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Quantifying active and resistive stresses in adherent cells
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To understand cell migration, it is crucial to gain knowledge on how cells exert and integrate forces on and
from their environment. A quantity of prime interest for biophysicists interested in cell movements modeling is
the intracellular stresses. Up to now, three different methods have been proposed to calculate it, they are all in the
regime of the thin plate approximation. Two are based on solving the mechanical equilibrium equation inside
the cell material (monolayer stress microscopy and Bayesian inference stress microscopy) and one is based
on the continuity of displacement at the cell-substrate interface (intracellular stress microscopy). We show here
using 3D FEM modeling that these techniques do not calculate the same quantities (as was previously assumed),
the first techniques calculate the sum of the active and resistive stresses within the cell, whereas the last one only
calculates the resistive component. Combining these techniques should, in principle, permit access to the active
stress alone.

DOI: 10.1103/PhysRevE.106.024411

I. INTRODUCTION

Cell motility is at the core of many physiological processes,
such as embryogenesis, wound healing, etc., and pathologi-
cal processes, such as metastasis in cancer [1,2]. To move,
cells need to exert forces on their environment [3]. These
forces originate either from cellular actomyosin contractility
or from polymerization forces pushing membranes [4] (these
latter forces are transmitted to the substrate on molecular
clutches where actin filaments are connected to the substrates
[5]). Getting information on these forces is crucial if one
wants to really understand individual as well as collective cell
migration. These forces are now routinely accessible using
techniques such as traction force microscopy [6,7]. They are
often used as a simple direct readout, marker free, of cell
contractile activity. However, a closer marker of this activity
should be given by the the internal mechanical active stresses
generated by cells, as some of the forces exerted on the plane
could theoretically be the result of friction (i.e., passive forces,
resulting from cell movements) [8]. We explore in this paper
the possibility of getting access to these active stresses, ex-
amining the different techniques that have been developed for
measuring stresses inside the monolayer.

We make explicit the origin of the stress that each of
these methods calculates, which indeed differ. We validate
our approach using finite element modeling of cells submitted
to active forces. We show that these different methods allow
us to quantify the intracellular stress that resists cell active
forces and the total intracellular stress accounting for both
the active and the resistive stresses. Here we emphasize their
complementarity and we make clear the limitations of these
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calculations. This article is a companion paper of an experi-
mental usage of intracellular stress calculation [9].

II. MSM, BISM, AND ISM CALCULATE DIFFERENT
INTRACELLULAR STRESSES

Active forces in adherent cells generate both resistive
forces inside the cells and outside, in the substrate under-
neath [see Figs. 1(a) and 1(b)]. Taking advantage of the
well-defined mechanical properties of the substrate, and fol-
lowing Ref. [10], several methods have been proposed that
infer intracellular mechanical stresses from the measure of
the resistive force field in the substrate [11,12] or the in-plane
deformation field at the surface of the substrate [13]. As we
explain below, this allows quantifying the resistive stress from
the cell body [13] or the total intracellular stress associated to
the active and resistive intracellular forces [11,12].

The original idea of the mechanical approaches is to model
cells as materials subjected to internal volume forces, the
active forces mentioned above (actomyosin contractility and
polymerization). When the cells are adhered to a substrate,
the internal forces are transmitted to the substrate and deform
it. Assuming that cell colonies as well as single cells can be
modeled as a thin plate, the mechanical equilibrium writes as
(Fig. 1)

�fact + �fc − �fm = �0, (1)

with �fact the active cellular forces that cells build up follow-
ing adhesion, �fc and − �fm, respectively, the reaction force of
the cell body and the resistance of the deformable substrate
opposed to these active forces, all modeled as surface forces
because of the thin plate approximation. �fm is precisely the
traction stress field measured by traction force microscopy
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FIG. 1. (a) Schematics of a contractile cell: the cell body is sub-
mitted to internal stresses from, e.g., actomyosin filaments (in green)
that are transmitted to the substrate through cell adhesions (in red).
h is the thickness of the layer where the stresses transmitted to the
substrate are generated. (b) Mechanical equilibrium at an adhesion
point: �fact is the active force generated in the cell that reaches the
adhesion, �fc is the resistance opposed by the cell material, and �fm

is the force transmitted to the substrate. (c, d) Reference states for
the calculation of the intracellular stress in (c) MSM and BISM or
(d) ISM. In panel (c), �f0 is the resistance of the cell body in the
absence of adhesion.

(TFM) [14]. In the present work, our aim is to characterize
�fact and �fc.

Equation (1) can be reformulated in terms of the stress
tensors Sact and Sc:

hdivSact + hdivSc − �fm = �0, (2)

where h is the thickness of the plate model. Sact is the stress
tensor that is derived from the internal cellular force genera-
tion following cell adhesion. This stress can be addressed by
a Gedanken experiment: Let us imagine that the cell could
be detached without altering its active stress field, Sact. Then
the cell body would contract until a size determined by the
balance with the reactive stress S0 the cell body opposes to
its contraction [Fig. 1(c), with hdivS0 = �f0]. Thus, Sact = −S0

(note that S0 is a resistive stress like Sc but that raises in the
detached cells). Finally, Sc is the stress that results from the
strain of the adhered cell material in response to the internal
forces �fact. Both Sact and Sc measure stresses in cells follow-
ing cell adhesion. Prestresses preceding cell adhesion are not
accessible here.

The original method, the monolayer stress microscopy
(MSM) [10,11], addresses the resolution of Eq. (1) by build-
ing a stress tensor Stot that gathers both unknown Sact and Sc

into a single stress tensor Stot:

Stot = Sact + Sc, (3)

hdivStot = �fm. (4)

Equation (4) is underdetermined [15]. An additional rela-
tionship between the stress components is added by assuming
that the cellular material has a linear elastic rheology [11,16].
In line with MSM, Bayesian inference stress microscopy
(BISM) was proposed [12]. It also solves the equilibrium
Eq. (4) but accounts for the noise in �fm and does not assume

a rheological model a priori for the cell material. Underdeter-
mination of Eq. (4) is resolved by using Bayesian inversion
and assuming that Stot has a Gaussian distribution. BISM
then introduces a regularization step that allows limiting the
contribution of noise in the calculated stress tensor. The rhe-
ological properties can be inferred a posteriori, by comparing
the temporal derivatives of the elastic strain tensor and the
spatial gradient of the velocity field in the cell material [12].

Differently, intracellular stress microscopy (ISM) ad-
dresses the quantification of the resistive component of the
intracellular stress, Sc, that opposes the contraction of the
adhered cell [13]. This approach calculates the increase in
stress that occurs in a different gedanken experiment, where
the adherent cells go from a relaxed state ( fact = 0) to a tense
state ( fact �= 0) with constant shape [Fig. 1(d)]. When the cell
is modeled as a thin elastic plate, it is straightly obtained by
differentiating the displacement field of the neutral plane of
the plate [17]. This approach can be extended to viscoelastic
rheology when the cell material behaves like a Maxwell fluid,
a rheological behavior that was for instance reported in flow-
ing epithelial monolayers [18]. When the basal surface of the
cell material is uniformly adhered to the substrate, either by
integrin-mediated adhesions, non specific adhesions or other
types of adhesive machinery such as lectins [9,19], the dis-
placement field of the neutral plane of the plate is identical to
the displacement field on the top of the substrate. The resistive
stress then writes as

Sc =
(

σxx σxy

σxy σyy

)
,

with

⎧⎪⎨
⎪⎩

σxx = Ec
1−ν2

c
( ∂ux

∂x + νc
∂uy

∂y ),

σyy = Ec
1−ν2

c
( ∂uy

∂y + νc
∂ux
∂x ),

σxy = Ec
2(1+νc )

(
∂ux
∂y + ∂uy

∂x

)
,

(5)

where (x, y) are the in-plane coordinates, Ec and νc are the
Young’s modulus and the Poisson’s ratio of the cell material
of thickness h, and ux,y are the in-plane components of the
displacement field on top of the substrate. The displacement
field is measured as in TFM, by the use of fluorescent markers
embedded in the substrate. As a consequence of Eq. (5),
implementation of ISM requires to know the Young’s modulus
of the cell Ec and its Poisson’s ratio νc but is independent of
the thickness of the contractile plate, h.

MSM or BISM and ISM thus do not address the same intra-
cellular stresses. MSM or BISM calculates the bidimensional
total stress tensor hStot = h(Sact + Sc) [Eq. (4)], while ISM
quantifies the Young’s modulus-normalized resistive stress
tensor Sc/Ec [Eq. (5)].

While being different quantities, both types of stresses can
be evaluated on the very same experiment, and are based on
very compatible assumptions; they both assume some contacts
between the cell and the substrate for force transmission and
for continuity of the displacement field. In MSM or BISM,
forces exerted by the cells appear as boundary conditions
in Eq. (4) (it is not a continuity in stress), and in ISM, the
continuity in displacement is considered which is by no mean
a continuity in deformation.

In the following, by using 3D FEM, we compare the
two approaches for calculating intracellular stresses and
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evaluate their consistency. The first approach was tested by
using BISM and not MSM, as experimentally, TFM can only
provide �fm with a nonnegligible noise level of more (and often
much more) than 10% [20], and BISM explicitly handles the
noise level in its formulation. In any case, as both MSM and
BISM are based on the same equation [Eq. (4)], they should
provide similar results as already shown by Nier et al. [12].

III. USING 3D FEM TO COMPARE THE DIFFERENT
CALCULATIONS

Since MSM, BISM, and ISM address different intracellular
stresses, we built a finite elements simulation to calculate
these stresses. This approach had already been attempted in
Nier et al. [12]. In this paragraph we analyze this former
simulation and show that it can only compute Sc but not Stot.
We then propose a different simulation that allows obtaining
Sc and Stot from 3D FEM.

The simulation in Ref. [12] was conceived as follows: the
cell monolayer is modeled as a 2D square or disk of either
a pure viscous or elastic material. Cellular contractility is
modeled as external forces (random dipoles distributed inside
the geometry of interest). The substrate is included in the
simulation through its interaction with the cells, and enters
like a friction term proportional to the velocity (viscous case)
or to the displacement (elastic case, the cells are then firmly
attached to the substrate composed of 1D springs). BISM and
MSM stresses were calculated by solving hdivS = �t , with
�t = − �fact + ξ �u being the forces that act on the cells and �u
the displacement field of the 2D material (note that there is a
minus sign error in the equation used in the supplementary of
Ref. [12]). Compared to Eq. (1), �t is therefore the resistive
force that opposes the active contraction, �t = − �fact + �fm =
�fc, and S = Sc. Thus, the modeling proposed in Ref. [12]

allows to calculate the reactive stress Sc by two means, either
directly with differentiating the displacement field (ISM ap-
proach, denoted MSMu in Ref. [12]) or by solving hdivSc =
�fc. Consistently, BISM, MSM, and ISM gave very similar re-

sults. Figure S9 in Ref. [12] shows that the calculated stresses
localize identically for all the methods, either in the elastic or
in the viscous cases. Their amplitudes nevertheless differ but
this indeed comes from different choices of the rheological
parameters in between the tests: For instance, for the viscous
case, first and second viscosities are taken equal in the FEM
simulation (η = η′) leading to an equivalent Poisson’s ratio
of 0.25 while the equivalent Poisson’s ratio is taken at 0.5
for MSM or ISM; in the same way, the Young’s modulus of
the cells chosen for ISM and MSM differs from those chosen
for BISM (ISM: Ec = 1 kPa, νc = 0.5, and h not given, but
the only value available is 5 μm leading to hEc = 5 kPa μm;
for MSM, Ec = 10 kPa, νc = 0.5, and h = 5 μm, MSM will
then compare very well with the FEM simulation in the elastic
case as its result only depends on the value of νc, and both are
taken equal; BISM, in the elastic case, hEc = 100 kPa μm or
hEc = 10 kPa μm and νc = 0.5). The reason for the failure of
the previous simulation to address both Sc and Stot and model
a true experiment comes from the fact that Stot is only mean-
ingful when the cells are adhered to a substrate. Otherwise,
as detailed in Sec. II, Stot = 0 as the intracellular resistive

FIG. 2. FEM calculation of intracellular stresses in an elastic
plate (Ec = 5 kPa, νc = 0.5, h = 1 μm) bound to a deformable
substrate (Em = 1 kPa, νm = 0.5). (a) Schematics of the numerical
experiment. The plate is submitted to contractile and tensile force
dipoles respectively along the x and y axis with truncated Gaussian
profile (amplitude 1 kPa, standard deviation 2 μm) concentrated in 5
μm wide squared dots. (b) Amplitude of the surface stresses �fm on
the substrate. (c) Comparison of the intracellular resistive stress Sc

calculated with FEM and with ISM [SISM, Eq. (5)]. (d) Comparison
of the total intracellular stress Stot = Sc − S0 and BISM calculation
SBISM [Eq. (4), regularization parameter L = 0.003]. The inset shows
the profiles of S0 = −Sact and Sc used in the calculation of Stot.

stress Sc = S0 balances the active stress Sact: in the absence
of anchorage to a substrate, �fact + �f0 = �0 [Fig. 1(c)].

To solve this issue, we thus proposed a model where the
cell (or equivalently the cell colony) is modeled as thin plate
uniformly bound to the substrate [Fig. 2(a)]. The dimensions
of the thin plate were chosen so that the deformation field is
fairly uniform in the thickness of the cellular material (square
elastic sheet of size 30 × 30 μm2 and 1 μm in thickness). We
focused on the elastic case, with Young’s modulus Ec = 5 kPa
and a Poisson’s ratio νc = 0.5. The thin plate is sitting on
top of an elastic gel (the substrate) which is modeled as a
thick elastic parallelepiped (size 200 × 200 × 100 μm3 in
(x, y, z), with Young’s modulus Em = 1 kPa and a Poisson’s
ratio νm = 0.5). A contractile dipole is positioned along the
x axis, composed of Gaussian forces of amplitude 1 kPa and
width σ adjusted between 0.25 and 2 μm. A tensile dipole is
set on the y-axis with the same amplitude and width.

IV. DETAILS ON THE ROBUSTNESS OF ISM AND BISM
CALCULATIONS

A. Calculation methods

We used Comsol Multiphysics 4.2 to implement finite
element modeling. The 3D FEM calculation provides the
displacement field at the interface between the cell and
the substrate. This displacement field was used to calculate
the intracellular stresses Sc and Stot using ISM and BISM
as would be done with experimental data [9]. These calcula-
tions were performed with Matlab. All these codes are freely
available at Ref. [21]. The sampling was chosen following
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(c) (d)

(a) (b)

FIG. 3. Understanding BISM. (a) Calculation of Stot with BISM.
The FEM calculation is shown in black. The other colors refer to
values of the regularization parameter L. Boundary conditions at the
edges of the plate are provided by the surface forces �fm. (b) L values
calculated with Eq. (6), where the noise level outside of the cell is
quantified in a mask at a distance d from the plate boundaries. The
optimum for L is chosen at the maximum of curvature in the curve
(red cross). (c) Increasing the regularization parameter L in BISM
calculation filters the low frequencies. The colors refer to values of
L. (d) Same calculation as in panel (a) but with assuming zero stress
at the edges of the plate, as in Ref. [12].

Shannon criterion: the displacement field was interpolated on
a sampled regular grid with a frequency more than twice the
maximal frequency obtained from the FEM calculation. The
resistive stress field Sc was obtained from ISM, by differen-
tiating the in-plane displacement field retrieved from the 3D
FEM calculation using a Sobel approximation of the deriva-
tive [Eq. (5)]. Stot was obtained from BISM by solving Eq. (4).
Traction stresses �fm were first calculated using Fast Fourier
Transform, following Butler et al. [22]. We took νm = 0.49
for the calculations. The total intracellular stress Stot was then
calculated following Ref. [12]. As it is quite demanding on
computer memory, we used a grid of 50×50 pixels to calculate
the stress, which enables a rather fast computation, to perform
many different tests in a reasonable amount of time. Boundary
conditions were enforced in the prior to correspond to the
surface forces �fm at the edges of the cell. The hyperparameter
ensuring σxy = σyx, was set to 103 as was done in Ref. [12].
The result is shown in Fig. 3(a).

B. Choosing the regularization parameter in BISM

As detailed in Ref. [23], the choice of the optimal pa-
rameter for equation form like Eq. (4) is far from obvious.
It is to be noted that the L-curve criterion is not consistent
with the Morozov discrepancy principle here (which states
that Eq. (4) cannot be solved with a better accuracy than the
noise on �fm), as it gives a dominant weight to the accuracy of
the equilibrium equation Eq. (4), omitting that the right-hand
term, �fm is a noisy, inaccurate, data. We thus chose to calculate
the regularization parameter L using the χ2 estimate [7] which
considers the noise level of the right-hand term in Eq. (4). In

BISM, this criterion expresses as L = �2s2/s2
0, with � the size

of the grid sampling for the calculation of Stot, s the standard
deviation of the noise of �fm, and s0 the standard deviation
of the calculated stress hStot [12]. Since s0 is unknown, an
additional criterion is required. Based on Eq. (4), we esti-
mated s0 � �s1, with s1 the standard deviation of �fm. Then
L is simply obtained from �fm stress field distribution and the
quantification of its noise level out of the cell boundaries:

L = s2/s2
1. (6)

To calculate the noise, we used the values of the surface forces
�fm outside of the cell boundaries (it should be zero if the calcu-

lation was perfect, which of course is not the case.) However,
the calculation appeared trickier than for real data coming
from experiments [9]. Here, the noise level sharply decreased
with distance from the plate. Thus, defining the proper posi-
tion of the boundary appeared mandatory to ensure that the
captured noise is not the spread force signal unavoidable with
finite element calculation but still is representative of FEM-
induced noise. This issue is specific to FEM calculation and is
not met in experimental cases where the noise around the cell
is fairly uniform (see Ref. [9]). To this end, noise statistics
was quantified out of the cell in regions whose distance to cell
edges was varied. L values were then obtained with Eq. (6)
in dependence on this distance [Fig. 3(b)]. L was considered
optimal at the maximal curvature of this decreasing curve as
it is the place of best compromise between attenuated force
signal and maximal noise level. For the values modeled in
Fig. 2(a), we obtained a regularization parameter L = 0.002
which consistently corresponds to the best choice for the
regularization parameter compared to FEM calculation of Stot

[Fig. 2(d)].

C. Effect of noise in the calculation of Stot and Sc

Noise strongly impacts the calculation of the force field
in TFM. This problem was addressed by using regularization
schemes [6,7] or a filtering in the Fourier space [22]. These
regularization schemes were shown to filter high frequencies
[20,24]. Noise issues keep also critical in the calculation of
the intracellular stresses and we questioned how noise impacts
ISM and BISM calculations. ISM is based on the derivative
of the displacement field. It is therefore very sensitive to
high-frequency noise. A filtering is applied by the use of the
Sobel approximation in the calculation of the gradients. We
showed in a companion paper [9] that experimentally, the
dispersions of divSc and �fm are similar. The fact that divSc

does not show many points with high amplitude out of the
fit line shows that ISM is not altered by high-frequency noise
compared to TFM. Differently, BISM calculation is based on
the integration of the surface force field �fm. A perturbation in �u
with wave vector �q results in a perturbation of the stress tensor
	Stot proportional to 1/q. Low-frequency noise thus strongly
alters the value of Stot. And indeed, the regularization scheme
in BISM calculation damps these low frequencies [Fig. 3(c)].
Thus, in this context, BISM is expected to be very sensitive to
the boundary conditions.
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D. Effect of boundaries conditions on BISM calculations

A proper choice of the boundary conditions also appeared
to be critical for the success of BISM calculation. Stot was
either calculated when assuming zero stress at the edge of
the thin plate or when fixing the boundary stress with the
surface forces at the edge of the plate: Stot · �n = �fm, with �n the
normal to the edge of the plate. Only the appropriate boundary
conditions brought the BISM curve close to the FEM curve
[Fig. 3(d)].

V. BISM AND ISM ARE CONSISTENT WITH FEM

Stresses calculated with ISM and BISM approaches were
compared to the FEM calculation. While Sc is a direct out-
put of the FEM stress tensor calculation, Stot was calculated
as the difference between the resistive stress tensors of the
adhered plate (Sc) and of the non adhered plate (S0 = −Sact)
as described in Sec. II. It was compared to BISM calculation
whose value of the regularization parameter was chosen based
on the noise level of �fm (Fig. 3).

As shown in Fig. 2(c), SISM compared well with Sc in con-
sistence with the thin plate assumption. Similarly, BISM did
reconstruct Stot by using appropriate boundary conditions and
regularization parameter [Fig. 2(d)], both parameters having
an important impact on the stress calculation as was detailed
above.

VI. RELATIONSHIP BETWEEN DIVSC AND �F

In Ref. [9], we experimentally evidenced a linear relation-
ship between div(Sc) and �fm, which entails another linear
relationship between Sc and Stot. We showed that these lin-
ear relationships could only be observed if the sizes of the
adhesive active areas were smaller than the resolution of our
analysis (i.e., 400 nm at best). Here our patches are necessarily
above the resolution of our grid. But, we did try to run our
modeling on a smaller Gaussian adhesive patch of 1 μm in
size. Results are presented on Fig. 4. Again BISM and ISM are
nicely recovered [Figs. 4(a) and 4(b)], but we do not recover
the linear relationship between div(Sc) and �fm [Fig. 4(d)]. This
is normal as the size of the patches are necessarily larger
than the sampling size fixed by the mesh. However, when
reducing these sizes, the relationship tends toward more linear
(compare the blue and red lines).

VII. CASE OF LOCALIZED ADHESION

We then examined the case where the cells do not adhere
everywhere. We tested how this situation would impact the
correlation between divSISM and �fm. It should be noted that
out of the areas where the cell is adhered, SISM differs from Sc

as its calculation is based on the deformation of the substrate
which now differs from the deformation of the cell. Using
3D FEM simulations, we observed that the surface forces �fm

concentrate in the regions of adhesion only [Fig. 5(a)]. Would
intracellular stress generation occur out of the adhered areas,
the surface forces �fm would change in amplitude but of course
they would still concentrate into the adhesive patches. As a
result, it could not be inferred by the calculation of the total

(c) (d)

(a) (b)

FIG. 4. Comparison of (a) SISM and (b) SBISM with Sc and Stot

calculated with FEM simulations for a uniformly adhered plate
subjected to a local force field �fact of Gaussian distribution with
similar design as in Fig. 2, but of smaller size (force patch of 1 μm,
σ = 0.25 μm). Again, ISM and BISM well account for the values of
Sc (blue line) and Stot (black line). Influence of the value of regular-
ization parameter on the shape of SBISM is shown in panel (b) (values
are listed in the legend). (c) Surface forces �fm. (d) Correlation of
divSc and �fm. The sampling size is imposed by the mesh size and
is smaller than the width of the Gaussian field (blue: force patch
of 5 μm, σ = 2 μm; red: force patch of 1 μm, σ = 0.25 μm). The
black lines are bin averages of the blue or red points.

(c) (d)

(a) (b)

FIG. 5. Comparison of (a) SISM and (b) SBISM with Sc and Stot

calculated with FEM simulations for a plate only adhered in the
patches where active surface forces apply. The characteristics of the
active force field is identical to Fig. 2 in the main text (force patch of
5 μm, σ = 2 μm). Here ISM is no more relevant out of the adhered
patch and BISM also fails to represent Stot (shown with a black line).
The adhesive area is delimited by the light purple area in both panels
(a) and (b). Influence of the value of the regularization parameter
on the shape of SBISM is shown in panel (b) (values are listed in the
legend). (c) Amplitude map of the surface forces �fm for a plate that
is only adhered through the local patches where the active forces
�fact are generated (force patch of 5 μm, σ = 2 μm). (d) Correlation

between divSc and �fm for the locally adhered plate [same parameters
as in panel (a)].
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stress hStot as Eq. (4) does not contain any information on the
location of the stress generators. Thus, as expected, the calcu-
lation of Stot is less robust when the cell is not continuously
adhered (Fig. 5). divSISM and �fm showed a correlation that
resembles the one obtained for adherent cells in the presence
of force generators of width larger than the sampling size, al-
though it appeared more noisy [compare Figs. 4(d) and 5(d)].
Thus, the experimental observation of a linear relationship
between divSISM and �fm may not be sufficient to conclude
on the adhesive interaction of the cells with the substrate, the
measure of transmitted surface forces �fm that emerge from
the noise being more conclusive. The intracellular stresses
generated in regions where the level of force transmission to
the substrate is low thus remain difficult to characterize by
these mechanical approaches.

VIII. CONCLUSION

We proposed here a set of 3D FEM simulations to test and
validate intracellular stress calculations that are done by two
independent techniques, ISM and BISM, which address two
different stresses. We showed that BISM enables to measure

the total stress inside the cells, while ISM retrieves the re-
sistive component of the stress. We delineated the framework
within which these techniques provide consistent information:
for both techniques, the calculation infers relevant stresses
only at the locations where the cells are adherent; concerning
BISM, a proper quantification of the noise level to select the
optimal regularization parameter and a proper definition of the
boundary conditions are mandatory. Within this well-defined
framework, we have shown that both approaches bring valu-
able and complementary information on intracellular stresses
which then allow the retrieval of the active part of the intra-
cellular stress. Taking advantage of this knowledge, it is now
possible to analyze intracellular stresses in real experiments.
This is what we have done in a companion paper [9].
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