = N kBT/2. By fitting the formula

T (t ) ≈ t

τ 0
T0, t 
 τ0, (13)

to the initial linear part of the curves in Fig. 2, one obtains the
slope a = T0/τ0 and therefore the characteristic heating time
τ0 ≈ 204 ps. The inset of the figure shows the expected linear
dependence of the slope on the bath temperature.

The parameter τ0 can be estimated analytically by consid-
ering the energy transferred to the forced oscillator system.
During the initial phase of heating the damping is negligible
(t 
 1/γ ) and the typical displacement is small, so that the
interaction potential (3) can be neglected too, then a harmonic
oscillator model of the Morse potential (2) is applicable. In
such a simplified case the transferred energy at the time t to
the forced oscillator is given by [75]

ET = 1

2M

∣∣∣∣∣
∫ t

−∞

N∑
n

fn(t ′) ei ω t ′
dt ′

∣∣∣∣∣
2

, (14)

where M = N μ is the total reduced mass and ω is the
frequency of the harmonic oscillator. Using the statistical
properties of the random force f (t ), given by Eq. (4), one can
calculate the transferred energy as

ET = NkBT0 γ t .

Otherwise, the energy of an oscillator system can be obtained
as twice the kinetic energy: 2Ekin = NkBT (t ) = NkBT0 t/τ0.
Equating the two results gives the estimate of the parameter
τ0 as

τ0 = 1

γ
= 200 ps,

which is in a very good agreement with the result obtained
numerically from the dependencies shown in the Fig. 2: τ0 ≈
204 ps.

Second, we consider the complete system dynamics using
the polaronic solution at zero temperature localized at the
center of the chain (obtained as described in the previous
section) as the initial condition. We assume also that at t � 0
the system is subjected to the action of the heat bath with the
temperature T0. Although the physical relevance of this initial
condition could be questioned, it has been widely used in the
literature (see Refs. [20,27,49,50] and reference therein) and
it guarantees the existence of a polaron in the system at the
initial moment of time. If the polaronic solution is relevant
(stable), then one would expect it to survive the complete ther-
malization process, until the system reaches the temperature
of the bath.

Our calculations show that the polaron falls apart dur-
ing the thermalization; to account for that we introduce the
polaron lifetime, defining it as the polaron breakup or delo-
calization time τd . Below we study this quantity as a function
of the bath temperature T0 and address also the temperature of
the DNA chain at t = τd , i.e., at the moment of the polaron
breakup.

Figure 3 demonstrates an example of the system dynamics
for T0 = 80 K. The upper and middle panels show the spa-
tiotemporal maps of bond stretchings yn and the probability
density |ψn|2, respectively. The system starts from a polaronic
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FIG. 3. Maps of the spatiotemporal evolution of the hydrogen
bond stretchings yn (upper panel) and the probability density |ψn|2
(middle panel). The polaron was initially located at the center of
the chain, at t = 0 the system was coupled to a heat bath with
the temperature T0 = 80 K. Lower panel shows the time dependent
participation number P(t ) (solid blue line) and its smoothed version
P (t ) (dashed black line). Solid red and horizontal gray lines are used
to calculate the polaron breakup time τd (see text for details); the
latter is marked by the vertical gray line.

state which is characterized by the highly localized negative
stretching and wave function. Within the initial part of the
trajectory (in the time range t � 40 ps), there is a clear corre-
spondence of the high electronic density and negative lattice
distortion, which is a fingerprint of a polaron. As the system
is heated up, the amplitude of the random oscillations grows
and when it becomes comparable to the polaronic deformation
amplitude dp the polaron becomes unstable. As can be seen
from the figure, at t ≈ 40 ps the polaron finally breaks up:
The wave function delocalizes and spreads over the whole
chain. The lower plot clearly shows the transition between
two regimes of the PN dynamics: The polaronic solution has
PN ≈ 7 for t � 40 ps, while the final delocalized state has
PN � N/2 = 50.

To estimate the polaron lifetime or the delocalization time
τd we use several auxiliary quantities proceeding as follows.
First, we calculate the integrated participation number:

I(t ) =
∫ t

0
P(t ′) dt ′, (15)

which is interpolated using a sparse mesh of points giving a
smooth function of time Iint(t ), whose derivative P (t ) = İint(t )
is a smoothed version of the function P(t ). Black dashed line
in the lower panel of Fig. 3 shows the smooth function P (t ).
We define the polaron delocalization time τd by the following
equation:

Ṗ (ti ) = P (ti) − P (0)

ti − τd
,

where ti is the inflection point of P (t ) in the transition region,
in which the participation number starts growing fast, i.e., ti
is the point where the first derivative Ṗ (t ) is maximum. Thus,
τd is determined by the intersection of the linear interpolation

FIG. 4. Time dependence of the ensemble averaged participation
number 〈P(t )〉 calculated for different bath temperatures indicated
in the plot. Results are obtained using the polaronic solution as the
initial condition.

of the P (t ) in the vicinity of the inflection point (see the solid
red line in the lower panel of Fig. 3) and the line giving the
initial polaron size P (0) (shown by the horizontal dark gray
line).

The time evolution of the ensemble averaged participation
number 〈P(t )〉 for different bath temperatures T0 is shown
in Fig. 4 (hereafter, 〈. . .〉 denote ensemble averaging; for
each temperature, 100 trajectories where used to calculate
the average). The figure suggests that the polaron lifetime
becomes shorter for higher temperatures, as can be expected:
As Fig. 2 and Eq. (12) show, the chain heats up faster at higher
bath temperatures and therefore the characteristic amplitude
of random oscillations grows faster resulting in faster breakup
of the polaron. Figure 5 shows the dependence of the polaron
lifetime on the bath temperature T0, which turns up to be a
power law one (see the inset demonstrating the best power
law fit to the data in double logarithmic scale).

Using the thermalization timescale τ0 and the obtained po-
laron lifetime power law dependence on the bath temperature
T0, it is straightforward to calculate the chain temperature
Td at t = τd , i.e., at the moment when the polaron breaks
up and the electron wave function starts extending over the

FIG. 5. Ensemble averaged polaron lifetime 〈τd〉 as a function
of the bath temperature T0. Dots represent numerical results while
solid lines give the best fit to the numerical data. It can be seen from
the inset that the data follows the power law (with the exponent of
approximately −0.8).
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FIG. 6. Ensemble averaged temperature of the chain 〈Td 〉 at the
polaron breakup time 〈τd 〉 as a function of the bath temperature
T0. Dots show numerical result while the solid line—the theoretical
estimation of T (τd ) obtained using Eq. (12) and the best fits from
Figs. 2 and 5.

whole chain. The result is shown in Fig. 6, where the points
represent the computed averaged chain temperature at t = τd

as a function of the bath temperature T0. The solid line shows
the theoretical estimation of Td = T (τd ) according to Eq. (12)
in which the best fit parameters from the previous calcula-
tions are used. The two results are in good agreement with
each other, which indicates that our considerations are self
consistent. Our findings suggest that the polaron breaks up for
not so low temperatures (T0 > 10 K). Moreover, it breaks up
long before the target chain thermalization temperature T0 is
reached because Td < T0 and τd < τ0 for all considered cases.
We conclude therefore that that the polaronic configuration
can hardly be expected to be a relevant state of the system
in the studied temperature range within the framework of the
PBH model. We comment in more detail detail on the low
temperature regime dynamics in Sec. V C.

Finally, we point out that in the current section we con-
sidered a very artificial scenario in which a polaron existed
initially. Nevertheless, we found that polarons are not stable
even under such favorable conditions. Below we address a
more realistic initial condition.

V. DYNAMICS OF AN ELECTRON IN A THERMALIZED
LATTICE

In this section we address the dynamics of a charge injected
in a thermalized chain which has the temperature of the heat
bath: T = T0. Such an initial condition can be realized when
an electron belonging to the DNA environment hops to one of
the nucleotides. If the polaronic solution is relevant and stable,
then one would expect that the system would evolve toward it.

To model this scenario we proceed as follows. We solve
the Langevin equation for the molecule chain mechanical
subsystem (decoupled from the electronic one) until it reaches
thermal equilibrium at the bath temperature T0. Then, at t = 0
an electron is created at the center of the chain (n = N/2)
in the form of the δ-function wave packet and the dynamics
of the full coupled system is studied (further we argue that

FIG. 7. Time dependence of the average participation number
〈P(t )〉 calculated for different thermalized chain temperatures T in-
dicated in the plot. These results were obtained using an electron
injected at n = 50 in the thermalized chain as the initial condition.
For every temperature, 100 trajectories where used to calculate the
average.

choosing a different initial site would have almost no effect
on final results). Below we address such dynamics for differ-
ent temperatures and demonstrate that there exist qualitative
different regimes of the charge density dynamics. To this end,
we study the time evolution of the the PN characterizing the
spacial extent of the wave function, as well as the typical sys-
tem trajectories to get insight into the underlying mechanisms
of the electronic density dynamics.

Figure 7 shows the time dependence of the ensemble av-
eraged participation number for different temperatures. The
figure shows no traces of the polaron formation for all
temperatures: The PN grows to its maximum value, which
corresponds to the charge density distributed almost homo-
geneously over the whole sample. As can be seen from the
figure, the wave function expands faster for lower tempera-
tures, which may seem counter intuitive. Indeed, this trend is
just the opposite compared to that observed in the previous
section where we showed that the polaron lifetime (delocal-
ization time) is larger for lower temperatures.

To explain the increase of the wave-function expansion
time with temperature we note that, because of the structure of
the interaction term (6), lattice vibrations result in a random
time-dependent potential for the charge. The amplitude of
this on-site potential can be characterized by the temperature
dependent typical value of the stretching yn which increases
with the temperature making the system more “disordered,”
which slows down the charge dynamics.

All the above arguments are based on the dynamics of
the PN which is an integrated characteristics of the system.
Therefore, such considerations can and actually do overlook
important details of the charge density dynamics. To get an in-
sight into the latter, we proceed by studying particular typical
trajectories for different temperatures, to pinpoint important
characteristic features of the system dynamics in different
regimes manifesting themselves at different temperatures.

A. Low temperatures: Quasiballistic propagation

First, we address the case of very low temperatures.
Figure 8 shows results of the calculation of one particu-
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FIG. 8. Maps of the spatiotemporal evolution of the hydrogen
bond stretchings yn (upper panel) and the probability density |ψn|2
(middle panel). The lower panel shows the time dependence of the
participation number P(t ). The vertical green dotted line gives the
time of flight (see text for details). All results are calculated for
the case when an electron is injected into the chain thermalized at
T = 4 K.

lar trajectory for T = 4K. Upper and middle panels show
the spatiotemporal maps of the bond stretchings yn and
the probability density |ψn|2, respectively. The upper panel
demonstrates that the typical bond stretching is very small: On
the order of 0.05 Å 
 1/α. In this case, the Morse potential
can be approximated by the parabolic one:

V (yn) � V0 α2y2
n, (16)

which has the period of oscillation 2π
√

μ/2V0α2 ≈ 0.88 ps.
Patterns with such a period are clearly observed in the upper
panel of the figure. Note also the evident absence of the
influence of the electronic density on the lattice dynamics:
It is qualitatively the same during the initial phase when the
electron is more localized and during the following phase
when the electronic density is extended over the whole chain.
Besides, the whole displacement pattern is very homogeneous
showing no outstanding features (below we will contrast this
very uniform pattern to those characterized by large fluctua-
tions at higher temperatures).

The middle panel of Fig. 8 shows typical features of
the ballistic propagation for t < 0.5 ps: The straight tracks
crossing the whole sample. The existence of such a pattern
can be explained as follows. Using the dispersion relation for
a one-dimensional ideal chain, we can calculate the group
velocity:

vg(k) = 2 a0 J

h̄
sin

(
π k

N + 1

)
, k = 1, 2, . . . N, (17)

where k is the state number. The initial δ-function wave
packet projects almost uniformly over the eigenstates with
odd values of k. The fastest modes belong to the center of
the energy band (those having k ≈ N/2); they have the group
velocity vg = 2aJ/h̄ of about 300 a/ps, and therefore travel
over a half of the chain in about 0.17 ps (the vertical green line
in Fig. 8 gives this timescale). Note that the latter time of flight

is about six times smaller than the characteristic oscillation
period of 0.88 ps, so for these states the electron-phonon
coupling reduces to interaction with a virtually static disorder.
These faster states are less affected by disorder than slower
edge states (those with k ∼ 1 or k ≈ N) because of the motion
averaging effect: The faster a state is propagating the better it
is averaging the disorder, making the latter effectively weaker.
The lower panel of Fig. 8 shows the dynamics of the PN which
is also growing very fast, reducing the typical wave-function
amplitude and consequently the electron-phonon coupling
even further [74]. Therefore, the part of the wave packet cor-
responding to the faster band-center states travels ballistically
during the first phase of the propagation. When it reaches the
hard boundary of the chain it gets reflected and travels back-
wards, which can clearly be seen in the Fig. 8. The ballistic
propagation manifests itself also in the characteristic interfer-
ence fringes of the PN (see the lower panel of the figure at
t < 0.5 ps).

Note that even in the current case of very low temperatures,
when the oscillation period is the shortest possible (about
0.88 ps), all characteristic lattice timescales are much larger
than those of the electronic subsystem: The average group
velocity v̄g is on the order of 200 a0/ps, so the corresponding
timescale is a0/v̄g ∼ 0.005 ps. Thus, the lattice is unable to
adapt itself to fast changes of the electronic density and, for
example, a polaron can not form. Besides, amplitudes of the
lattice vibration are small and very homogeneous, so they
do not provide high potential barriers for the charge carrier,
which could scatter it back efficiently as in the case of higher
temperatures (see below).

To further analyze charge transfer mechanism, we calculate
also the time evolution of the wave packet width, i.e., the stan-
dard deviation of the electronic density for a given trajectory,
defined as follows:

s(t ) =
∑

n

(n − x(t ))2 |�n(t )|2, (18)

where x(t ) is the wave packet centroid position:

x(t ) =
∑

n

n |�n(t )|2. (19)

Figure 9 shows the time dependence of the ensemble av-
eraged packet width σ (t ) = 〈s(t )〉 calculated for a chain of
N = 1000 sites at T = 4 K. The packet width saturates at long
times when the packet expands over the whole chain—this
is just a finite size effect. The best power law fit for short
times, given by the red line in the figure, has the exponent
very close to unity. Thus, we conclude that at very low tem-
peratures a substantial part of the charge wave packet can
expand ballistically over distances on the order of a hun-
dred lattice constants. Similar results were reported recently
in Ref. [51], where ballistic propagation of Frenkel exci-
tons in molecular aggregate systems at low temperatures was
discussed.

B. Intermediate temperatures: Diffusive regime

Next, we consider the system dynamics in the regime of
low to intermediate temperatures. Results of our calculation
of one particular system trajectory are presented in Fig. 10
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FIG. 9. The time dependence of the ensemble averaged standard
deviation of the electronic density (packet width) calculated for a
chain of N = 1000 sites and T = 4 K. Solid red line gives the best
power law fit to the data within the region t < 0.3 ps. The best fit
function is shown next to the line.

which has the same layout as Fig. 8. As in the previous case,
the upper plot of the bond stretchings shows clear traces of
oscillatory motion but the typical value of the stretching is
about 0.2 Å now. In this case, the Morse potential is not
quadratic anymore and the characteristic period is somewhat
larger than that of the harmonic potential approximation used
above. More importantly, the yn pattern is not as homogeneous
as before: there are clearly visible long-living stronger fluctu-
ations of the whole chunks of the chain (see the stripes with
light yellow parts marking large positive stretchings of chunks
of adjacent molecules). For example, see the strong oscillatory
fluctuations about n ≈ 35 and n ≈ 55: Their periods are larger
than that of the harmonic oscillation (we mark the harmonic
half period of 0.44 ps by the vertical green line in the figure for
the reference). When such an oscillating chunk of the lattice
is stretched it represents a sufficiently high potential barrier
for an electron due to the interaction term Eq. (6). Note how
the expanding wave packet is reflected back by these potential

FIG. 10. Same as in Fig. 8 but for T = 80K and the vertical green
line gives the harmonic oscillation half period of 0.44 ps (see text for
detail).

FIG. 11. Same as in Fig. 9 but for T = 80 K. Solid red line gives
the best power law fit to the data within the region 0.1 < t < 10 ps
while the solid gray line—in the region t < 0.1 ps.

barriers (see the middle panel) and remains localized between
them for some appreciable time. So, as long as these bar-
riers are high the charge is largely confined between them.
However, during the other part of the oscillation period when
the bond stretchings shrink and potential barriers practically
disappear, the charge density leaks out and propagates further.

Therefore, the chain oscillation period sets a natural
timescale for the charge propagation. It is important that the
system is far from the phase transition point at such tem-
peratures and therefore it can be characterized by the finite
and well defined size and timescales of oscillations of either
base pairs or finite chunks of them. These oscillations rise
and lower potential barriers for an electron; the phases of the
oscillations are random, so the charge transfer mechanism is
very similar to that of a random walk resulting eventually in
diffusive regime of the charge dynamics at sufficiently long
times, which can be seen in the Fig. 11 demonstrating the
diffusive growth of the wave packet width.

C. On the applicability of the PBH model for temperatures
below the environment freezing point

We have considered the system dynamics at relatively low
temperatures of the environment forming the thermal bath. In
the case of DNA and other organic molecules this environ-
ment is typically water based, so we have been studying these
systems for temperatures well below the freezing point of the
medium they are embedded into. There are several concerns
related to the latter circumstance we will discuss.

For temperatures close to the medium melting point (usu-
ally about 0◦C) the typical stretching is on the order of an
Å (results not shown here). Recall that in the case of DNA
the stretchings yn are the elongations of H-bonds between
the base molecules forming the two DNA strands. Thus,
these elongations represent relative displacement of large base
molecules. If the environment is a fluid and fast enough, then
it can easily adapt itself to relatively slow changes in base pair
configuration. However, below the freezing point the medium
is glassy and it can hardly support such large displacements of
bulky objects embedded into it. Therefore, the applicability of
the PBH model for such temperatures can be questioned.

024414-8



CHARGE TRANSFER MECHANISMS IN DNA AT FINITE … PHYSICAL REVIEW E 106, 024414 (2022)

FIG. 12. Same as in Fig. 8 but for T = 300K.

Unphysically large displacements do not occur at low tem-
peratures. See, for example, the upper panel of Fig. 10 from
which the characteristic bond stretching at T = 80 K can be
estimated to be on the order of 0.2 Å. However, there is an-
other concern: The stochastic term in the Langevin equation,
which models the action of the bath is uncorrelated. This is
reasonable for a very fast liquid environment but does not
seem to be adequate for a glassy matrix in which the local
configuration of each base pair molecule is random but frozen
and therefore correlated at least in time. Such a random lo-
cal environment introduces a static disorder into the system,
resulting in characteristic energy structure of localized states
(see, e.g., Refs. [76–81]), while the action of the bath can
be considered as the interaction with phonons of the glassy
host. We believe that the latter model is more realistic for the
considered systems at low temperatures. We note finally that
such a model of phonon-assisted transfer has been used very
successfully for describing quantitatively various properties of
molecular aggregates at low temperatures (see, for example,
Ref. [82–84] and references therein) as well as some aspect of
charge transfer in DNA [36].

In the next section we address the system dynamics at
temperatures above the environment melting point, when the
PBH model is more appropriate.

D. Room temperature: Mixed regime

In this section we study the most relevant case of high
temperatures: Above the medium melting point but still well
below the critical one (the denaturation temperature). Results
of our calculation of one particular typical system trajectory
for T = 300 K are presented in Fig. 12. One can see from
the upper panel that the characteristic displacements are on
the order of an Å, in which case the interaction potential
W (yn, yn+1) (negligible for small displacements) starts play-
ing an important role. This manifests itself in the appearance
of very specific strong fluctuations: Chunks of several sites
moving in a correlated way (for example, in phase). These
chunks are substantially heavier than a single base, so their
dynamics is slower and, as the panel suggests, they can
be very long living. See, for example, the brighter yellow

FIG. 13. Same as in Fig. 9 but for T = 300 K. Solid red line
gives the best power law fit to the data within the region t > 10 ps,
while the gray line—in the region t < 10 ps.

traces showing such fluctuations around n ≈ 20–30 and n ≈
60–70. Their characteristic period is on the order of several
ps. Note also that the part of the figure enclosed between
them is considerably darker which corresponds to smaller
stretchings. This means that with respect to that enclosed
part, the two stronger fluctuations act as much higher po-
tential barriers for electron wave packet. Indeed, from the
electron density dynamics (see the middle panel) one can
see that the wave packet is visibly confined between the
two trains of oscillating high barriers for a very long time:
Until about t ≈ 20–30 ps. The resulting slow-down of the
wave packet spreading is also reflected in the behavior of
the PN (see the lower panel) and the dynamics of the packet
width.

Figure 13 shows the time dependence of the ensemble
averaged packet width calculated for a chain of N = 1000
sites and T = 300 K. Two different transfer regimes can be
distinguished in the figure: For t < 10 ps and t > 10 ps. Gray
and red solid lines give the best power law fits to the numerical
data within the two time ranges. As expected, the packet
expansion is diffusive in the long time limit (with the expo-
nent of 0.5). At this temperature the fluctuations governing
the charge transfer have characteristic space and timescales,
which set natural timescales for the random walk process.
From the upper panel of Fig. 12 the following estimations
can be made: The typical spacing between adjacent strong
fluctuations is on the order of 10 lattice constants and their
period is on the order of several ps. Only when the propaga-
tion time substantially exceeds such a timescale, the diffusive
nature of the propagation can manifest itself. The latter agrees
well with t ∼ 10 ps being the time separating the two regimes
in this case. Strong fluctuations split the chain into chunks
which appear to act as new “supersites.” The size of the latter
gives the characteristic length scale of the random walk on
a chain of such supersites. This is also in agreement with
the fact that the diffusive spreading starts when σ (t ) > 10
(which happens at t ≈ 10 ps). We can argue therefore that the
diffusive regime is governed by space and time characteristics
of large fluctuations.

For shorter times (t < 10 ps) the packet dynamics is clearly
subdiffusive with the exponent of about 0.37. The latter can
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FIG. 14. Same as in Fig. 8 but for T = 340 K.

be explained by the fact that the wave packet is efficiently
confined by neighboring strong and long-living fluctuations
(as we have discussed above), which traps the charge den-
sity within a limited chunk of the whole DNA chain for
substantially long time, resulting in a slowing down of the
overall packet dynamics and making it subdiffusive within
this time range. We can conclude that the charge transfer in
DNA at room temperature is subdiffusive up to about 10 ps
during which a wave packets spreads over about 10–20 base
pairs.

We checked that the lattice dynamics does not change if
the vibrational and the electronic parts of the system are de-
coupled (results not shown here), suggesting that the influence
of the charge dynamics on the vibrational one is negligible.
Therefore, we can conclude that, within the PBH model, the
polaronic effect is irrelevant for the charge transfer in DNA
at close to room temperatures. Contrary to that, the electron-
phonon interaction is determinant for the charge dynamics
because charge transfer is governed by the lattice fluctuations;
such a mechanism can be called the fluctuation-governed
charge transfer.

E. Close to critical temperatures: Subdiffusive regime

In this section we address briefly a very special case in
which the system is close to its phase transition point. Within
the considered model the melting transition temperature is
about 356 K [60,61]. Results of our calculation for one partic-
ular system trajectory at T = 340 K are presented in Fig. 14.
It is known that in the vicinity of a phase transition point
fluctuations become critical or scale-free, which means that
both small and very large (diverging at the transition) fluctua-
tions can coexist. In the case of DNA such large fluctuations
correspond to so called bubbles [85]—large openings in the
double helix chain—resulting finally in the DNA denaturation
or melting, i.e., complete separation of the two strands. In
the PBH model the melting corresponds to divergence of the
H-bond stretchings yn. The upper panel of the figure demon-
strates fluctuations of very different sizes—a precursor of the
scale-free or critical ones. They can be very long living and
therefore, as we have argued above, the wave packet can

FIG. 15. Relative fluctuation of the wave packet width: The ratio
of the standard deviation �σ (t ) of the packet width σ (t ) to the width
itself calculated for different temperatures indicated in the plot. The
system size is N = 1000 (in all cases σ (t ) 
 N , so size effects are
negligible).

be confined efficiently by them for considerable amounts of
time. The result of such strong confinement can be clearly
seen in the middle and the lower panel of the figure. Note, in
particular, that the PN has flat plateaus, for example, for 5 �
t � 10 or 20 � t � 35 corresponding to time windows when
the wave packet is localized between a pair of bubbles. The
characteristic space and timescales of the charge dynamics
are determined by those of the chain fluctuations. Due to the
criticality of fluctuations at the transition point they are scale
free both in space and time and therefore the charge dynamics
can be expected to manifest anomalous behavior. We observed
a subdiffusive wave packet dynamics with σ (t ) ∼ t0.48 for
the critical temperature T = 356 K. However, a direct study
of such a dynamics in more detail would require very large
size and timescale calculations. An alternative way to detect
anomalous transport properties relies on properties of fluctu-
ations. For example, one can address the relative fluctuation
of the wave packet size. At the transition point, both the size
and its fluctuation is expected to grow at the same rate in the
thermodynamic limit, so their ratio should tend to a constant
(see, e.g., Ref. [86] and references therein). Below we use the
latter approach to demonstrate the anomalous character of the
diffusion. To illustrate the emergence of the anomalous regime
of the charge transfer at the transition temperature we plot in
Fig. 15 the evolution of the ratio �σ (t )/σ (t ) of the standard
deviation of the electronic wave packet size to the size itself,
calculated for different temperatures. For temperatures well
below the critical one (T = 200 K and T = 273 K) such rel-
ative size fluctuation is decaying with time, which reflects the
fact that the role of fluctuations decreases and the expanding
wave packet has a well defined size. Contrary to that, at
the critical temperature, T = 356 K, the relative fluctuation
tends to a constant, indicating that the fluctuations of the
wave packet size remain on the order of the size itself in the
thermodynamic limit—a typical feature of critical states and
anomalous transport regimes. The latter supports our claim on
the anomalous character of diffusion close to the denaturation
transition point. A more detailed analysis of this case goes far
beyond the scope of the present work.
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F. On possible impacts of the base sequence inhomogeneity
and initial conditions

Here we briefly discuss possible impacts of the base pair
sequence inhomogeneity and different initial conditions (in-
jection of an electron in a site different from the central one)
on our results.

In this work we considered a homogeneous base pair se-
quence which can be seen as a considerable limitation of
the model. From the point of view of the charge transfer or
transport the most relevant differences in base pairs param-
eters are probably those in the base (site) energies, which
would introduce large on-site static disorder and determine the
charge transfer efficiency and transport properties at low tem-
peratures (see, for example, Refs. [21,52–55] and references
therein). However, as we argue above, the applicability of
the PBH model at such temperatures is questionable anyway.
At high temperatures (above the environment melting point),
the typical value of the positive bond stretching yn is on the
order of few angstrom (that can be estimated from Figs. 12,
14), therefore the characteristic scale of the diagonal energy
dynamic fluctuation is greater than 1 eV which is on the order
of or exceeding the differences between base energies. We
believe that the latter should reduce the impact of the site en-
ergy differences on the transfer. A more detailed quantitative
comparison would require a separate extensive study, which
goes beyond the scope of the present work.

In the current section we used the following initial con-
dition: An electron was created (injected) at the central site
while in reality it can be injected in an arbitrary one. This
could have some impact on final results. However, the time
evolution of all studied quantities was calculated by averaging
over many random trajectories. For each trajectory an electron
is injected into a completely random energy potential. Taking
into account our previous argument, the typical fluctuations of
the potential energy at high temperatures are largely governed
by the dynamic fluctuations of the chain. This suggests that
injecting an electron into a different site is most probably
equivalent (from the point of view of the final averaged result,
at least) to injecting it into the center of another realization
of the thermalized chain configuration. Therefore, it probably
would not have any substantial impact on averaged results.

G. On the relationship with variable-range hopping models

We have argued in the previous sections that the charge
transfer mechanisms within the considered model intrinsi-
cally involve different time and size scales; the latter, in
particular, can resemble the variable-range hopping mecha-
nism [87–89] originally proposed to describe low-temperature
hopping conductivity in semiconductors [90]. Similar mecha-
nisms were discussed in the framework of the energy transfer
in J-aggregates [82–84]; those were based on the idea of
the hidden energy structure in the density of quasiparti-
cle states [76,77,79,80]. Variable-range hopping of polarons
was also proposed to explain the charge transfer in DNA
[30,32,37]. We note however that, despite the seeming similar-
ity, those mechanisms rely on the static characteristics of the
system, while our proposed charge transfer mechanisms rely
on dynamical fluctuations and size and timescales which are
of key importance for the explanation of the system dynamics

and charge transfer. Therefore, our proposed fluctuation-
governed mechanism is considerably different from those
discussed in previous studies.

VI. CONCLUSIONS

We have studied various mechanisms and regimes of the
charge transfer in the DNA molecules within the framework of
the Peyrard-Bishop-Holstein model which considers coupled
dynamics of the electronic and vibrational degrees of freedom
of the system. At zero temperature the minimum energy con-
figuration of the model is polaronic. For this reason, first, we
analyzed the polaron dynamics during the DNA chain ther-
malization by connecting the system with a formed polaron
(at zero temperature) to a heat bath having a finite temper-
ature T0 > 0 and letting the system thermalize completely.
We found that for such initial condition the polaron has a
finite lifetime in the whole range of studied temperatures,
T0 ≈ 10–356 K. More importantly, the polaron breaks up long
before the vibrational subsystem reaches the equilibrium at
the temperature of the bath. We believe that the latter result
suggests that the polaron charge transfer mechanism is ir-
relevant within the framework of the PBH model because a
polaron does not seem to be a stable configuration within the
considered temperature range.

Second, we studied the system dynamics under a more
realistic initial condition: A charge injected into a thermalized
DNA chain. We found no traces of polaron formation either.
Rather, we observed and analyzed a variety of charge transfer
regimes within different temperature ranges. We show that the
charge transfer is quasiballistic at low temperatures: A wave
packet can expand almost ballistically over several dozens of
system sites (base pairs). We argue also that for temperatures
that are below the environment (bath) freezing point, the
applicability of the PBH model is questionable because the
typical large displacements in the vibrational subsystem can
hardly be realistic in a glassy host medium.

We demonstrated that for temperatures above the environ-
ment melting point (i.e., in the case of a liquid environment),
which is the most interesting and relevant temperature range
for real biological systems, the charge transfer regime is
mixed: Subdiffusive at short times and diffusive in the long
time limit, provided that the temperature is not too close to
the DNA melting (denaturation) point. Despite the fact that the
diffusive charge transfer can naturally be expected, its mecha-
nism is quite peculiar. Due to the electron-phonon interaction,
positive displacements in the vibrational subsystem (stretch-
ings of H-bonds) act as potential barriers for the charge, so that
the latter can be efficiently confined between two neighboring
fluctuations during substantial part of their oscillation periods.
Thus, the vibrational subsystem sets a clock for the electronic
one and determines the regime of the charge transfer. In other
words, the dynamics of the charge density is governed by that
of the vibrational subsystem: We call such a mechanism of
charge transfer fluctuation-governed. As long as the mechan-
ical subsystem fluctuations have finite size and timescales,
the charge transfer regime is diffusive in the long time limit.
At shorter times which are on the order of the characteristic
timescale of the vibrational subsystem (few ps at 300 K), the
charge transfer regime is subdiffusive.
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Finally, as the temperature approaches the critical one,
at which DNA undergoes the denaturation phase transition,
mechanical fluctuations become scale free. We argued that in
this case the charge transfer becomes anomalous, in particular,
subdiffusive even in the long time limit.

Summarizing, we note that we considered a particular
model of an organic macromolecular system in which elec-
tronic and vibrational degrees of freedom are strongly coupled
due to a very specific mechanical deformations: The stretch-
ing yn of the H-bond between two DNA bases within a
pair. However, the electron-phonon coupling term employed
in the model Hamiltonian has a very generic form. There-
fore, for another system, yn can represent a very different
generalized or phenomenological coordinate characterizing
the dynamics of the vibrational subsystem. Then within the
Holstein approximation the Hamiltonian of the considered
system would be very similar, leaving our qualitative reason-
ing valid. We believe therefore that our proposed mechanism
of fluctuation-governed charge transfer can be relevant for

other organic systems with strong electron-phonon coupling,
such as, the conjugated polymers, molecular aggregates, α-
helices, β-sheets, etc.
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