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Modeling protein structure as a stable static equilibrium
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We present evidence that the protein structure can be modeled as a stable static equilibrium, determined
mainly by compressive supports in the nonpolar interior. That is, protein structures derive their structural strength
through the same mechanical principles as do conventional structures like bridges and buildings. This is based
on the observation that the experimentally elucidated structural determinants, the interior nonpolar side chains,
are engaged in strong compressions in static terms. At the same time, major substructures in proteins, helices
and h-bonded strands, because of their geometry, inherently leave gaps in the space they occupy. Under the
compressive force, nonpolar side chains from one substructure can protrude into the gaps of another neighboring
substructure and block its motion. As a result, interlocking of substructures can form, which builds up the
nonpolar core assembly. The native structure then is the one with the structurally most stable core assembly.
While intuitively appealing, this is a radical departure from the prevailing thinking that protein native structure is
determined by global energy minimum, which is founded on thermodynamic hypothesis. Furthermore, to develop
an effective model for analyzing protein structure with conventional tools, a proper mechanical representation
must be established. By proving that the stability of the equilibrium in compressive interactions is conditioned
on a form of mechanical energy minimum, we show that our notion of native structure can be equally consistent
with the thermodynamic hypothesis. By mathematically treating the blocking action, an interaction, as a bar, a
physical object, we succeed in representing and analyzing the core assembly as truss, a conventional structure.
In this paper we define and expound step-by-step increasingly integrated interlocking patterns. We then analyze
the core assemblies of a large set of diverse protein database structures. A native structure can be distinguished
from decoys by comparing the composition and strength of their core assemblies. We show the results for two
sets of native structures vs decoys.
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I. INTRODUCTION

There have long been suggestions and conjectures that pro-
teins must have assumed their structures on the basis of simple
mechanical principles. These usually arise from observing the
simple and elegant geometry of proteins. Richardson [1,2],
Chothia [3], Salemme [4], and many others [5] have given
comprehensive and in-depth discussions on geometric rela-
tions governing the organizations of protein structures, often
alluding to the necessary statical causes or effects. In particu-
lar, a large body of literature describes the knobs into holes
and ridge into groove models of helical packing ([6] and
references therein). Also extensively explored are the twists
of β strands, the twists in intrasheet strand packing [3,7,8],
tight turns [1,2], helical packing in 4-helix bundle proteins
[9], coiling of β hairpins, packing of α helices onto β-pleated
sheets [10], packing of α/β barrels [11], and of β sandwiches
[12], residue pairing in antiparallel strand packing [13], βαβ

turns [14], and side chain organization in type I tight turns [1].
These pioneering investigations have laid the foundation for
identifying and elaborating the underlying statical interactions
in protein structure.

In the meantime, experimental and theoretical research in
the process of protein folding has demonstrated unequivocally
that the driving force is the collapse of the nonpolar portion of
the protein chain in the polar solvent, water. After Tanford

[15] demonstrated in experiments, many authors forcefully
argued for it theoretically (see [16] and references therein and
[17–23]). Energy potential functions have been developed for
characterizing protein folding process, some specifically for
accommodating solvent effect, e.g., EEF1 and others [24–33].

The observations on the mechanical origin of protein struc-
tures are further strengthened by experiments on homolog
and mutated proteins [34–40]. It is shown that even when
sequence identity is as low as 40%–50%, as long as the same
key residues, mostly large nonpolar residues, are preserved,
the protein structures can be virtually intact. Essentially, these
extraordinary results suggest that despite the large number
of atoms, atomic groups and their myriad of interactions, to
develop a model that can account for the three-dimensional
structure and associated stability of proteins, one needs to
focus only on those key residues. To wit, there can be a
model that is simple yet effective. More recently, research
on high pressure response of mutant structures has shown
that there seems to be considerable rigidity in protein inte-
rior and it should arise from the side chain (SC) interactions
[41].

Our research has also benefited from the work in the field
of structure prediction. To verify our hypothesis, we must
compare native structures and non-native ones. High quality
decoys are indispensable. In particular we have taken advan-
tage of the databases of decoys from various labs [42–45].
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A. The need and the challenges in establishing
a statics-based model

Our research suggests that the simple mechanical princi-
ples that determine the protein structure can be basically just
statics. This means, to some extent, the protein structure can
be viewed just as everyday structures like bridges and build-
ings. This then implies we will be treating protein structure
as an equilibrium of forces and the native structure will be the
one that can withstand the strongest mechanical impact. While
sounding intuitive and innocuous, as a thoroughly developed
model, this is a radical departure from an established principle
in theoretical and computational protein research, the search
for global energy minimum [46].

In past decades, methods of molecular mechanics (MM)
and molecular dynamics have been developed for investigat-
ing stability of biomolecules including proteins. These have
contributed enormously to our understanding of biomolecules.
In applying these methods to protein structure, the widely
accepted tenet postulates that its stability is based on the
energy minimum of some energy potential [46]. This potential
is often taken from a force field of MM and at atomic level
[24,47–50]. Alternatively, it can be an elaborately designed
lower resolution potential [51–55]. This tenet is in turn based
on thermodynamic hypothesis, which states that the protein
native structure must be an accessible minimum energy state.
The potential for the protein-solvent system is often treated
as a sum of all the component potentials including bonded
potentials, such as bond stretching and bond angle bend-
ing, and nonbonded potentials, such as electrostatic (ES) and
Lennard-Jones (LJ) potentials [46]. The energy minimum of
the system will be the minimum of that scalar sum. Thus,
seeking global energy minimum has become a principle for
investigating protein structures.

This principle of global energy minimum has guided the-
oretical and computational research on protein stability and
been considerably fruitful. But, it is not without shortcomings,
especially with identifying native structures. Koehl and Levitt
have famously lamented about “a central embarrassment of
molecular mechanics, namely, that energy minimization or
molecular dynamics generally leads to a model that is less like
the experimental structure” [56,57].

It is tempting then to consider a static model. Not only we
have aforementioned evidence supporting a notion of stability
based on force balance, but, also, it is conceivable that in a
simple mechanical construction a scalar sum may not be an
appropriate indicator of structural strength.1

Yet, until now there is no serious attempt on an alternative,
e.g., a statics-based model, because there are formidable diffi-
culties. First, the thermodynamic hypothesis dictates that the
protein stability must be associated with an energy minimum.

1To illustrate the difference between seeking minimum of total
energy and seeking structural stability (see Sec. III), we can refer to
Fig. 3. Imagine we replace all the line segments by springs and these
springs are at their equilibrium position. The strain energy will be
zero. Imagine we now move spring AD to coincide with AC. Clearly,
the total strain energy is again zero. But, we know the former is
determinate and much more stable.

Even if a static model can formulate a perfect equilibrium for
the protein-solvent system, unless it can successfully establish
some form of energy minimum, it is theoretically suspect in its
soundness. In particular, to assume that the protein structure
is determined by statics is often perceived as to assume that
there exists a certain gadgetry that “locks” its parts into a
fixed shape. This to some extent goes against thermodynamic
hypothesis. Thus, it is rarely contemplated.2 Second, it is hard
to conceive a structure whose underlying support comes from
compression, let alone a molecular structure. In the first place,
compression is repulsion in energy potential terms which is
often associated with destabilizing structure. Furthermore, it
is difficult to identify the force which can counter the com-
pression in the interior to build an equilibrium. Third, to
develop an effective model for analyzing protein structure
with conventional tools, ways for representing the core assem-
bly as a conventional structure must be devised. In particular,
a proper way of modeling compression must be found. We
will show that all these difficulties have been handled in our
model.

B. Relevant concepts in traditional structure research

Traditional disciplines such as structural mechanics, me-
chanics of material, and structural analysis have been
developed for analyzing those conventional structures on the
basis of principles of theoretical mechanics, mostly statics.

The methodologies and conclusions of traditional structure
research that are relevant to protein structure can be summa-
rized as follows: Interactions between structural members,
e.g., stone, brick, cable link, column, and beam, determine
the shape or topology of a structure. The stability of a struc-
ture depends both on the building materials and the way the
structural members are arranged. The structural stability is
analyzed through equilibrium of forces and moments in three
dimensions (3D). A structure may fail because a structural
member breaks when reaching the strength limit of its mate-
rial. A structure may also fail in the form of buckling [61–65].
That is when no structural member is broken but the equi-
librium state shifts onto an unsustainable path. This is worth
mentioning because protein unfolding could be of this mode
of structural failure. An example of buckling is when one
pushes two ends of a slender stick (see Fig. 1). Supposedly,
if the pushing is perfectly centered, the stick will only be
compressed. But, in reality inevitably when the force exceeds
a threshold, the stick will bend, and eventually break. This
threshold is the famous Euler’s buckling load (alternatively
termed “critical load”).

The term load here refers to the various external force
actions everyday macroscopic structures are subject to. These
include wind, earthquake, etc., but the most common and
ubiquitous is gravity. The load level at which the structure

2The only known model that can be considered mechanical is the
cardboard box model [58]. It is a model on the folding process (rather
than on protein stability like ours) and is only qualitative. It does
not have significant followup research, which may have to do with
the fact that the supporting experimental data were later challenged
[59,60].
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(a) (b) (c) (d)

FIG. 1. Equilibrium states and stabilization of a stick or column
in engineering terms. In (a) a column is being pushed. In (b) under a
large enough compressive load (i.e., near the buckling load) a straight
slender column will bend and eventually break. (c), (d) Show the
additional supports in the middle (c) and at the ends (d). These will
increase the buckling load fourfold or twofold, respectively. More
detail is given in Sec. VI A 2.

fails is called failure load. To counter the load and support
the structure, structural members are designed to carry and
distribute the load. Usually and ultimately the support comes
down to the ground. In this paper, we will show that there are
counterparts of these in the protein structure but the similarity
will be at a very general level. For example, the load in the
context of protein structure would be a perturbation, such as a
thermal impact.

C. Specific static properties of protein structure

The protein structure, arising from nature, is fundamentally
different from manmade structures. Three of its specific prop-
erties are of central importance: the characteristics and source
of the supporting force of the structure, the mechanisms for
fixating its shape or topology, and the mechanism for keeping
the equilibrium stable. We briefly explain these in turn.

Although the protein structure is in a dynamic equilibrium,
it can be argued that there is no fundamental difficulty in
applying statics to the analysis of a protein database (PDB)
structure. This is because the structure in 3D coordinates is
a time and ensemble average anyway. The real problem is
exactly what is the source of the force that consolidates the
protein structure and what is the mechanism that determines
the topology of the structure. If we examine the interactions
involving the deeply buried nonpolar SCs, these are uni-
formly repulsions, i.e., behaving essentially as compressions
in structural analysis terms. When thinking in terms of re-
pulsions, the forces may be perceived as destabilizing. But,
as compressions they are widely used for structural supports.
Arches, domes, and buttresses in conventional structures are
well-known examples. Then where do these compressions
come from? The fact that a protein chain collapses from an
extended state to molten globule state and further condenses
to the folded state provides the answer: The entropic inward
normal force from hydrophobic effect is the main source of
the compression in the protein interior.

Not only the interior nonpolar SCs are engaged in compres-
sions, the SCs in one secondary structure can protrude into the

(a) (b) (c)

FIG. 2. Schematic illustration of blocking (a), double blocking
(b), and interlocking (c).

gap between SCs of another, blocking the axial motion of the
latter. The helices and h-bonded strands in protein structure,
which we will refer generically as substructures, have regular
geometry. In the regular arrangement of these substructures,
sufficiently large gaps between sequential neighbors will
form. As such, the intrusion by a SC from another substructure
has a sufficiently high probability. When the probability is too
high, the intrusions and blockings will become random and
that may cause protein chain to assume multiple topological
forms and there is no stable unique structure. But an analysis
of the data shows (see Supplemental Material [66]) that there
may be just enough such gaps so that if there are opportunely
positioned large SCs to intrude or protrude into them, then we
will have the key residues that determine a unique structure
for the chain.

Specifically, the axial interactions between nonpolar SCs
from two substructures can grow stronger with concomitant
multiple forces. It is easy to infer possible combinations. To
name a few, a nonpolar SC r′ from substructure H ′ may
protrude into a gap between r and another SC of substructure
H and has a strong axial repulsion with H at SC r. We
refer to such a case as r′ blocking r [Fig. 2(a)]. If there is a
sequential neighbor of r′, r′

1, also from H ′ that blocks r from
the opposite direction, then the axial motion of r and to a
considerable extent the axial motion of H will be constrained.
We refer to such a double-blocking case as locking for short.
In Fig. 2(b), r′ and r′

1 lock H at r. Two substructures can
mutually double block or lock, then we have interlocking
[Fig. 2(c)]. Conceivably, there can be various combinations
of blockings, lockings, and interlockings. The interior core of
the protein can be assembled this way. Upon this assembly
the full protein structure can be built. Compressive supports
are by nature strong but unstable. The aforementioned column
buckling is a prominent example. Stabilization mechanisms
are often necessary for structural members like column. For
proteins, the blocking action must be stabilized and the in-
herent stabilizing environment is the multitude of nonpolar
contacts in the interior. An equation for the buckling load of
the blocking action is derived in Sec. VI.

Our survey of a large set of PDB structures shows that
every structure has an assembly of substructures whose topol-
ogy is fixed by the above mentioned blockings in complex
blocking patterns. In contrast, for the decoys that are tested,
most do not have as strong an assembly. Some decoys, in par-
ticular decoys produced through threading, do have a similar
assembly. But they usually have buried charged or strong polar
SCs which will destabilize the assembly.
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This paper is organized as follows: We first introduce
geometric-mechanical patterns of (mostly) SC interactions,
e.g., blocking or interlocking, at increasing levels of or-
ganizations, until the level of nonpolar core assembly. To
mathematically treat core assemblies, we represent them as
a simple conventional structure, the truss. This will allow us
to solve the equilibrium equations of a core assembly and an-
alyze its structural strength, in particular its load distribution
and structural determinacy. We then consider comparing sta-
bilities of these core assemblies on the basis of the structural
strength. Finally, we present the results in applying our analy-
sis to native structures and decoys. In the Discussion section,
we detail the considerations for some modeling decisions, in
particular the buckling load of a blocking action.

II. MECHANISMS OF INTERLOCKING

A. Molecular forces in a static model of protein structure

Static analysis means both the whole structure and each
body in the structure must be in an equilibrium state. To wit,
forces and moments must be balanced in three translational
and three rotational degrees of freedom (DOF). Now we in-
troduce the bodies and forces considered in our model.

1. Solid bodies in protein structure

The core components of protein structure can be approxi-
mated as solid bodies. Here we will be using the term in its
classical interpretation: a solid body is a mechanical body that
is not necessarily rigid but has a definite shape. Within a range
it is able to recover its original shape after a deformation.
In the scope of this presentation, the solid bodies are mainly
spontaneously formed helices and h-bonded strand pairs. Both
these are secondary structures and can be modeled as cylin-
ders. When we refer to substructure axis, it is the axis of
the cylinder, which can be readily calculated from PDB files
[12,67].

In this presentation, we adopt a coarse-grained residue
level representation when analyzing the equilibrium of the
structure. However, when obtaining the interaction forces,
the calculation is at a more refined level. Each SC or main
chain (MC) unit can be explicitly positioned, through their
centroids, on the body according to the PDB coordinates.

All the coordinates are still given at atomic level using PDB
files. All the force field (FF) level forces can still be calculated
at atomic levels. But, only the resultant forces at SC or MC
unit levels are used in analysis. The term resultant here refers
to the sum total of the atom-atom forces between two atomic
groups.

2. Forces

All the major forces considered in our static model are
taken directly from the FFs widely used in the community, in
particular, CHARMM, Amber, and Gromos [47–49]. In this
presentation, we will use mostly Gromos FFs and adopt its
standard force unit of kJ mol−1 nm−1 [49]. We are concerned
mainly with the determinant of relative positions of solid bod-
ies. Thus only nonbonded forces are of interest. Furthermore,
we consider strong forces only. Thus, we consider short range
forces only for LJ interactions. For ES forces, we only con-

sider interactions between charged, strong polar, or MC polar
groups and only when they are either in the protein interior
(where the relative permittivity is low) or are in close distance
(so that the shielding effect of water is low). MC h-bonds for
helices are ignored as they are internal to the solid body and
do not participate in interactions between substructures.

For the forces defined in standard FFs, only the above-
mentioned nonbonded forces, LJ and ES, are explicitly
considered. Salt bridges (SB), i.e., interactions involving
charged groups, and h-bonds (HB), i.e., those between polar
groups, are handled through combining ES and LJ forces
[46]. Bonded forces are used in modeling the elasticity of
MC-SC links but do not appear in the model’s system of
equilibrium equations per se. Whether a force is tension or
compression is referred to as its sense. Whether a structural
member or mechanism is capable of either or both, a spring
or a steel bar being an example of the latter, is critical in
how it contributes to the equilibrium of a structure. As we
have argued so far, a compressive force may not be desta-
bilizing for the whole structure. Yet, often a tensile force
acts steadily whereas a compressive force unsteadily as we
have pointed out. LJ forces, when they are at non-negligible
level, are always compressive. ES interactions can be both
compressive or tensile. The sense of a resultant force is based
on the direction of the vector that is the sum of all the atomic
forces.

We also consider π stacking [68] between aromatic rings.
The force magnitude is estimated through the average interac-
tion energy and interacting distance. The direction is between
the centroids. The sense is attractive. At the same time, the
two aromatic rings are often engaged in strong repulsion. But,
the coexistence of attraction and repulsion does not imply a
conflict (or a cancellation if a scalar sum is being calculated).
First, their effects peak at different distances. When they are
very close, the attraction part relents, i.e., becomes relatively
negligible, then when they are at a distance the attraction takes
over. Second, they can serve the same purpose. A way of
viewing the attractions and repulsions in π stacking is that it
is linking an arch’s stone wedges with powerful springs, thus
doubly stabilizing the structure.

We consider two nonpairwise forces as well. First, it is
the entropic hydrophobic force. This force can be viewed
as associated with the desolvation free energy of a nonpolar
group or associated with the notion of solvent exposed surface
area [19,21,46]. If we consider that hydrophobic effect is to
minimize the exposed nonpolar surface area of a protein, and
if we also consider the force field conservative, i.e., we can
have a potential, then differentiating the potential we should
mathematically have a force. This is a force acted on a nonpo-
lar group, pointed inward and basically normal to the surface.
The hydrophobic effect is the most fundamental to protein
structure. In that sense, the hydrophobic force provides the
ultimate support to protein structure just like ground support
does for conventional structures. This force will show up in
the equilibrium equations as support reactions, the external
forces that counter the load.

Second, we consider the neutralizing force for a charged
or strong polar group that is buried in the nonpolar interior.
When it is not neutralized by forming a SB or HB with a close-
by charged or polar group, such a group will be subjected to
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a very strong outward force. Unlike the hydrophobic force,
this force can be derived from a regular FF by considering the
electric field of the standalone charged or strong polar group.

For both forces, their directions are based on geometry. In
particular, they depend on properly defined nonpolar interior.
This “interior” notion is related to but different from solvent
accessible surface as defined in [69]. A nonpolar interior can
contain a large enough void for some water molecules to move
in. But, the relative permittivity can still be different from that
of bulk solvent. This is discussed in detail in Sec. IV D.

B. Blocking, double blocking, and mutual blocking

We now formally define and expound the basis of our
model, the mechanisms of interlocking. As explained in the
Supplemental Material [66], the axial direction displacement
of the substructures is assumed to be the most common sce-
nario for a structure to deform and disintegrate. Thus, we start
from the action that blocks this motion.

We first define blocking of a substructure H at SC r by a
SC r′ from a substructure H ′ as shown in Fig. 2(a). For this,
we consider the resultant LJ force fr,r′ between SCs r and r′.
If we denote the axis of H by a1, then the axial component of
the force will be f rr′ · a1.3 There is a blocking fb if this axial
component exceeds a threshold δ > 0, i.e.,

| f b| = | f rr′ · a1| � δ. (1)

If a blocking is strong enough in this axial dimension, it can
stop the motion of the substructure H in one direction, thus
contributing to the reduction of DOF of H . The intensity with
which this axial blocking acts is naturally the axial component
of frr′ , fb. For notational convenience later, we can introduce a
relation block({H, r,±}, {H ′, r′}) to mean Eq. (1) where “±”
is “+” or “−” indicating the sense of blocking relative to the
axis of the substructure H .

We emphasize that this is not the same as the structural
strength of this blocking. The latter would mean at which
force level the blocking will fail and the reduction of DOF
will be reversed. It could be much larger. The failure of this
blocking is likely closer related to the force frr′ than its axial
component fb. We thus consider this strength as frr′,max. The
accurate measure of this strength requires detailed analysis of
the nature of the geometry and force field involved in this LJ
interaction between a SC pair. For now we would simply take
the former as proportional to the latter. That is, approximately

frr′,max ∝ frr′ . (2)

where “∝” denotes proportional. If frr′ is in a near linear
region of the LJ force (it can be so approximated as indicated
in Sec. VI), we can introduce a notion of stiffness for such a
force so that within a range

frr′ = k0�0, (3)

where k0 is the stiffness and �0 the displacement, i.e., the
distance change between the interacting pair in the LJ force.
Then we can further introduce a notion of stiffness of blocking

3In this paper, a vector will be in boldface if it is operated on as a
vector.

FIG. 3. An example of four points in equilibrium. The line seg-
ments connecting them, including double lines (between the points),
represent the internal forces. A double line represents MC connection
that can carry both compression and tension. A single line indicates
a blocking. P and R’s are external forces. P can be taken as the load.
R’s are support reactions. This setup can also be viewed as a simple
truss with four joints and five bars (see Sec. III). The circled points
are joints. The lines or double lines are bars.

k, fb = k�, where � = �0 · a1 is the axial projection of �0.
Clearly, k = k0. The reader may notice that we are making
a big leap here: we are assigning stiffness to an interaction
rather than a physical object. However, as will be seen in
Sec. III, only with this notion of stiffness in place, we can
solve structures using strain energy-based method in tradi-
tional structural analysis.

This blocking action exists in the context of a maintained
equilibrium. For example, at the points of action, SCs r and
r′, for the two SCs to be in equilibrium, frr′ must be balanced
by some other forces. For this purpose, each SC can easily get
some support from its respective MC unit. But, supports from
lateral directions are also needed. We show a textbook exam-
ple of such force equilibrium in Fig. 3. Here points A, B,C, D
can be viewed as SCs attached to MC, while AB and CD
represent stretches of MC. For example, fAC can be like frr′ .
One may notice that there is a parallel between this figure and
Fig. 2(c). Indeed, the former can be a formal representation
of the latter. In this setup, for C to stay in equilibrium, if
fAC = 0, then the external load P can be balanced by fCD.
However, if we want to add fAC to share the load with CD,
another force must be added: the support reaction RC at C.
The equilibrium can also be affected by the asymmetry in
force senses of the blocking action. For example, if AD can
only carry compression as in a blocking, then in +x direction,
there will be a nonzero force (if fAC is nonzero). There will
need a reaction force RA at A to balance it. As we will see
in Sec. III this asymmetry will have severe consequences in
developing our model.

Aside from the equilibrium per se, there is another factor
in structural stability: the equilibrium must be stable [70,71].
The force frr′ , being a compressive force, will be unsteady
if the two acting bodies, SCs r and r′, do not receive some
support actions, usually from lateral directions. In Sec. VI B
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we will show that a blocking action laterally supported by a
single SC that performs like a spring will have a buckling load
(i.e., above which the two SCs will slip off one another)

P = Ckr2/L, (4)

where C is a constant, k is the stiffness of the spring, and r and
L are geometric parameters for the supporting and supported
SCs, respectively. In the interior of a well-packed structure,
the packing density is large enough. Each SC is allowed to
have several neighbors from different directions. Thus, the
force frr′ can be held steady by them.

1. Double blocking

If there are blockings in both directions of a substructure,
its degrees of freedom in the axial dimension are removed or
diminished, as shown in Fig. 2(b). Formally, substructure H
is axially blocked both ways at SCs r, r1, by SCs r′, r′

1 from
substructure H ′ when⎧⎨

⎩
| f rr′ · a1| � δ,

| f r1r′
1
· a1| � δ,

( f rr′ · a1)( f r1r′
1
· a1) < 0.

(5)

When the same SC is subjected to blocking in both directions,
i.e., when r = r1, there will be little if any moment. Fur-
thermore, the efficiency of the use of SCs is improved. This
pattern is frequently observed in protein structure; we thus
define it as locking or double blocking, denoted by a relation
lock(r, {r′, r′

1}).
A locking stabilizes its blockings. By examining the equi-

librium condition of the three interacting SCs, we can see why.
Here not only the forces frr′ , frr′

1
have axial projections that

can hold SC r in place, but also frr′ , frr′
1

can each prevent the
other from slipping off the action line.

2. Mutual blocking

We observe that the formulation of Eq. (5) has a symmetric
case in which f and a trade places:

f · a1,− f · a2 � δ. (6)

Here we assume force − f is on r′ of substructure H ′ and is
along the axis a2. If it is opposite a2, a minus sign “−” must
be added in front of a2. These equations describe the case of
mutual blocking,

When both double and mutual blockings happen, we will
have interlocking, the main subject of the next subsection.

C. Interlocking between two substructures

As mentioned earlier, depending on the force projections
on the axes of two interacting substructures, the forces may
or may not generate blocking on both substructures and in
both directions. However, if they do, the effect on fixating the
structure is multiplied. An example of this setup is shown in
Fig. 2(c). This relation can be formally specified in terms of
four blockings on both substructures and in both directions. It
will involve total eight SCs, r, r1, r2, r3 ∈ H and r′, r′

1, r′
2, r′

3 ∈
H ′.

Just like in the introduction of double blocking or locking,
this general case is inferior in many properties, e.g., efficiency

(a) (b)

FIG. 4. Cross interlocking shown in schematic (a) and simpli-
fied (b) drawings. Note that the two cylinders in (b) represent the
two substructures. The line segments AC, AD, BC, BD represent the
blockings. AB, CD represent the MC parts. (b) Can be viewed as a
truss representation which is detailed in Sec. III.

of SC usage and steadiness from the same SC being blocked.
If not only r and r′ are mutually blocked, but also r vs r′

1 and
r′ vs r1, then the number of SCs involved will change from
eight to four. This pattern of blockings, with its advantages in
properties, is also frequently observed. For example, it occurs
when two helices are in near parallel packing and the block-
ings are arranged in tandem. Sometimes there are one or two
blockings missing due to the force being slightly lower than
the minimal intensity (δ). But, the pattern is unmistakable.
We thus define this as tandem interlocking and refer it as
interlocking when no confusion will arise. To express the case
in terms of locking and blocking:

interlocktandem(r, r1, r′, r′
1)

≡ lock(r, {r′, r′
1}) and block({H, r1,±}, {H ′, r′}) and

lock(r′, {r, r1}) and block({H ′, r′
1,∓}, {H, r}), (7)

where ±,∓ can be either “+” or “−,” r, r1 ∈ H, r′, r′
1 ∈ H ′.

When only the substructures are concerned, we may write
I (H, H ′) as a shorthand and may add subscript to “I” to
indicate the type of an interlocking. By definition, I (H, H ′) =
I (H ′, H ). Similar to how the strength of locking is defined,
the strength of interlocking is just those of lockings separately
on two substructures. We stress that “interlock” and “I” here
should be interpreted as a shorthand for the physical equa-
tions implied by the “lock” and “block” relations, which we
have commented when introducing the relation “lock.”

1. Cross interlocking

Two substructures can interlock in such a way that each
has only two SCs involved yet both SCs are in locking. We
call this cross interlocking. Schematic drawings are shown in
Fig. 4. Formally this is equivalent to

interlockcross(r, r1, r′, r′
1)

≡ lock(r, {r′, r′
1}) and lock(r1, {r′, r′

1}) and

lock(r′, {r, r1}) and lock(r′
1, {r, r1}). (8)

An example of cross interlocking in PDB structure 1ARQ
is shown in the Supplemental Material [66].
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FIG. 5. A simplified display of the core assembly of 1CTF,
shown as stereoscopic images rendered with VMD [73]. Only non-
polar and salt-bridge interlockings are shown as pink lines. These
should be lines in the direction of resultant forces between two
SCs. Because the large size of SCs will block the view, they are
approximated by connecting close distance atom pairs from two SCs.
For nonpolar interlocking, the atoms are carbon (colored yellow).
For salt-bridge interlocking, they are oxygen (red) or nitrogen (blue)
atoms. To show which substructure a SC is from, we have marked the
SCs by “H1,” “S1,” etc. where “H” indicates helix and “S” strand.
To make more SCs visible, their size is reduced. Note that since all
the blockings are mutual, the pink lines for nonpolar interlockings
are often nearly parallel to the two substructures from which the
SCs emerge. This can also be viewed as a truss representation of
the assembly (see Sec. III). In a truss representation, there should
be bars for connecting joints of the same substructure. Here they are
omitted to avoid cluttering the view. Instead, the cartoon images of
substructures are added.

2. Hairpin, salt bridge, π stacking, and disulphide
bond-based interlocking

Attractive actions such as h-bonds, salt bridges [72], π

stacking, and disulphide bonds can also form interlockings.
In addition, LJ forces can participate in an interlocking that is
based on a particular substructure position, the hairpin.

The hairpin configuration is well known [1]. In our model,
in the implementation, it is formally required that a hairpin is
two substructures, helices or strands, connected by a loop with
at most three residues in a near parallel position. The two ends
of each of the substructures can be distinguished as connected
end and opposite end. Then, a hairpin-based interlocking is
defined as a hairpin that contains two blockings, one each on
the substructures and pointing to the opposite end.

Similar to a hairpin, SBs can also reduce the DOF of a pair
of substructures. We consider that there is an interlocking if
there is a SB force at 180 force units (i.e., kJ mol−1 nm−1)
or there are two SB forces each at above 90 force units and
at the same time there is a nonpolar locking between the
two. (Examples of SB interlocking are shown in Fig. 5 and
in 1AEP display in the Supplemental Material [66].) Since
π stacking involves two aromatic rings, π -stacking-based in-
terlocking is subsumed by nonpolar interlocking, only with
higher strength. In particular, its attraction strengthens that

interlocking. Lastly, a disulphide bond alone can introduce an
interlocking if it is between two substructures.

D. Assembly of substructures on the basis of interlocking

When we have more than one pair of interlocked substruc-
tures, we may investigate if they are fully fixated in space
and, if so, investigate the property of the integrated body of
substructures. We refer to any such collective body as a core
assembly. If we use the concise notation introduced earlier, an
example assembly containing substructures A, B,C, D may be
specified as

I (A, B) and I (B,C) and I (C, D) and I (D, A). (9)

The above example can be generalized to define a core assem-
bly as

�i, j∈{(i1, j1 )}I (Hi, Hj ), (10)

where � denotes repeated “and′′ operation and {(i1, j1)}, a set
of integer pairs. {(i1, j1)} has two properties: (1) it is a subset
of {(i, j)|i, j = 1 . . . m and i �= j}, assuming there are m sub-
structures in the conformation; (2) the pairs of {(i1, j1)} are
in a cluster. That is, they are all connected.4 For convenience,
we may also refer an assembly as the set of its constituent
substructures {Hi} or the set of its interlockings {I (Hi, Hj )}
when no confusion will arise.

We have commented at the time when the relationship
“I” is introduced: it represents full 3D interactions among
bodies. Here, the above relation, Eq. (10), specifies a full 3D
physical assembly. We can infer properties of an assembly
at this abstraction level. But, we can also flesh the assembly
out to full 3D coordinates and carry out calculations. This
would be solving the system of equilibrium equations for the
assembly. In the very next section, we introduce the truss
representation that offers a simplified framework for setting
up this equation system. We show the stereoscopic displays
of the core assembly of 1CTF in a simplified representation
in Fig. 5. A similar display for 1AEP is in the Supplemental
Material [66].

There are a myriad of variations in configuring core assem-
blies from interlockings. These often correspond to packing
configurations and some have been cataloged by the pioneer-
ing analysis work on protein geometric properties cited in the
Introduction. What makes our treatment different is analyzing
the same patterns using statics to examine the consequences
in terms of force equilibrium and thus a well-defined struc-
tural strength and stability. As an example, we describe
two common interlocking patterns in core assembly, high
coordination and circularity. They will be formally defined
here and analyzed in Sec. IV.

4This specific clustering is as follows: Let A = {i} be a set of
integers, SI = {(i, j)|i, j ∈ A} a set of pairs of integers in A,

for all i, j ∈ A, there is a sequence σI

= [(ik, ik+1)]l−1
k=0 such that

[(for all (ik, ik+1) ∈ σI , (ik, ik+1) ∈ SI )

and (i0 = i, il = j)].
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(a) (b)

FIG. 6. Core assemblies with high coordination interlocking and
circular interlocking. The connecting lines indicate interlocking.
Hi’s are nearly parallel-packed helices. An interlocking can be
added to each assembly so that the two have identical interlockings
(Sec. IV B). The dashed lines indicate the additional interlocking.
Then these are core assemblies of a 4-helix bundle.

High coordination configuration. A substructure can be
chosen out of several as the center and the other substructures
interlock onto it. As a result, the center one is a high coordi-
nation substructure. Again using � to denote repeated “and”
operations, we have

�k=1...mI (H, Hik ),

where {ik} is a subset of {i|i = 1 . . . n}, n being the total num-
ber of substructures. That is, substructure H interlocks with
all m substructures. m is the coordination number denoted by
CH = m. Clearly, the average of CHi is an indication of how
interlocked the substructures are in the assembly. An example
of this is shown in Fig. 6(a).

Circular configuration. A substructure usually can not
interlock with too many neighbors. Thus, an efficient arrange-
ment may have two high coordination substructures. But, then
the interlocking between the two can become most responsi-
ble for the loss of the interlocked substructures. In parallel
packing configuration, interlocking of substructures can form
circles. This strengthens the assembly since breaking of one
interlocking, which can be considered redundant, will not
cause the assembly to lose a single substructure. For example,
this is when Eq. (9) holds for substructures A, B,C, D.

Here A is connected to B both through I (A, B) and through
I (A, D), I (D,C), I (C, B). If we remove interlocking I (A, B),
A is still connected to B. In general, we can have

�i=1...mI (Hi, H(i+1) mod m) (11)

for substructures Hi. Here mod is the modulo operator. It is
common to see such circular interlockings with m = 3 or 4 in
PDB structures. An example of this is shown in Fig. 6(b).

In an assembly the efficiency of the nonpolar SCs in
contributing to blocking is further enhanced as a SC can
participate in interlockings involving multiple substructures.
The DOF reduction through core assembly and the structural
strength of a core assembly will be discussed after we have
introduced its truss representation and associated properties.

III. TRUSS REPRESENTATION OF CORE ASSEMBLIES

To understand the strength and stability of the core as-
sembly, the equilibrium of the structural members must be

FIG. 7. A truss representing three substructures in interlocking.
The notation convention is the same as in Fig. 3.

analyzed. The protein native structure is then identified by
analyzing the stable equilibria of all potential core assemblies
and finding the one that has the highest failure load. This can
be done by applying basic principles in mechanics and by
borrowing, with modifications, some tools from conventional
structural analysis. A particular tool that we use in our static
model of protein structure is the truss representation. One gets
the image of a truss from truss bridges or internal frames of
factory shops. An example of two-dimensional (2D) truss is
shown in Fig. 7. That of a 3D truss is shown in Fig. 5. In
structural analysis, a truss is treated as consisting of bars, i.e.,
line segments, joined by joints, i.e., points, and supported at
the joints [61,62]. In general a bar can only carry axial forces
but can carry both compression and tension. If a bar can only
carry compression, it is a compression-only member. All the
internal forces are through the bars and equilibrium can be
established at each joint. That is, formally the equilibrium
equations are

For every joint j in truss for every dimension d ∈ {x, y, z}
∑

Fj,d = 0. (12)

Thus, the analysis can avoid more complicated actions on
structural members such as shear forces or bending moments.
This makes truss an ideal medium for building a simplified
model of structures, including protein structures.

A. Interlocking represented in a truss

When two substructures are interlocked, a load applied on
one will have effect on the other. As a result, an interlocking
has the additional function of diverting the load aside from
fixating the structure. To appreciate this, we can model each
blocking between an interacting pair of SCs as a bar in a truss.
As such, a residue including both SC and MC units will be a
joint in the truss. Later, we may refer to a joint as a SC. This
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is because the intensities of bar actions are often calculated
on the basis of SC interactions. As shown in Fig. 3, we have
four SCs similar to Fig. 2(c). Bars AB and CD are part of MC,
while bars AC, AD, and BD represent (mutual) blocking.

In analyzing a plane truss, the basic equation [61–63,70] is

2 j = b + r. (13)

Here j is the number of joints, b number of bars, and r the
number of reaction forces. This equation can be interpreted in
two ways. First in 2D each point has two degrees of freedom,
totaling 2 j. Adding each bar or reaction potentially constrains
one degree of freedom. For the equilibrium the two should
be equal. A second interpretation is to see this as solving a
linear equation system with 2 j equations in which each joint
will have two equations for x- and y-dimensional degrees
of freedom [consider Eq. (12) in 2D]. If we have exactly
b + r = 2 j unknowns, we will likely have a unique solution.
If the sum b + r is smaller, the truss is not fully constrained
and the equation system will not have a solution. If the sum
b + r is larger, then the structure is overdetermined or indeter-
minate [61,62,74]. The extra b + r − 2 j forces and reactions
will be considered as redundants. We will have to resolve
the indeterminacy through additional geometric compatibility
constraints.

Turning to the example on Fig. 3, we apply the equa-
tion 2 j = b + r. Assuming all bars can be both tensile and
compressive, one can verify that with just three reactions, the
truss will be solvable and determinate. With total six reactions,
this truss is indeterminate.

If a tandem interlocking can be viewed as part of a plane
truss as above, then a cross interlocking (as shown in Fig. 4)
can be modeled as a space truss with the blocking pairs treated
as bars. The basic equation for space truss is 3 j = b + r with
similar interpretations as for the 2D equation. With 4 joints,
3 j = 3 × 4 = 12. There are six bars. Six support reactions are
needed, which is exactly the number of degrees of freedom for
a rigid body in space.

We can analyze the equilibrium of this truss like we have
done with the 2D truss (Sec. II B) and see how the load is
distributed and how large a force an intermediate bar will
carry. We will not go into the details now. It is sufficient to
point out that since at each joint there are two bars coming
from the other substructure, the burden on each of the bars will
be less. Furthermore, the load that is axial in one substructure,
e.g., AB in the figure, becomes lateral in the other. This has
consequences in load distribution.

Constructing a truss representation for a core assembly

To analyze the equilibrium properties of a core assembly,
we can map it into the truss representation. The construction
of this truss is by first separately constructing the partial truss
for each substructure. In this construction we must make sure
each substructure is itself stable, that is, satisfying 3 j = b + r
where r = 6. When j � 3, MC bars that only connect sequen-
tial neighbor residues will not be enough (then b = j − 1). A
large number of extra MC bars need to be added. However,
this does not present an operational problem. In many cases
as a sufficient condition a simple procedure can be followed:
If a space truss can be constructed by successively adding

tetrahedrons to a starting stable truss, then it will be stable.
Note that this is exactly adding three bars per one joint, thus
satisfying the basic equation at each step. We then can add
the compression-only bars which are the blocking forces from
neighboring substructures.

Aside from LJ forces, a wide range of forces in inter-
locking are represented as bars in the truss representation.
These include h-bonds, π stacking, disulphide bonds, and salt
bridges. The first three force types usually have the coun-
terparts of nonpolar SC-SC compression-only interactions
yet themselves are capable of both tension and compres-
sion. Because of this, in the truss, we can simply change
the compression-only bars to generic bars, i.e., both tensile
and compressive. Many salt bridges and some h-bonds are
far apart from their associated nonpolar lockings. For them
specific bars may be added to the truss and in the equilibrium
analysis. Destabilizing forces can be included in the truss too.
For example, an unneutralized charged group will be a load
on a joint that is created for the charged SC. If there are
j joints in the assembly, this will result in 3 × j equations.
Geometric and constitutive compatibility equations are often
needed to resolve indeterminacy. For this the stiffness calcu-
lated through Eq. (3) will be needed.

B. Load distribution problem for protein core assemblies

We are interested in how strongly a core assembly can
resist a potentially disruptive external force, i.e., load. This
capability can be measured in two ways. First, on the blocking
side, how strongly each bar is engaged in. This is described
in Eq. (1). Second, how a load on a single substructure can
be distributed onto all the substructures in the core assembly.
Furthermore, in the process of force transfer, on which bar the
force is the largest. Now we address the second measure.

For a conventional truss, this can be solved by solving
the equilibrium equations if the truss satisfies the basic equa-
tion 3 j = b + r. When 3 j < b + r, the truss is indeterminate.
Still, mechanics has a well-established procedure on the basis
of energy conservation and geometric constraints to solve
the system. A rudimentary understanding of this procedure
is essential in following how our model operates. However,
because it is not in our model per se, it is presented in the
Supplemental Material [66].

Briefly, the procedure is formulated as an optimization
problem but is then reduced to solving a linear system of
equations. Relative to the equilibrium equations, this is a
second set of equations, called compatibility equations. They
relate the deformations and associated strain energy changes.
For a bar in conventional truss, the strain energy arises from
the stiffness associated with well-known elastic modulus. For
the blocking bar in the truss representation, it is the stiffness
defined in Eq. (3).

Assume n (= b + r) is the number of bar forces and re-
actions, i.e., unknowns in the equilibrium equations of the
truss, and m (= b + r − 3 j) is the degree of indeterminacy (or
the number of redundants). As the solution process (shown in
the Supplemental Material [66]) will demonstrate, solving the
indeterminate truss requires (1) solving m + 1 linear systems
of equilibrium equations of order 3 j = (n − m) in the form
of Mx = b and (2) solving a linear system of equations of
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the form of M1ξ = β, where M1 is an m × m symmetric
matrix. As a result, computationally the complexity of the
equation solving is at least O([max(3 j, m)]3).5

In a conventional truss some indeterminacy will be present.
But the indeterminacy is necessarily much higher in a truss
representation of a core assembly. This is because of the
compression-only nature of its blocking bar. Assume there are
ns residues in the core assembly, there will be the same num-
ber of joints in the truss. For each joint, there will be several
blocking bars connecting to it. From Sec. II B, because of the
compression-only nature of these blocking bars, we know that
for each of these bars usually a reaction is needed to balance
one, two, or three components of the bar force. Assume on the
average the reaction number is 1 1

2 per joint, there will be total
3/2ns reactions. We know a self-standing truss only needs six
external forces to fix its position in space. Thus, when we
have this many reactions, we will have a much larger r in the
basic equation 3 j = b + r. This will be a structure with high
degree of indeterminacy, which implies high computational
complexity. In searching for the native structure, the search
program needs to examine a huge number of core assemblies,
each with large number of nonpolar interior contacts. This
high order of complexity can be a serious burden.

In the Supplemental Material [66] it is shown that the
simple trusses therein exhibit the following patterns of behav-
iors: (1) a load on one substructure is distributed to nearby
substructures; (2) a 3D truss enjoys more even load distribu-
tion than a similarly constructed 2D truss; (3) it seems the
more densely the support reactions are located near the load,
the more locally distributed is the load. With a similar high
density of reactions it can be expected that the protein core
assembly will behave similarly.

C. Structural strength of core assemblies: Failure load

As the final step in describing our static model of protein
structure, we define its structural strength or stability. By that
we mean the load at which the structure fails. This can be
approached through the equilibrium equation system of the
structure, i.e., of the core assembly [Eq. (12)]. In setting up
this equation system a unit test load is placed in the axial
dimension in both directions of each substructure. The par-
tial load carried by each fixating force bar in the truss, e.g.,
blocking, h-bonding, or other force in interlocking, can then
be solved. This is checked to find P, a scaling of the unit load,
that exceeds the structural strength of the bar, i.e., breaks it.
We can choose the load that breaks the “key” interactions
in all the interlockings, which means breaking the strongest
fixating interactions, as the failure load for the structure.

For the truss of the core assembly under load P, a solution
bar force Fji,P can be found for every fixating bar indexed
by ji of interlocking i. Let Bi be the set of bar indices for
interlocking i. Let f ji,max denote the strength of bar ji as
defined in Eq. (2). Then, failure load of the structure is the

5Despite the multiple of m + 1, because only the b term in the
linear equation systems Mx = b changes, matrix M only need to be
factorized once, e.g., through LU factorization. In fact, since M is a
sparse matrix, the complexity may be as low as O[(3 j)3/2].

minimal load P that can produce a bar force Fki,P exceeding
the bar strength fki,max for the strongest bar of each of the
interlockings. Formally,

Pfailure

=Minimum P such that[ for bar set of every interlocking Bi

(let fki,max = max
ji∈Bi

f ji,max, Fki,P � fki,max)]. (14)

This definition does not require every bar force Fji exceeds
the strength of the bar ji, f ji,max. That requirement is only on
the single bar that is strongest in the interlocking. The assump-
tion is that the experimentally determined “key” interaction is
also the strongest among those in an interlocking.

Recall that fki,max, based on Eq. (2), is an empirical quan-
tity. It is calculated from the current resultant LJ force between
two SCs. It is dependent on the distance and orientation
between the two. But, it should also be dependent on how
the two SCs are supported laterally and how the SCs that
support them are themselves supported. In the former case, the
possible failure is likely abrupt. In the latter case, the failure
would be more gradual, as in a slipping-off scenario, which is
like buckling as described in Sec. VI B.

Now that the structural strength (i.e., failure load) for a
core assembly is defined, the native structure in our static
model will be the conformation whose core assembly has
the highest structural strength in comparison with all other
conformations.

IV. COMPARING INTERLOCKING FEATURES
OF CORE ASSEMBLIES

In many practical applications, we are comparing the sta-
bilities of two conformations, typically deciding if one is the
native structure and the other a decoy. In that case, we only
need to know the relative strength of the two. This approach
is supported by the nature of protein structure. Statistical me-
chanics of protein folding dictates that a native structure must
be substantially superior to all (or most) other conformations.
This implies that there can be salient features or measures that
distinguish the native structure at a qualitative level. This fur-
ther implies we may apply our truss representation to calculate
the patterns and intensity of substructure interlocking without
solving the system of equilibrium equations. This can be more
desirable than just finding a failure load. First, by identifying
patterns of interlocking with higher structural strength and
stability, the search for native structure can be more efficient
[75,76]. Second and more important for testing our model, it
can avoid adoption of potentially controversial or uncertain
parameter values.

A. Redundancy in core assembly:
Duplicate and circular interlocking

Redundancy is generally considered a factor that strength-
ens structures [61,62,71,74]. The benefit of redundancy is
first and foremost in sustaining the equilibrium. That is, if a
particular structural member fails, a redundant member that
provides support at the same junction can come in and the
structure can still stand. In our model, it also has another
quantifiable benefit: the proportional load reduction when
adding an additional interlocking.
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In a core assembly, redundancy can take many forms. We
mention two: duplicate and circular interlocking. Circular
interlocking is introduced earlier [Eq. (11) and Fig. 6(b)].
By duplicate interlocking, we mean that the same pair of
substructures are interlocked through two sets of interlocking
actions. They can be of different types, e.g., one nonpolar
interlocking and another salt-bridge interlocking. But, they
can also be just two nonpolar interlockings. We may formulate
for the former

I (H, H ′) and Isalt bridge(H, H ′),

where the shorthand is used and the subscript for the second I
indicates the type. For the latter, we may write

I (H, H ′) and I ′(H, H ′) and I �= I ′.

To accurately know how a particular duplicate setup can
change the force distribution, the system of equilibrium equa-
tions must be solved. But, we can appreciate the scale of
change by examining some simple scenarios. For a duplicate
interlocking, we arbitrarily assume that one interlocking I j ,
with stiffness K for the blockings [as defined Eq. (3)], is “orig-
inal” and that the other I j1 , with stiffness k for the blockings,
is redundant and added later. With a simplifying assumption
that the two interlockings proportionally share the load, it can
be shown that the load on I j becomes

P′
j = K

K + k
Pj .

If, alternatively, I j1 is assumed to proportionally share the
load with all the interlockings, assuming the total load is P,
the load on I j becomes

P′
j = P

P + Pj1

Pj . (15)

This latter equation also applies to redundant interlocking
arisen from circularly interlocked substructures.

B. Concentrated interlocking assembly

As mentioned in Sec. II D, with high coordination sub-
structures we can have concentrated interlocking assembly.
Thus, when two core assemblies are otherwise equal, we can
compare their mean coordination to see if one is superior.
If the two mean values are not significantly different, we
can check if one has a much larger maximal coordination
number since that usually would enable the core assembly to
do better in efficiency, steadiness, and strength. But, there can
be complicating cases which we show below.

We can have two assembly patterns related to the familiar
4-helix bundle. The four helices can have one in the center
(H1) and the other three interlocking onto it. Then additionally
two out of the three (H2, H3) form redundant interlocking
as shown in Fig. 6(a). Alternatively, there can be a circular
interlocking with each forming two interlockings as shown in
Fig. 6(b). The former case can be expressed as

�i=2...4I (H1, Hi ) and I (H2, H3).

The assembly will have a mean coordination number of
〈C〉 = 2. If we arrange the coordination numbers in decreas-

ing order, it will be 〈3, 2, 2, 1〉. The latter case will be

�i=1...4I (Hi, H(i+1) mod 4)

the assembly will have similarly 〈C〉 = 2. But, the sequence
of coordination numbers is 〈2, 2, 2, 2〉. By adding a new inter-
locking, the two cases will become identical. This is shown as
dotted line in each figure. Formally, we have

�i=1...4I (Hi, H(i+1) mod 4) and I (H1, H3). (16)

Mean coordination number is 〈C〉 = 5
2 . The sequence is

〈3, 3, 2, 2〉. Many 4-helix bundles, e.g., 2MHR, have this con-
figuration. 1AEP with five helices has a similar configuration.
Clearly, before adding the fifth interlocking, the two assem-
blies have nearly equal measures in terms of coordination
number. The one that is obtained through adding an interlock-
ing [Eq. (16)] is superior to both original ones.

C. A longer helix vs two short helices from
the same chain segment

We are concerned with two core assemblies where one has
a helix H◦ but the other breaks the same chain segment H◦
into two helices with an intermediate loop, H◦ = H ∗ L ∗ H ′.
Here each symbol denotes an amino acid chain segment and
the asterisk denotes concatenation. As a consequence, if the
helices are to get the same near minimal number of interlock-
ings of 2 (see Sec. VI C), we would have

I (H, Hj1 ) and I (H, Hj2 ) and I (H ′, Hk1 ) and I (H ′, Hk2 ),

where j1, j2, k1, k2 are indices of substructures other than H
and H ′. In contrast, for H◦, we may have

I (H◦, Hi1 ) and I (H◦, Hi2 ),

where i1, i2 are similarly indices of substructures.
Breaking up the chain segment H◦ may be necessary when

the amino acid distribution pattern changes along the chain.
When a helix straddles both interior and exterior, the ideal
pattern of nonpolar amino acid distribution is typically r, r +
3, r + 4, r + 7. This way they are on the same half of the
cylindrical surface of the helix, which we will refer as face. If
two consecutive such patterns can line up on the same face of
a helix, then it may be advantageous to not break up the chain
segment. On the other hand, if the two patterns will end up on
opposite face of a helix, then it would be more advantageous
to break them into two.

However, starting a new helix unnecessarily can be a waste.
When H , L, H ′ can place their polar or nonpolar residues
separately on the same faces and when the length of H plus
H ′ is not too long for the total chain length (so that the
core assembly can fit a relatively globular shape), H◦ in the
assembly is more stable than H , H ′ being in an otherwise
identical assembly. This is because (1) an additional helix will
add six extra degrees of freedom, which must be handled by
interlocking. (2) The additional helix will compete for SCs to
interlock with a scarce resource. (3) If the additional helix,
e.g., H ′, does not align with H , i.e., together they take up
the same continuous space, then H ′ will cause a less regular
packing in the assembly.

There can be the reverse of the phenomenon that we just
discussed. That is, for the same H◦ = H ∗ L ∗ H ′, breaking up
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H◦ is necessary: Otherwise, the nonpolar faces and polar faces
of helices may be mixed up and an unneutralized charged
group may be buried.

When an unneutralized charged group is on a substructure
of the core assembly and is buried in the deep interior, in terms
of the equilibrium, we can view it as a polar load Pp, being
applied on the substructure. In the Supplemental Material [66]
we explain that its presence will most probably reduce the
interlocking intensity.

D. Implementations

The program for extracting and comparing protein core as-
semblies is implemented in SBCL [77], a version of common
Lisp, and can also run in Maxima [78]. Most of the results
reported below can be directly calculated from the formal
definitions. Many of the critical parameters are mentioned in
the Results section. Here we just explain two implementation
issues: how we calculate interlocking intensity and how we
determine if a SC is interior versus if it is “exposed” to solvent.

The evaluation of blocking intensity, fb in Eq. (1), be-
tween two SCs is mainly based on geometric measures such
as distances and angles rather than a force field. A pair of
nonpolar atoms, including nonpolar hydrogen atoms, is as-
sumed to be in repulsion when the gap distance between them,
i.e., the difference between their center-to-center distance and
the sum of their radii, is under a threshold dthresh. Two SCs
are considered in interaction when their respective atoms are
in interaction. When the two interacting SCs are from two
neighboring substructures, if the angle between the vector of
this interaction and the axis of one of the substructures is
smaller than a threshold, a blocking exists. Note that since
there are one-to-one mappings between gap distance and
center-to-center distance and between the angle and the axial
component of the force in Eq. (1), theoretically we can have
a mapping from the threshold δ in Eq. (1) to dthresh and an
angle threshold. Yet, we chose to implement the calculation
using this distance and angle measure. This is to avoid biases
when adhering to a particular FF, which in turn is because the
C12 and C6 (alternatively σ and ε) values for LJ potential are
substantially different among CHARMM, Amber, Gromos,
and OPLS [46–50].

The choice of dthresh is critical to the validity of the calcula-
tion results on interlockings and core assemblies. A sign of a
poor parameter choice (or even the failure of the model) would
be that the results change substantially with an insignificant
change of the parameter value. We have determined that 4.15
to 4.35 Å is a distance range appropriate for dthresh and that
the angle threshold can be neglected in the context of core
assembly calculation. Both are discussed in details in the
Supplemental Material [66] (Sec. VII B).

Furthermore, because (1) the orientation between the in-
teracting pair SCs r and r′ fluctuates and (2) the presence
or absence of a blocking or locking is a discrete measure, in
ranking intensities of interactions, we quantify interactions at
a few discrete levels rather than giving them an apparently
precise continuous number. Once two nonpolar side chains
are considered in a compression on the basis of closest atomic
distance, a force level is assigned. It ranges from 1 for a
distance in the interval of 4.25 to 4.35 Å to 8 when the distance

is less than 3.4 Å. The level is statistically determined from
average LJ forces at close atomic distances.

The intensity of the interlocking between two substructures
is the sum total of all blockings involved. Namely, we first
determine if there are enough number of blockings to qualify
two substructures as in interlocking. Once this is affirmed,
then all the blockings are counted. The intensity is included in
two numbers: the total number of blockings on a substructure
and the sum of all the levels of all the blocking forces.

To determine if a charged or strong polar group destabilizes
a core assembly, we must first determine if it is in the interior
of the conformation. If it is, we next need to determine if there
is not a large enough opening to the exterior near the group
to neutralize it. Lee and Richards algorithm [69] calculates
solvent accessible area. But, this is not necessarily whether
a group is exposed to solvent. Some protein structures have a
large interior void. A standalone charged or strong polar group
that is left in such a void will be considered solvent accessible
but still energetically strongly unfavorable. To locate such
cases, we must first be able to identify those that are buried in
the interior. Sometimes the interior and exterior have a clear
boundary, e.g., in the case of beta sheet involved structures
such as beta barrels, beta sandwiches, and alpha-beta-alpha
structures. In other cases, we directly test if such a group is
fully surrounded by protein atoms. For the 4π solid angle
around the centroid of the group, we evenly orient 16 vectors
in space and check the cone of solid angle of 4π/16 = π/4
that has the vector as the cone axis. If in every orientation
this cone will contain some protein atoms, the group is in
the interior. Next, we find all the rectangular openings on a
spherical surface centered at the group centroid in which the
opening is delimited by atoms in the protein. If the opening
is large enough, then the group is considered exposed to the
solvent and possibly neutralizable. In a survey of a large set
of native structures, all buried charged or strong polar groups
pass this test. Note that the second procedure subsumes the
first but it is much more computationally intensive. Thus, the
first one is necessary for efficiency.

V. RESULTS IN COMPARING CORE ASSEMBLIES

In this section, we show that interlocking-based stabiliza-
tion mechanisms are widely observed in protein structures.
Next we show that one can use constraints on the general
properties of core assemblies to screen decoys. Depend-
ing on specific sequences, this can sometimes successfully
prune most or even all decoys. However, if we are intent on
practically fully detecting and distinguishing decoys, other
conformational properties must also be considered. In the
Supplemental Material [66] (Sec. VII C), we show that in the
case that a decoy is not pruned by checks on assembly prop-
erties and the decoy conformation is of satisfactory quality
[79], e.g., free of severe steric conflicts, it can be pruned by
local energetical concerns like excessive prolines in a helix
and global ones like burying unneutralized charged or strong
polar groups in the nonpolar interior.

A. Various interlocking types and assembly
patterns in native structures

We first present data on how interlocking-based mech-
anisms cover the various types of structures, e.g., helical,
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TABLE I. Distribution of various types of interlockings in helical structures. The columns of the table are as follows: L indicates chain
length, S the number of substructures, i.e., helices and h-bonded beta strands, NS the residues in the S substructures. NS/L (%) then is the
percentage of residues in substructures relative to the total chain length. These are all PDB structure data. s is the number of substructures that
are interlocked by various mechanisms. s/S (%) is the coverage percentage. nS is the number of residues in the covered s substructures.
nS/NS (%) is the percentage. The next five columns list the interlockings by type. nil is for nonpolar interlocking. nes for interlockings
exclusively by salt bridges and strong h-bonds. nhpin by hairpins and only by hairpins. nssb by ssbonds. n� is the sum total of the preceding
four columns. f� the total number of LJ and ES forces in the interlocking. π -stacking-effected interlocking is not separately counted. This is
because when two aromatic rings are in close distance and in proper orientation, they will have both LJ and π -stacking interactions and often
already have nonpolar interlocking. Note that n� � s − 1.

L S NS NS/L (%) s s/S (%) ns ns/NS (%) nil nes nhpin nssb n� f�

2CRO 65 5 43 66 5 100 43 100 2 2 0 0 4 11
1UTG 70 4 55 79 4 100 55 100 4 0 0 0 4 14
3UCY 74 6 57 77 5 83 52 91 5 1 0 0 6 28
5CPV 108 9 76 70 4 44 42 55 4 0 0 0 4 23
2MHR 118 4 85 72 4 100 85 100 3 2 0 0 5 30
1TAM 120 7 82 68 4 57 68 83 3 1 0 0 4 16
2CCY 127 4 101 80 4 100 101 100 4 0 0 0 4 25
1AKI 129 12 79 61 7 58 57 72 3 0 0 4 7 18
1ECA 136 8 114 84 8 100 114 100 8 2 0 0 10 46
1MBC 153 9 127 83 9 100 127 100 7 4 0 0 11 55
1AEP 153 5 134 88 5 100 134 100 5 2 0 0 7 53
153L 185 11 119 64 7 64 103 87 5 2 0 2 9 38

beta-sheet, and alpha-beta structures. The individual struc-
tures are chosen for their diverse lengths and packing
characteristics but also for how frequently they appear in
literature. This should provide a sense of how prevalent each
interlocking pattern exists in protein structures and how large
a portion of the protein structures these patterns can already
cover. Next, we show the comparison between the native
structures and decoys. This is based on feature comparison
that we have introduced in the previous section. They will
be shown to be able to tell whether one core assembly is
generally more stable than the other.

Tables I and II show measures and characteristic features of
interlocking in 12 individual helical structures. The top half of
Table III shows those of 50 various types of native structures.
The features of individual beta or alpha-beta structures are
similar and the corresponding tables are included in the Sup-
plemental Material [66]. A few structures originally contain
ligands. Some ligands are metal ions. Some are larger, such
as hemes. The conformations without the ligands are included
when it is determined that the PDB structures are not far from
their apo form, through comparison with NMR structures of
the same or similar sequences or through other means. Some
homologous structures are intentionally added to show that
their core assemblies have strong resemblance in most but not
all cases. We also note that for simplification we have used the
same force level threshold for all the protein sequences, which
may miss some interlockings for sequences with compositions
that generate low intensity blockings.

It can be seen from the tables that the core assembly for
most of proteins can include a large percentage of substruc-
tures, even using the same force level threshold. For helical
structures, the overwhelming majority of interlocking is non-
polar. For beta sheet structures, salt bridges and h-bonds also
take a large percentage. This is obviously due to the h-bonding
between strands. The role of hairpin is often to reinforce

already established interlocking from nonpolar contacts or ES
interactions. Thus, in the column of nhpin there are many zeros.

TABLE II. Four features of interlocking in helical structures.
“Duplicate interlocking” is the count of substructure pairs that are
interlocked by more than one mechanism, e.g., by both a nonpolar
interlocking and a few salt bridges. In a conformation, some sub-
structures pair with more substructures than others. They serve as
hubs of packing, making the interlocking more concentrated and
stronger. “High coordination substructures” list the number of pairs
that these substructures make. Only two higher coordination levels
are included. When we see only one number, it is because there is
no substructure that pairs at the next level. That is, the packing is
highly concentrated. “Cross interlocking” lists the number of cross
interlockings. “Nonduplicate redundant interlocking” is the differ-
ence between the number of interlocked substructure pairs n� (refer
to Table I) and the minimum number of such pairs for interlocking
all the covered substructures, s − 1. Normally it is the number of
circular interlockings (Sec. IV A).

Duplicate High Cross Nonduplicate
interlocking coordination interlocking redundant

(nd ) substructures interlocking

2CRO 0 (3 2) 0 0
1UTG 2 (3 2 2) 0 1
3UCY 1 (3 3 3 2) 1 2
5CPV 3 (2 2) 0 1
2MHR 3 (3 3 2 2) 0 2
1TAM 1 (3) 0 1
2CCY 4 (3 2 2) 0 1
1AKI 5 (4) 0 2
1ECA 3 (4 4 4) 1 3
1MBC 4 (5 4) 2 3
1AEP 2 (3 3 3 3 2) 1 3
153L 4 (5) 1 3
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TABLE III. Averages of measures of interlockings for various sets of native structures or decoys. The upper half shows native structures,
the lower half decoys. A PDB structure identifier with “-DC” indicates decoys of that PDB structure. We use {σ } to designate the set of
structures of concern for each row. The first column, |{σ }|, is the number of structures. The next six columns are the same measures as in
Table I and in corresponding table for beta structures in the Supplemental Material [66], only that averages are taken over the set. A new
addition of measure is n′

hpin. This is for all the interlockings that contain hairpin interlockings, including those that duplicate interlockings for
the same substructure pair through different mechanisms, particularly nonpolar interlocking. nX is the number of structures in the set where
there is a cross interlocking. nX /|{σ }| is the ratio of structures that contain cross interlocking. Cmax is the average of the highest number of
interlocking pairs a substructure can make in a structure in the set. ndp is the average of the number of duplicate interlockings.

|{σ }| NS/L ns/NS s/S nil/n� nes/n� nhpin/n� n′
hpin/n� nX /|{σ }| Cmax nd p

(%) (%) (%) (%) (%) (%) (%) (%)

HELIX 33 73 87 92 75 20 1 5 55 3 2
β 12 70 78 84 56 38 2 7 15 3 2
α-β 5 67 74 78 52 34 3 3 20 3 2
ALL 50 71 82 87 68 26 1 5 40 3 2
MUSTER 22 80 77 80 70 25 5 9 36 2 1
1CTF-DC 19 61 46 57 45 55 0 0 0 1 0
2CRO-DC 23 66 49 46 88 12 0 2 9 1 0
1EH2-DC 26 63 73 83 89 8 3 5 58 3 1
2FQ3-DC 72 71 75 75 100 0 0 0 100 2 0
3LDC-DC 86 81 82 82 98 0 2 9 10 2 0
4HKG-DC 34 75 57 69 77 12 12 12 20 2 1

Table III will show that as reinforcements, it contributes a
considerable percentage. A substructure interlocking usually
involves at least three forces. But, the same substructure pair
may be interlocked by multiple mechanisms as indicated by
“duplicate interlocking” column. Furthermore, there can be
many more nonpolar compression pairs or ES interaction pairs
between two substructures. Thus, almost in all cases f� >

3n� (refer to Table I and the corresponding table for beta
structures). These are local support redundancies. To fixate a
substructure, with the constraint of being confined in tightly
packed globular environment, the most effective is to restrain
it in its most likely displaceable axial dimension, for which
one interlocking is enough. Thus, minimally n� = s − 1. But,
more interlockings exist. As Sec. VI C will explain, these
are for fixating all the substructures in the three-dimensional
space. Here we can view them as redundant relative to the
minimal amount. This is indicated in the column “redundant
interlocking.” If all substructures are packed in a single core,
this number should be n� + 1 − s. In the rare case that there
are two cores, it would be n� + 2 − s. The helical structures
are arranged less regularly than beta structures. Thus, their
“high coordination substructures” can have higher contacts.
For a similar reason, they are more likely to have cross inter-
lockings.

B. Comparing assembly features between native
structures and decoys

Table III gives an overview for large sets of native struc-
tures and decoys. The native structures are chosen for mostly
nonhomolog ones. They are divided into three groups. The
coverage (s/S) is very high for every group. There is a contrast
between helical and beta structures. Helical structures rely
more on nonpolar interlocking than beta-sheet ones. Beta-
sheet structures rely more on ES interactions, i.e., salt bridges
and h-bonds. n′

hpin/n� is the ratio of hairpin interlocking rela-
tive to all interlocking. Clearly, beta-sheet structures use more

of it. On the other hand, helical structures have many more
cross interlockings. In fact, more than half of them contain
one. In terms of concentrated interlockings on central sub-
structures, they are all the same with an average value of three
interlocking pairs. They are also identical in having multiple
interlocking mechanisms on the same interlocking pairs, with
an average value of 2.

The decoys are in the lower half of the table. We have
included six sets of decoys corresponding to individual PDB
structures. 1CTF, 2CRO, and 1EH2 are decoys from the De-
coys ‘R’ Us database [42,43]. 2FQ3, 3LDC, and 4HKG from
the MUSTER decoy database [45]. The former is generated
by conformational search. The latter is through threading.
We have also included a separate “MUSTER” set that in-
cludes decoys corresponding to 11 PDB structures from the
same “MUSTER” source. These are decoys with good overall
measures from the full set of all decoys that we describe in
Tables IV and V.

The individual decoy conformations are first selected based
on dissimilarity in RMS deviations (RMSD), both from the
native and from each other. Here not all RMSD-wise close
conformations are mutually excluded. For example, some de-
coy conformations have excessively high steric conflicts. A
separate conformation will be generated by minimizing the
original conformation [46].

The column of NS/L is a feature independent of the in-
terlocking properties. As shown, the decoys have as many
substructures as the native structures. This should be ex-
pected given how they are generated. In fact, many decoys
are constructed to have nearly identical secondary structure
assignments as the native structures. The coverage, that is,
the ratio of substructures interlocked in the core assembly
versus the total set of substructures, both in terms of number
of substructures (s/S) and number of residues (ns/NS) are
generally lower than the native structure. But, the numbers
are comparable. This in a sense is good news. It implies that
forming interlockings in packing the substructures is not too
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TABLE IV. Summary of the comparison of native structures (N)
and decoys (D) on the basis of feature comparison. Original decoy
set is the whole set of decoys for a PDB structure, taken from a decoy
database. Among them only those that are RMSD of 7.0 Å or larger
from the native structure are tested. Note that this set is a superset of
the set for the same sequence in Table III. There are two differences:
(1) When taking averages there, decoys that do not have a core
assembly are excluded; (2) there the tested decoys are also filtered by
pairwise RMSDs. Only those with pairwise-RMSD of 7.0 Å or larger
are included. Winners indicates the number of conformations that are
superior in the comparison. Some decoys simply do not have a core
assembly. Some are so close to the native structure in the features
that it has to be called a tie. They are listed in the last two columns.

L Original Tested Decoys
decoy decoy with no

set size set size Winners % assembly Tie

1CTF(N) 68 26 100 7
(D) 500 26 0 0

2CRO(N) 65 26 100 3
(D) 500 26 0 0

1EH2(N) 95 54 69 6 6
(D) 11400 78 18 23

1APC(N) 106 112 92 28 5
(D) 300 122 5 4

1CY5(N) 92 121 100 14
(D) 300 121 0 0

1FK5(N) 93 120 94 54 1
(D) 300 127 6 5

1LWB(N) 122 130 99 15 1
(D) 300 131 0 0

2FQ3(N) 85 107 79 29 8
(D) 300 135 20 15

2J9W(N) 101 127 100 3
(D) 300 127 0 0

3FYM(N) 82 128 100 73
(D) 300 128 0 0

3LDC(N) 82 113 92 13 9
(D) 300 123 1 1

4A56(N) 93 123 100 64
(D) 300 123 0 0

4GMQ(N) 92 130 100 34
(D) 300 130 0 0

4HKG(N) 80 124 99 27 1
(D) 300 125 0 0

4J1P(N) 114 126 99 9 1
(D) 300 127 0 0

4LUP(N) 91 122 100 14
(D) 300 122 0 0

subtle a task that current conformation generation methods
can not perform. The lower level of interlocking on the decoy
side may have more to do with the choices of packing patterns
than the difficulties of locally forming strong interlocking
geometrically.

The decoys, except 1CTF decoys, are mostly helical. Thus,
they behave very much like the helical group of native struc-
tures in the top row. Their interlockings are mainly nonpolar
interlockings. Only 1CTF decoys have a larger percentage
of ES interlockings. Cross interlocking is more frequent in

helical structures, but it is sequence specific. In this lineup, we
see that 2FQ3 decoys all have cross interlockings but 2CRO
decoys have only 9% that do. The MUSTER decoy set has a
number that is in-between, 36%. This is significantly worse
than the native helical structures but close to the average for
all native structures. The average number of high coordination
interlocking substructures and duplicate interlocking counts
are both inferior to those of the native structures.

We have applied our model and feature comparisons for
ranking structural stability to the pruning of decoys. Two con-
formations are first compared in how their interlockings can
cover the substructures to the same extent. If not, assuming
the interlocking strength of the two are similar, e.g., similar
number of interlockings and similar number of interlocking
forces, the one that covers more substructures prevails. If the
two cover similar number of substructures or residues, usually
within 10%, they will be compared in measures like number
of interlockings, numbers of high coordination substructures.
In a previous section we have shown that when everything
else being nearly equal, these can determine if one structure
is stronger than another. When all these are nearly equal, as
a heuristic we compare the number of interlocking forces. If
one is higher than the other by 1

3 of the total force count, its
structure is presumed to be stronger. Another useful measure
is to see if a conformation has employed more substructures
for the same number of residues in building the core assembly.
The justification is given earlier in Sec. IV C.

The comparison results are shown in Tables IV and V. The
first table gives a summary. The second details the comparison
by individual features. In the listed structures, the first three
are from the Decoys ‘R’ Us database and the rest are from the
MUSTER database.6

1CTF and 2CRO decoys from the first three behave
similarly. Because these conformations are generated from
scratch, the packing density tends to be lacking relative to
the MUSTER decoys which derive their conformations from
the templates of actual PDB structures. As shown, quite a
few of the 1CTF and 2CRO decoys simply do not form a
core assembly. When they do, a large percentage have lower
coverage than the native. The same decoys also tend to have
fewer interlockings, fewer high coordination substructures,
and fewer interlocking forces than the native structure. 1EH2
behaves differently and similar to 2FQ3 from the MUSTER
set. They will be discussed together.

The MUSTER decoys are for 13 PDB structures. As shown
in the summary table, 2FQ3 and, to a much lesser extent,
1FK5 and 1APC are those that can have a few decoys that
have better values in the measures than the native structures.
They all win essentially by higher packing density. As a result,
they all have larger number of interlockings. Two out of the
three have higher number of high coordination substructures
as well. For the rest of the decoys, when the sequence compo-
sition is not strongly unfavorable for tight packing, the native
structures prevail. They win mainly by the same measures,
i.e., larger number of interlockings and higher number of high
coordination substructures. Note that decoys of most of the

6In the MUSTER data base, the 1APC entry here is listed under
PDB identifier 256B which is of the identical sequence but is ligated
with a heme and other groups. 1APC is the apo form.
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TABLE V. Individual feature comparisons between native structures and decoys. The column Winners is identical to that in Table IV. It
is here to serve as the basis for reference in terms of number of conformations. The rest of columns all have the same format: one column
indicating the feature by which the native structure or decoys win, then the next column showing the percentage relative to total winners. “By
coverage” indicates that the losing side covers considerably less either in the number of substructures or in the number of residues. The rest
of the column labels are self-explanatory. The last two measures are not sufficient to decide whether a conformation is inferior to another. But
they are good heuristics for having a guess as to the quality of the conformations. By not splitting substructures (unnecessarily) refers to the
phenomenon discussed in Sec. IV C, where the losing side breaks up a substructure with coherent faces into two. The last measure indicates
that the losing side has significantly fewer LJ or ES forces for the interlockings.

Winners
By cover-

age %
By more

substructures %
By more

interlockings %
By high

coordination %

By not
splitting

substrctures %

By more
force
count %

1CTF(N) 26 19 73 18 69 19 73 19 73 19 73
(D) 0

2CRO(N) 26 23 88 23 88 23 88 23 88 21 81
(D) 0

1EH2(N) 54 28 52 47 87 47 87 1 2 40 74
(D) 18 13 72 13 72 13 72 1 6 6 33

1APC(N) 112 77 69 84 75 78 70 78 70 75 67
(D) 5 5 100 3 60

1CY5(N) 121 101 83 107 88 107 88 107 88
(D) 0

1FK5(N) 120 63 52 66 55 66 55 66 55 53 44
(D) 6 1 17 3 50 6 100

1LWB(N) 130 111 85 115 88 115 88 115 88
(D) 0

2FQ3(N) 107 62 58 78 73 78 73 76 71
(D) 20 10 50 3 15 17 85 3 15 7 35

2J9W(N) 127 102 80 111 87 124 98 124 98 124 98
(D) 0

3FYM(N) 128 55 43 55 43 55 43 55 43 55 43
(D) 0

3LDC(N) 113 46 41 55 49 94 83 93 82 97 86
(D) 1 1 100

4A56(N) 123 59 48 59 48 59 48 59 48 59 48
(D) 0

4GMQ(N) 130 95 73 96 74 96 74 96 74 96 74
(D) 0

4HKG(N) 124 95 77 96 77 97 78 96 77 97 78
(D) 0

4J1P(N) 126 113 90 117 93 117 93 117 93
(D) 0

4LUP(N) 122 92 75 97 80 108 89 108 89 108 89
(D) 0

sequences behave like 3LDC and 4HKG shown in Table III.
The decoys are tightly packed. But, the interlocking number
is still short of that of the native structure.

1EH2 and 2FQ3 decoys represent a type of decoys that
can have apparent tighter nonpolar packings than the native
structures. In general, they achieve this by burying polar or
charged groups in the core assembly. In contrast, to avoid
burying polar or charged groups in the nonpolar interior, the
native structure has made some helices shorter so that some
charged SCs are on the loops. This helps the overall stability
of the assembly. However, because the feature comparison
here does not include those considerations (specifically, polar
load mentioned in Sec. IV C), both decoys have quite a few
winners and a few that tie with the native structure. As Table V
shows, the coverage appears better and there appear to have
more interlockings than other decoys.

Specifically for 1EH2, its sequence composition favors
beta strands for some chain segments. As a result, 1EH2
decoys are strong in multiple interlocking categories including
nonpolar interlocking, ES, hairpin, etc. With tighter packing,
this enables it to have better coverage overall than the native
and larger interlocking count. On the other hand, as Table III
shows, all the interlockings on 2FQ3 decoys come from non-
polar interlocking. The large amount of nonpolar interlocking
allows it to have cross interlocking in every decoy. It beats the
native structure by the number of interlockings, by coverage,
and by the number of high coordination substructures. Natu-
rally, with the sequence composition, 2FQ3 decoys also may
have poor core assemblies. In fact, 29 out of 135 decoys do
not have one.

For both 1EH2 and 2FQ3, those that avoid pruning by core
assembly features can be pruned on the basis of energetical
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considerations. The detail is in the Supplemental Material
[66].

VI. DISCUSSIONS

The static model proposed here is a departure from con-
sensus thinking about protein stability, particularly relative to
the theoretical models that have been developed and widely
accepted over the years ([24,80–87]). In the Introduction, we
have discussed the need for an alternative model. Here we
will discuss the validity of our model in depth. We will first
explain that it is consistent with the previous work. In the
next few subsections, we will show that the dominant form
of interactions in protein interior, the compressions between
SCs, has a condition on the stability of its equilibrium, which
links our model to thermodynamic hypothesis. We will also
show that in the truss representation, the compression-based
interlockings can put the core assembly in a stable and deter-
minate state. Limitation of the model and future work are also
discussed.

First, while our static model concentrates on analyz-
ing time and ensemble-averaged aspects of protein structure
properties, this is not in contradiction to investigating these
properties via dynamics and thermodynamics approaches. On
the contrary, our model is based on and incorporates the re-
sults from the latter. In particular, it is generally agreed that
there are two types of determinant factors in protein folding:
entropic and enthalpic. But the static model, focusing on the
force equilibrium and stability, seems to have ignored the
entropic factor. We point out that the assumption regarding
the inward normal force and the globular shape, both of which
arise from hydrophobic collapse, has captured the effect of the
entropic factor. We have to “convert” some physical properties
into time and ensemble averages as this is the way to fit them
into the uniform treatment of force and moment equilibria.
More importantly, by deriving an equation on the buckling
condition of blocking actions, we have proven that protein
stability in our model is associated with a form of mechanical
energy minimum. Thus, it is consistent with the thermody-
namic hypothesis.

Second, it has been settled that the protein’s relative stable
structure is not due to an intricate gadgetrylike mechanism
that “traps” or “snaps” the protein chain into a shape. Our
“locking” idea may be perceived as like that but it is not. It
is purely based on removal of DOF due to (mainly) compres-
sions. Ours is also a mechanism. But it is so in mechanics
sense. It is more like that of an arch or dome. In fact,
this makes our model easily reconcilable with many of the
observed protein behaviors in folding and unfolding. For ex-
ample, protein is not well packed in terms of packing density
but seems structurally well supported [41]. According to our
model this would be like a domed and buttressed church,
which does not need to be filled to be strong against its heavy
load (mostly its own weight).

Limitations of this static model. Fundamentally, there is
no limitation to applying statics to the analysis of the protein
structure. This is in the sense that proteins must follow the
laws governing all structures: its structural members must
be in equilibrium of both forces and moments and the equi-
librium must be stable. Because of this, the static model is
capable of explaining the geometric features and nuances in

protein structures. For example, evidently the need for even
load distribution provides a direct explanation for the widely
observed symmetry therein.

As the model stands now, we see several potential short-
comings related to the assumption of linear elasticity of the
blocking action and the solid body. A basis of this assumption
is surveys on approximating LJ forces for nonpolar SCs in the
interior. In one case, through function approximation [88], in
a range of [3.0, 3.6] in Å, the LJ value can be approximated
by a linear function for about 3

4 of the points to within 20% of
the true value. Many of the structural features do not need a
strict linear response. Thus, the error may be acceptable. But
this is still to be checked.

Future work. This research is ongoing. The focus of
the future work will be the relationship between sequence
composition and geometric-mechanical properties of inter-
locking configurations. Our experience has shown that such
relationship can be consequential in rapidly determining the
maximum strength and stability of the conformations of a
protein sequence. Thus, the search for the most stable con-
formation can be enormously accelerated [75,76,89]. The
program for the equilibrium equation-based calculation of
protein structural stability is also currently under develop-
ment. The aim is to compare the rank orders of the protein
stability calculated here with those experimentally obtained.

A. A distinct characteristic of protein structural stability:
Compressive support

1. Pure and strong compressive force in the nonpolar interior

A quick check of the interactions between nonpolar SCs in
the protein interior will show that these are strong repulsions
(compressions in statics terms). And these forces take a very
simple form: pure repulsion or compression. In the nonpolar
interior this has a structural consequence: it makes the inter-
actions much more uniform and more capable of providing
building blocks for a structure. A bar chart is available in the
Supplemental Material [66] which shows that the average of
nonpolar LJ force is nearly three times of h-bonding and 1 1

2
times of salt bridges.

2. A compression is often steadied by other compressions
from lateral directions

It is well known that tension is a stable or steady action
whereas compression is unstable or unsteady [71].7 One can
call up the images of a ball suspended from a string versus
a ball sitting on top of a mound to easily verify that. The
arch structure, the prototypical example of pure compression
support, despite its equilibrium under an elementary textbook
analysis, in practice needs ways to prevent it from sliding
off laterally and collapsing. Mortar is commonly used for
increasing the friction between stones in an arch. Coulomb

7The term “stable” is widely used in structural analysis literature to
refer to a property of the equilibrium: an equilibrium can be stable,
unstable, or neutral. But it is also widely used to refer to the property
of a structure that it is in a static equilibrium state per se. Whenever
a confusion may arise, we will use the term “steady” for the former
property.
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in 1776 derived the specific equations for bracing a masonry
arch so that it stays in a stable equilibrium [90].

In the case of protein structure, there is something similar
to the mortar for masonry arches. Heavy aliphatic SCs are
branched. When engaged in compression, the branches may
stagger and thus increase the steadiness of the engagement.
In some force fields, e.g., those of Gromos [49], aromatic
ring hydrogen atoms have explicit LJ forces. This implies that
there will be “studs” on the ring to reduce slippage too. These
deterrents to slipping off can be viewed broadly as some minor
static “friction.”

More generally and at a larger scale, the steadiness of
the compressive interaction can be enhanced by actions from
a lateral direction. To prevent columns from earlier men-
tioned buckling, a common device is a brace added laterally.
When two columns are otherwise supported identically, the
one braced in the middle [Fig. 1(c)] will have four times of
buckling load as the other. This is because Euler’s buckling
load is

P = π2EI

L2
, (17)

where E is the elastic modulus, I the moment of inertia, and
L the length [61–65,71]. That is, it is inversely proportional to
the square of the length of the column. A brace in the middle
simply halves the length. A restraint similar to the brace can
also be placed at the end points of a column [Fig. 1(d)]. It
is known that when both ends are fixed, the buckling load
increases approximately by twofold (see [63], p. 647).

While the compression between two nonpolar SCs is far
different in material composition from the compression force
in a column, their needing stabilization or steadying is the
same. Furthermore, the equations that characterize the stabi-
lization should be based on the same principle. In the next
subsection we will derive the buckling load for a pair of
nonpolar SCs in compression. It will show the extent that a
lateral support can prevent the pair from slipping off their line
of action. This is analogous to adding a brace to a column.
With the multitude of nonpolar contacts in the interior, we can
expect the numerous compressions coming from all directions
to stabilize some structurally critical ones. This serves as the
basis of our view that the thermodynamic stability of protein
structure could be rooted in a form of mechanical stability.

B. Buckling load of a blocking interaction

We now describe some scenarios of the instability of the
blocking action and derive the buckling load when the ac-
tion is stabilized by a lateral support. In mechanics, a stable
equilibrium is always associated with a mechanical energy
minimum (e.g., see [70], p. 151). Thus, this derivation demon-
strates that protein stability in our model is associated with
some form of energy minimum.

As shown in Fig. 8 the instability in blocking can take
many forms in abstract. In Figs. 8(a) and 8(b) the loss of
blocking can be depicted by a single section, i.e., in two
dimensions. In Fig. 8(c), the process has to be seen in three
dimensions. In Figs. 8(a) and 8(c), the tips of two interacting
SCs slip off one another much like the ball on a mound
that would roll off (Sec. VI A 2). In Fig. 8(b), the tip of

(a)

(b)

(c1) (c2)

FIG. 8. Schematic drawings of a SC (a) slipping off from a strong
blocking action line in 2D, (b) flipping due to a strong compression
from the interacting SC in 2D, and (c) slipping off to a side of the
interacting SC in 3D. (c) Introduces a third SC C that provides lateral
support to A and adds a section between SCs A and B (indicated
by two arrows and a dashed line) because the motion is in 3D.
(c1) Shows two SCs in near perfect head-to-head compression. (c2)
Shows that the two SCs have moved to each other’s side and the
action line has moved towards the orthogonal direction with respect
to the substructure axes. The sections are shown underneath. The
original position of SC A in (c2) is marked with dashed line. The
move of action lines is more clearly seen in the sections. In (c1)
load P on A is originally balanced with blocking force − fAB. In (c2),
because the SC A has moved an angle of θ , P will be off the perfect
action line by θ and will have a tangential component with respect
to SC B. Here SC C pushes SC A from side as often observed in the
tightly packed interior. Its action is like having a spring supporting
SC A. SC C is also shown in the sections. It is in dashed lines because
it is much lower and will not be on the section plane per se.

one SC has pushed the tip of the other so far that the latter
flipped.

We can see how a lateral support resists a perturbation load
from Fig. 8(c1). Here we assume the SC with centroid at A
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FIG. 9. Schematic drawing for deriving Eq. (18). This is simpli-
fied from Fig. 8(a). A lateral support from a third SC C is added
and is represented by a spring (DE ) acting at point D. The load P
is assumed to be in the direction of AB along which the two SCs
are originally in perfect nonslip compression. After a random move,
point A moves to A′ and there is a deviation by an angle of θ . A′T will
be the direction of the tangential component of load P. As the angle
θ is small, it can be assumed that the two contacting surfaces are
approximately two circles so that |AB| = |A′B|. Note that θ is drawn
exaggerated in the illustration. More details are in the main text.

(referred as SC A) is under the load P. There is a minor static
friction between SCs A and B. Furthermore, there is the lateral
support, another compression from a third SC C. It pushes SC
A from side. This combined with the friction will keep SC A
from slipping off under normal load. This force from C can be
modeled as a spring acting at around halfway of the major axis
of the ellipsoid of SC A. The restoring force that the spring can
generate is k�, where k is the stiffness and � the deformation
or displacement.

A formula can be derived for the buckling load P above
which the lateral support starts to fail and a SC may slip off the
compressive action position. For this we turn to Fig. 9 where
we treat the 2D case of Fig. 8(a) but add a supporting SC C
which is represented by its functional part, the spring. Also
for simplification, we represent the ellipses by their respective
osculating circles at their contacting points (i.e., the circles of
the same radii of curvature). There is an applied load P on SC
A. Assume P is exactly in line with AB. In their perfect acting
position, there is no tangential force on SC A. So there is
enough support for SC A to prevent slippage and the blocking
should persist at a normal load.

Suppose there is a random move of SC A off the action line
to A′, which can be viewed as a rotation of OA rotating to OA′.
The load P will form a small angle θ with the perfect compres-
sion line, now A′B. This will produce a tangential component
on SC A, P sinθ in the direction of A′T . The spring of lateral
support now will be compressed and will resist this move.
When θ is small, all the other rotations will be small too.
Assume OA rotates a small angle θ∗. OD then should rotate
the same θ∗ to OD′. Let r = |OD| = |OD′|. The displacement
of the spring then is � = rθ∗. Let R = |AB| = |A′B|, L =
|OA| = |OA′|. We then have the arc length |AA′| = Rθ = Lθ∗.

Thus, θ∗ = R
L θ . R, L are both constant. Let ρ = R

L . We have
� = ρrθ . The restoring force will be f = k� = kρrθ .

The load P and the spring are acting at different positions
of SC A. Thus, the equilibrium in moment is needed. Here
the rotational center is at O for both load P and spring force
f . The force arms are associated with L = OA′ and r = OD′,
respectively, for P and f . We can draw a line A′N in the figure,
so that A′N ⊥ OA′. Denote the angle between A′T and A′N as
∠(A′T, A′N ). The moment for P then is

MP = P sinθ cos∠(A′T, A′N )L.

It can be shown that ∠(A′T, A′N ) = θ+θ∗
2 .8 Since cos( θ+θ∗

2 ) ≈
1 because both θ and θ∗ are small, MP = P sinθL. This is to be
balanced by the moment from the spring, which is f cos(β −
π/2)r where β is the angle between the spring direction and
the vector of DO or D′O, i.e., that between DE and DO (or
between D′E and D′O).

P sinθL = ρkrθ sinβr.

Because the rotation θ∗ is small, β can be considered constant.
Let C = ρ sinβ.

P sinθL = Ckr2θ.

When θ is small, sinθ = θ . Thus,

P = Ckr2/L. (18)

One may notice that this equation looks similar to Eu-
ler’s buckling load [Eq. (17)]. Similar formulas are arrived at
in many textbook examples of buckling ([63], p. 636, [64],
p. 83, [70], p. 154). This derivation has to be substan-
tially more complex, though, because we are dealing with
the stability of the equilibrium involving an interaction be-
tween two objects than a single structural member like a
column.

C. Stability and determinacy of a core assembly viewed through
truss representation

The observation that each mutual blocking or double
blocking has the potential of reducing one DOF can be viewed
in the light of the truss representation of a core assembly.
Here to simplify the discussion, the truss bars are assumed
to carry both tension and compression and the interlocking is
nonpolar. As introduced earlier (Sec. III A), in 3D the basic
equation is 3 j = b + r. In general, just in terms of equa-
tion system solving, if we have b + r number of unknowns,
they will allow the 3 j equations to have a unique solution.

However, there is a caveat: There are cases, even when the
basic equation is satisfied, the truss is still unstable and its cor-
responding system of equations does not have a solution. This
is most often when a certain number of reactions or bars are
concurrent at a point or are parallel. As a result, their ability in

8∠(A′T, A′N ) = 2π − ∠OA′N − ∠BA′T − ∠OA′A − ∠BA′A. But
∠OA′N = ∠BA′T = π/2. Because |OA| = |OA′|, |BA| = |BA′|,
∠OA′A = (π − θ∗)/2,∠BA′A = (π − θ )/2. Thus, ∠(A′T, A′N ) =
θ+θ∗

2 .
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resisting a moment or force will be reduced. These are termed
“improper constraints” [61] or “geometrically unstable” [62]
in literature. This can also happen when a disproportional
number of bars and reactions are overconstraining a part of the
truss, thus leaving other parts underconstrained. By excluding
these caveat conditions, satisfying the basic equation can be a
sufficient (as well as necessary) condition for the truss to be
stable. We note that the truss is stable if and only if its linear
system of equations is solvable. Being algebraic, this crite-
rion for stability is complete. Thus, the notion of exclusion
above can and should be interpreted as applying this algebraic
criterion.

The equation 3 j = b + r implies that so far as the struc-
ture’s stability and determinacy is concerned, the relationship
between b and r is irrelevant as long as their sum equals 3 j.
But, internally for the truss structure, how many bars (b) or
reactions (r) there are makes a difference. Bars are internal
structural members. Too few of the bars, the structure is not
standing on its own. (See “Internal stability” [61].) The truss
as a solid body has six DOF. Thus, r = 6 will exactly provide
the reaction support to fix the body in space. If we still have
a stable and determinate structural solution, i.e., 3 j = b + 6,
then the internal structural members have held the structure
together, in an internally stable state. Let jA and bA be the
joints and bars in the truss of core assembly A. The suffi-
cient condition for the assembly A to be in that state then
is

bA = 3 jA − 6 (19)

assuming each constituent substructure (represented in the
truss) is itself in that state and assuming the exclusion of
improper constraints and overconstraining mentioned above.

With this understanding, we check how the condition of
Eq. (19) is satisfied when interlockings are added. Assume
assembly A is generated from combining two assemblies, A1

and A2, each satisfying the above requirement 3 j1 = b1 + 6
and 3 j2 = b2 + 6, where subscripts 1 and 2 indicate which of
the assemblies the joints or bars belong to. With the combi-
nation but without counting the interlocking, the above two
equations will be added on both sides:

3 j = b + 12,

where j = j1 + j2, b = b1 + b2. Here, to satisfy Eq. (19), six
reactions must be replaced by six bars. Clearly, two interlock-
ings, with each being between one substructure from A1 and
another from A2, are exactly needed. This is quite understand-
able in terms of the change of DOF: when we combine A1 and
A2, we are essentially fixating A1 relative to the body frame of
A2 (or vice versa). There are exactly six DOF to be removed.
Evidently, six bars from two interlockings can do just that.

Let the number of substructures in assembly A be s =
|A| = |{Hi}| and the number of interlockings in A be nI . As
just explained, each substructure has extra six DOF to be
removed when added to the assembly and it takes two in-
terlockings to do that. For s substructures, this requires total
of 2(s − 1) interlockings. When none of the interlockings
are improperly constraining or overconstraining and when the
reactions are just enough for fixing the assembly in space (i.e.,

r = 6), the assembly is uniquely fixated. That is,9

nI = 2(s − 1)

⇒ Assembly A has a stable and determinate structure.
(20)

Notice that since s is small, nI − (s − 1) = s − 1, where
(s − 1) is the minimal number of interlockings for connecting
the substructures, is quite small. For example, when s = 4
only nI = 6 interlockings are enough to fixate the assembly
fully in the space. nI = n� + nd are in Tables I (for n�)
and II (for nd ) (Sec. V) and in the tables for beta proteins
(Supplemental Material [66]). Many PDB structures there can
have enough redundant interlockings to meet the requirement
of Eq. (20). Many more are only short of two or three inter-
lockings. Given that the interlockings are calculated using a
single threshold for chains with diverse sequence composition
(Sec. IV D), this is quite satisfactory.

VII. CONCLUSION

This research is based on the premise that the protein
structure, however small and intricate, is still a structure in
mechanics sense. That is, when treated as a time and ensemble
average, its structural members must be in a static equilibrium
and the equilibrium must be stable. Based on the observation
that the protein nonpolar interior is strongly repulsive, i.e.,
compressive in static terms, our static model infers that this
force when positioned properly will be sufficient to restrict
the relative motion of protein substructures and fixate the
protein to a unique or distinct topology through the mecha-
nism of interlocking. The following findings are obtained in
developing this model: (1) Interlockings as defined in Eqs. (7)
and (8), prevalent in protein interior, provide a mechanism
for restricting relative motion between substructures. (2) The
core assembly, while being built up from interlockings that
are often deep in the interior, is able to hold the substructures
fixated as indicated by Eq. (20). (3) The multitude of support
reactions arising from nonpolar contacts enables even load
distribution in 3D. (4) The lateral support for stabilizing the
compressions in the interlocking can be supplied by nonpolar
contacts [Eq. (18)]. In applying the model to analyzing sets
of PDB structures and decoys we have shown that indeed
native structures, depending on their sequence composition,
have majorities of their substructures organized in interlocked
positions at different levels of strength. The decoys either are
unable to establish a sufficiently interlocked interior or con-
tain destabilizing factors, e.g., buried unneutralized groups or
multiple prolines inside helices, in an apparently interlocked
interior.
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