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High fraction of silent recombination in a finite-population two-locus neutral
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A precise estimate of allele and haplotype polymorphism is of great interest in theoretical population genetics,
but also has practical applications, such as bone marrow registries management. Allele polymorphism is driven
mainly by point mutations, while haplotype polymorphism is also affected by recombination. Current estimates
treat recombination as mutations in an infinite site model. We here show that even in the simple case of two
loci in a haploid individual, for a finite population, most recombination events produce existing haplotypes, and
as such are silent. Silent recombination considerably reduces the total number of haplotypes expected from the
infinite site model for populations that are not much larger than one over the mutation rate. Moreover, in contrast
with mutations, the number of haplotypes does not grow linearly with the population size. We hence propose a
more accurate estimate of the total number of haplotypes that takes into account silent recombination. We study
large-scale human leukocyte antigen (HLA) haplotype frequencies from human populations to show that the
current estimated recombination rate in the HLA region is underestimated.

DOI: 10.1103/PhysRevE.106.024409

I. INTRODUCTION

Multiple genetics models relate allele frequencies to their
populations’ dynamics [1–5], typically including processes
such as mutations, genetic drift, selection, or migration
between subpopulations [6–9]. For the haplotype frequen-
cies, another essential process to consider is recombina-
tion [10–12]. During cell division in sexual reproduction,
crossovers can occur between the maternal and paternal ho-
mologous chromosomes and result in the exchange of genetic
material [13–15]. Therefore, offspring may have different
combinations of genes than either of their parents on the same
chromosome, leading to the creation of new haplotypes and
increasing genetic variability. Determining the recombination
rate (i.e., the probability for those crossovers to occur) is
crucial in evolutionary biology and medical population genet-
ics [16,17]. It also has important implications for transplant
donors registry management [18,19].

Two approaches have been proposed to build recombina-
tion maps and estimate the recombination rate. The first one,
referred to as the direct approach, is strictly experimental and
consists of sperm genotyping [20]. The second approach is
an indirect method that uses genetic linkage (coinheritance
of markers in families) to produce recombination maps for
chromosome segments [21]. These maps describe the distance
between genes, or markers, as a function of their probability
to recombine. If two genes are on two different chromosomes
or very distant, they are considered uncorrelated and the dis-
tribution of the haplotypes reflects this independence. On the
other hand, two adjacent genes will have a high probability of
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being inherited together. This probability is a direct function
of the recombination rate between those genes and the dis-
tance between them [22]. These segments can then be linked
to provide estimates of recombination frequencies for spe-
cific chromosomes [23], typically using maximum likelihood
estimation (MLE) [24,25] based on a coalescent tree model
[26–29]. The coalescent model goes backward to estimate the
time for two individuals to reach their most recent common
ancestor. However, this model does not take into consideration
silent recombination producing twice the same offspring. In
the direct approach, recombination events are observed over
multiple 106 of sperm cells and, therefore, the computed rate
is per cell division. In the indirect approach, recombination
events are observed from one generation to the other and the
rate computed is per generation.

In a single-gene, fixed population, neutral model, the mu-
tation rate has been related to the number of alleles through
θ = 4Neμ (where θ is the overall number of mutations for
the population, Ne is the effective population as defined by
Kimura [2], and μ is the individual mutation rate per gen-
eration). This estimator was first derived by Watterson to
describe mutations [5]. It is based on an infinite site model
(i.e., each mutation creates a new allele). It has often been
assumed that recombination behaves like mutations and the
same concept was extended to multiple estimates of the re-
combination rate, where the number of alleles was simply
replaced by the number of haplotypes with ρ = 4Ner (where
ρ is the overall number of recombination for the population
and r is the individual recombination rate per generation)
[26–28]. The usage of this estimator is limited by the need
to determine the effective population Ne [30,31]. As such, one
needs to simultaneously estimate Ne and μ (or r). Therefore,
studies often either display the ratio between recombination
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and mutations [32] or simply compute ρ and θ instead of μ

and r, separately or jointly [27,28]. Other studies use samples
for which the origin of the population is known [33]. Note that
the number of alleles actually differs from Watterson’s esti-
mator. Indeed, multiple corrections were proposed [25,34,35].
The most significant limitation of this estimator is the as-
sumed equivalence between recombination and mutations. As
mentioned above, unlike mutations, recombination is drawn
from a finite existing pool of alleles. Specifically, given the
fat tail of the haplotype size distribution, there is a nonzero
probability of reproducing the same combination of haplo-
types (silent recombination). As such, the recombination rate
expected from Watterson’s formula is largely underestimated.
We show that for average size populations, the fraction of
silent recombination is close to 1.

We here use a statistical model on the observed alleles and
haplotypes distributions and infer the mutation and recombi-
nation rates. We use a birth-and-death process [36] rather than
a coalescent tree since it allows for the inclusion of silent
recombination. We identify two regimes depending on the
size of the effective population. For Ne � 1/μ, the pool of
alleles is large, and the typical type size for each allele is
small so that almost all recombination events create a new
haplotype and the infinite site assumption holds for recom-
bination. However, for Ne � 1/μ, the number of potential
recombination creating new haplotypes is limited by an upper
bound, induced by the high probability of sampling very fre-
quent alleles. In this regime, almost all recombination events
are silent. The fraction of silent recombination grows with
the recombination rate. Moreover, the population size where
the transition from one regime to the other occurs increases
with the recombination rate. Using this insight, we compute
the number of different two-locus haplotypes in a population
(the haplotype polymorphism), using a revised relationship
between the number of alleles and haplotypes and the mu-
tation and recombination rates. As an application, we analyze
the distributions of alleles and haplotypes in the HLA locus
for human populations and show that the recombination rate
is underestimated.

II. SINGLE-LOCUS AND TWO-LOCUS MODELS

As a preliminary step, we focus on a single locus and
estimate the number of alleles with respect to the mutation
rate. We follow Ref. [36] and assume a neutral infinite site
Moran model with equal birth and death rates (so that the total
population is maintained fairly constant) that can be arbitrarily
set equal to 1 (up to a time scaling). We define μ as the per
generation mutation rate and the probability for an allele to
have a population of size k is given by Fisher log series [37]
(see the Appendix for a simplified derivation). Accordingly,
the expected total number of different alleles (richness or first
moment of the distribution) is given by m0 = −Nμ ln μ.

Consider now a pair of loci A and B, and alleles in each
locus. We assume that the mutation rates for each gene are low
enough so that repeated mutations are rare (i.e., the infinite
site model). When combining the two loci (no recombination
occurs for now), they would simply behave like one long
locus with mutation rate μ = μA + μB and, therefore, the first
moment is simply m0(0) = −N (μA + μB) ln (μA + μB). We
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FIG. 1. Comparison between the richness obtained from the sim-
ulations and the analytical model for different values of the mutation
rate μ. The first row (a) and (b) corresponds to the infinite site
model with no recombination and the second row (c) and (d) to the
upper bound for two independent loci from Eq. (2). The left column
corresponds to the total number of haplotypes and the second to the
marginal distributions for the A and B alleles.

observe on Figs. 1(a) and 1(b) that simulations fit these results
for the number of haplotypes and the marginal distributions
for the A and B alleles.

Let us now introduce a per generation recombination rate
r. For a large enough population, the infinite site assumption
holds, and one can consider recombination as another type of
mutation. This yields an expected number of haplotypes with
a maximum value of:

m0(r)∞ = −N (μA + μB + r) ln (μA + μB + r). (1)

On the opposite extreme case of independent loci, the
number of haplotypes in equilibrium can be computed too.
It is essential to note that if we were to have infinite mu-
tations, the total number of alleles would be equal to the
population since each allele would be distinct. In practice,
such mutation rates do not happen, since an error threshold
would occur at a finite mutation rate [38]. On the other hand,
very high recombination rates can happen (up to 0.5 in the
extreme case where one chooses randomly between two loci
on different chromosomes). However, since recombination
occurs between already existing haplotypes (unlike mutations
that create new alleles), new combinations and, therefore,
the number of haplotypes would be limited and dependent
on the number of alleles and the mutation rates μA and μB.
The allele equilibrium distribution in both loci is not affected
by recombination. To compute this upper bound, we now
recombine the entire population without mutation as if there
were infinite recombination. In practice, this corresponds to a
Wright-Fisher process: we randomly choose two individuals
and create their offspring with the allele A from the first parent
and the allele B from the second parent. The two parents may
have the same alleles (see the Appendix for derivations). We
obtain:

m0bound = N2μAμB

[
N∑

k=1

e−μAk

k
ln

(
1 + k

μBN

)]
. (2)
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FIG. 2. Plots of the number of haplotypes as a function of (a) the
population size and (b) the recombination rate and plots of the ratio
of silent recombination as a function of (c) the population size and
(d) the recombination rate. The mutation rate is 10−4 for allele A and
2×10−4 for allele B.

Again, simulations in Figs. 1(c) and 1(d) confirm our results
for the expected number of haplotypes and the marginal dis-
tributions for the A and B alleles.

The number of haplotypes will always be bounded by the
lower of the two extreme cases. We denote the first regime
as the infinite site regime and the second one as the bounded
regime. For N � 1/μ (or tends to ∞) and r small enough,
the number of haplotypes from Eq. (2) is higher than the one
given by Eq. (1) and, therefore, the maximum value for the
number of haplotypes is given by the infinite site assumption
with Eq. (1). For N � 1/μ and a high r, the opposite occurs
and the maximum value is given by Eq. (2). In the infinite site
regime, there are almost no silent recombination whereas, in
the bounded regime, the ratio of silent recombination tends to
1 (depending on r) although never reaching 1 as observed in
Figs. 2(c) and 2(d).

For a given recombination rate, as N increases, the fraction
of silent recombination decreases from almost 1 to almost 0,
and the number of haplotype shifts from the bounded regime
to the infinite site regime. The higher the recombination rate,
the larger N needs to be for this transition to occur [Fig. 2(d)].
For a given population size N , as r increases, most haplotypes
are created by recombination. As such, the fraction of silent
recombination increases, and the number of haplotypes goes
from the infinite site regime to the bounded regime [Fig. 2(c)].

Therefore, for intermediary values of N (between 1/μ and
1000/μ) and intermediary values of r (between μ and 0.5),
an intermediary regime emerges, and one can expect a mix
between the two extreme regimes. We thus performed an
interpolation where we compute a log regression with respect
to r between the value of the first moment for r = μ in Eq. (1)
and the value of the first moment at the upper bound from
Eq. (2).

m0(r)interp =
{−N (μA + μB + r) ln (μA + μB + r) r � μ

ln r
ln μ

m0(μ) + (
1 − ln r

ln μ

)
m0bound r > μ

.

(3)
The interpolation in Eq. (3) slightly overestimates m0 in the
bounded regime but it is much tighter to the simulations than
the infinite site estimate as seen in Figs. 2(a) and 2(b) (see the
Appendix and Ref. [39] for a description of the simulations).

Finally, since the upper bound from Eq. (2) can be higher
than the infinite site model for very large values of N (after the
transition), we need to take the minimum of this interpolation
and the infinite site model in Eq. (1):

m0(r) = min (m0(r)interp, m0(r)∞). (4)

In conclusion, given the first moment of the alleles
(obtained from the marginal frequencies) and haplotypes fre-
quencies, one can estimate r, as will be further discussed. It
already emerges that, for a given value of m0 and an inter-
mediary value of the population size, the recombination rate
obtained from the infinite site model or Watterson’s estimator
is smaller than the actual one since it does not take into
account the silent recombination.

III. RECOMBINATION IN THE HLA COMPLEX

To test the applicability of the boundary above to a real-life
system, we analyzed the most polymorphic genes in the hu-
man genomes: the major histocompatibility complex (MHC).
This locus is denoted as human leukocyte antigen (HLA) in
humans, on chromosome 6. This region is of interest since
an HLA allele match between donors and recipients is crucial
for recipient survival following solid organ or bone marrow
transplants [40]. Given its importance, large-scale HLA typ-
ing of donors is performed by registries [41–43]. The fraction
of patients in a population that can find appropriate donors
depends on the frequency of their haplotypes [44]. However, if
the recombination rate is high, new haplotypes may be created
too fast to allow full coverage.

The HLA gene complex contains the A, C, B, DR, and DQ
genes, which together account for over 15000 distinct alleles,
and over 106 haplotypes. Recent results suggest that a high
haplotype creation rate could explain the observed haplotype
polymorphism [19,45,46], in contrast with the low current re-
combination rates estimates [33]. However, current estimates
do not incorporate silent recombination and, as such, may be
underestimates.

To determine if one can expect a large number of silent
recombination in the HLA locus, we analyzed the haplotype
frequencies of 6.59×106 donors from the National Marrow
Donor Program registry, divided into 21 subpopulations [47].
One can estimate Ne, using the marginal distributions of
alleles, assuming an infinite site model for the number of
alleles in each population. With a mutation rate of 1.45×10−8

per base pair [48], yielding an overall mutation rate of
≈8×10−6 per gene (for a length of ≈550 nucleotides per
gene), we compute the effective population by inverting the
richness formula from the Fisher log series. Then, assuming
an equal effective population for recombination and muta-
tions, the recombination rate is computed by inverting Eq. (4)
as described in Fig. 3(a). Figure 3(c) shows the recombination
rates for the pair of genes A-C across populations (recom-
bination rates for other pairs of genes may be found in the
Appendix). Our estimate is 10–1000 times higher than the
ones obtained from the infinite site model or Watterson’s
estimator, which is consistent with the presence of a large
fraction of silent recombination.

Another relevant feature from our model is that the re-
combination rate is not linear with respect to the effective
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FIG. 3. (a) Recombination rate as a function of the number of
haplotypes with different estimators. The red line corresponds to
the number of haplotypes for AMIND (Amerindian population). We
observe that our estimator yields a higher rate of recombination than
the infinite site model or Watterson’s estimator. (b) Ratio of the
number of haplotypes for the A-C pair and the number of C alleles
with respect to the effective population. We observe a linear relation.
(c) Recombination rates across populations in the HLA region for the
A-C pairs computed with our estimate, the infinite site model, and
Watterson’s estimator. Our estimator is from 10–1000 times higher.

population. Instead, it has a square term as demonstrated in
Eq. (2) (obviously up to some bound). As the population
grows, the total number of alleles and haplotypes grows.
However, in addition to that, the fraction of nonsilent recom-
bination also increases with the population size inducing a
second-order correction term. This is in contrast with the num-
ber of mutations, which is linear with respect to the effective
population (per definition in the current analysis). One can
thus expect that, while the ratio between allele frequencies in
different loci should be fixed among populations, the ratio be-
tween haplotypes and alleles should be linear in the effective
population size.

To validate this claim, we computed the ratio between
the number of alleles (for instance, the ratio between the
number of alleles in A over the number of alleles in C) and
we computed the ratio between the number of haplotypes
pairs and the number of alleles (for instance, the number of
A-C pairs over the number of C alleles) as a function of the
effective population size [Fig. 3(b)]. The latter ratio varies
linearly with respect to the effective population, confirming
that recombination does not behave like mutations (see the
Appendix for a table with all regression coefficients between
pairs).

IV. CONCLUSION

The amount of genetic data and detailed haplotype samples
have rapidly grown over the last few years. Nevertheless,
precise methods to use such samples in order to esti-
mate the recombination rate within haplotypes are still
lacking.

We have here proposed a new estimate of the number of
haplotypes that incorporates the difference between recom-
bination and mutations. Recombination draws from a pool
of existing alleles, some very frequent, and, as such, quite

often, reproduces existing haplotypes. The resulting number
of haplotypes is bounded at a level much lower than the
total population even for a very high recombination rate. To
the best of our knowledge, silent recombination was seldom
considered when estimating the recombination rate.

Nevertheless, our estimator, although more accurate than
existing models, suffers a few caveats. For the computation
of the mutation rate for each allele, we use a neutral infinite
site model as is most standard in genetic research, but this
may not be the case in all loci [45]. Such a deviation could
be due, as is classically argued, to selection [49], or might
be the results of other mechanisms, such as catastrophes [39].
For example, in the HLA locus studied here, there is a dis-
parity between the computed and actual distribution (see the
Appendix). Besides, we assumed that allele distribution was
at equilibrium in order to compute our upper bound on the
number of haplotypes, but a very long time is required to
reach such an equilibrium, especially for low mutation rates.
Finally, the flattening slope of our estimate close to the upper
bound might result in large differences in the recombination
rate even for small differences in the number of haplotypes.
This problem is aggravated if the allele equilibrium is not
achieved.

We have here studied a purely neutral model with the
type size distribution of a Moran model. Obviously, in the
presence of selection, the allele size distribution would dif-
fer, and, accordingly, the recombination rate estimate. Such
effects will be even more important with epistatic selection,
where recombination and selection interfere [50–52]. Still, in
the presence of selective sweeps, the fraction of individuals
in very large families will actually increase, and, with it, the
fraction of silent recombination.

Recombination rates estimates are of interest in the HLA
locus, where, although haplotype frequencies are estimated
over very large populations, the within haplotype recom-
bination rate is still debated. Most current recombination
rate estimates use coalescent models and Watterson’s estima-
tor. We analyzed data from the HLA locus and obtained a
10–1000 times higher recombination rate than currently es-
timated. This difference and the nonlinearity of the number
of haplotypes with respect to the effective population size are
evidence that recombination cannot be treated as another type
of mutation due to the presence of silent recombination. This
high haplotype creation rate is in agreement with recent results
[19], and it implies that, unless huge surveys are conducted,
genome registries will seldom approach an exhaustive list of
existing haplotypes.

APPENDIX A: RESULTS DERIVATIONS

1. Mutation model

In a population with different alleles, we define as Pk , the
probability for an allele to be of size k. We define α as the birth
and death rate (which we assume equal so that the population
stays constant) and can be set equal to 1 up to a time scaling.
μ is the per generation mutation rate. A type of size k can
endure a death at rate α or a birth at rate α(1 − μ) and not
be of size k anymore. A type of size k − 1 can have a birth at
rate α(1 − μ) and become a type of size k. Finally, a type of
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size k + 1 can die at rate α and become a type of size k. The
dynamics of Pk is

dPk

dt
= α[−(2 − μ)kPk + (1 − μ)(k − 1)Pk−1 + (k + 1)Pk+1].

(A1)

In steady state, dPk
dt = 0. Also, we assume Pk to be a smooth

enough function (in the infinite site model), so, if we denote
Pk = P, we get:

Pk+1 = P + P′ + 1/2P′′Pk−1 = P − P′ + 1/2P′′ (A2)

0 = −2kP + kμP + (k − 1)(1 − μ)(P − P′ + 1/2P′′)

+ (k + 1)(P + P′ + 1/2P′′)

0 = kP′′ + 2P′︸ ︷︷ ︸
(kP)′′

+μkP′ + μP︸ ︷︷ ︸
μ(kP)′

−μP′ − 1/2μ(k − 1)P′′︸ ︷︷ ︸
negligible

0 = (kP)′′ + μ(kP)′. (A3)

We define Q = kP and get:

Q′′ + μQ′ = 0Q′ + μ Q = B(Qeμk )′ = Beμk

Qeμk = B

μ
eμk + AQ = B

μ
+ Ae−μkQ = Ae−μk, (A4)

B = 0 because of the limit condition limk→+∞ Pk = 0. So, we
finally get:

Pk = A

k
e−μk . (A5)

This result is actually the Fisher log series obtained in a
simplified way. We define as n̄ the average size of a family, N
the total population and therefore the average number of types
or first moment m0 = N/n̄. μ is considered small in order to
make approximations.

n̄ =
∞∑

k=1

kPk = A
∞∑

k=1

e−μk

= Ae−μ

1 − e−μ
≈ A(1 − μ)

μ
≈ A

μ
(A6)

1 =
∞∑

k=1

Pk = A
∞∑

k=1

e−μk

k

1 = A
∞∑

k=1

[∫ ∞

μ

e−θkdθ

]
= A

∫ ∞

μ

[ ∞∑
k=1

e−θk

]
dθ

1 = A
∫ ∞

μ

e−θ

1 − e−θ
dθ = A

∫ 0

e−μ

−x

1 − x

dx

x
= A

∫ e−μ

0

1

1 − x
dx

1 = −A[ln(1 − x)]e−μ

0 = −A ln(1 − e−μ) ≈ −A ln μ (A7)

⇒ m0 = N

n̄
≈ −Nμ ln μ (A8)

Pk = − e−μk

k ln μ
, Nk = m0Pk = Nμe−μk

k
. (A9)

2. Two-locus model with no recombination

In this regime, we assume asexual reproduction and an
infinite site model (i.e., each mutation leads to the cre-
ation of a new type). The mutation rate in gene A is μA

and in gene B is μB. A birth event leads to four possible
outcomes:

(1) No mutation with probability (1 − μA)(1 − μB);
(2) A mutation on gene A with probability μA(1 − μB);
(3) A mutation on gene B with probability μB(1 − μA);
(4) A mutation on both genes with probability μAμB.

One individual is randomly selected. In case of no mu-
tation, the corresponding type size is merely increased by
1. In the case of mutation on gene A, a new type is cre-
ated with size 1. Its A allele is new, and its B allele is the
same as the original individual, and vice versa for muta-
tions in B. In the case of a double mutation, both alleles
are new. Since genes A and B are independent, we can treat
their combination as a single gene, and the mutation rate is,
therefore, μ = μA + μB. We already solved this model and
obtained the probability Pk for a type to have a size k is given
by:

Pk = − e−(μA+μB )k

k ln (μA + μB)
, (A10)

leading to a total number of types

m0 ≈ −N (μA + μB) ln(μA + μB). (A11)

3. Infinite recombination model

In this regime, we assume sexual reproduction and the
allele distribution for the two genes are at equilibrium accord-
ing to the previous model. We randomly select two existing
individuals (they can belong to the same type). the newly
created individual has the same A allele as the first selected
individual and the same B allele as the second. The proba-
bility of choosing a type (Ai, Bj ) with size Ni, j is pi, j = Ni, j

N .
The probability of choosing an individual with a given allele
Ai is pi = ∑

j
Ni, j

N . Similarly, the probability of choosing an

individual with allele Bj is q j = ∑
i

Ni, j

N . There are therefore
N pi individuals with allele Ai and out of those, N piq j indi-
viduals of type (Ai, Bj ). This implies that Ni, j = N piq j and
pi, j = piq j . We assume that steady state is achieved from the
first regime, and A and B alleles are distributed accordingly.
This assumption is consistent as seen in Fig. 4. Indeed, sim-
ulations where we wait for the alleles to achieve equilibrium
or start the recombination process from the beginning yield
the same number of haplotypes. We then determine, for each
individual, if their A allele is i and if their B allele is j.
E[N (k)] = ∑

i, j P (Ni, j = k) is the expected number of types
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with size k with P (Ni, j = k) = (N
k

)
pk

i, j (1 − pi, j )N−k ,

E[N (k)] =
(

N

k

) ∑
i, j

(piq j )
k (1 − piq j )

N−k ≈
(

N

k

) ∑
kA,kB

N (kA)N (kB)

(
kA

N

kB

N

)k(
1 − kA

N

kB

N

)N−k

=
(

N

k

)
m0A m0B

∑
kA,kB

PkA PkB

(
kA

N

kB

N

)k(
1 − kA

N

kB

N

)N−k

=
(

N

k

)
(NμA ln(μA))(NμB ln(μB))

∑
kA,kB

e−μAkA

kA ln (μA)

e−μBkB

kB ln (μB)

(
kA

N

kB

N

)k(
1 − kA

N

kB

N

)N−k

=
(

N

k

)
N2μAμB

∑
kA,kB

e−μAkA

kA

e−μBkB

kB

(
kA

N

kB

N

)k(
1 − kA

N

kB

N

)N−k

(A12)

E[N (1)] = NN2μAμB

∑
kA,kB

e−μAkA

kA

e−μBkB

kB

(
kA

N

kB

N

)1(
1 − kA

N

kB

N

)N−1

= NμAμB

∑
kA,kB

e−μAkA e−μBkB

(
1 − kA

N

kB

N

)N−1

︸ ︷︷ ︸
≈e− kAkB

N

= NμAμB

∑
kA

e−μAkA
∑

kB

e−kB(μB+ kA
N ) = NμAμB

∑
k

e−μB−k(μA+ 1
N )

1 − e−(μB+ k
N )

(A13)

m0 =
∑

k

E[N (k)] =
∑

k

(
N

k

)
N2μAμB

∑
kA,kB

e−μAkA

kA

e−μBkB

kB

(
kA

N

kB

N

)k(
1 − kA

N

kB

N

)N−k

= N2μAμB

∑
kA,kB

e−μAkA

kA

e−μBkB

kB

[∑
k

(
N

k

)(
kA

N

kB

N

)k(
1 − kA

N

kB

N

)N−k
]

︸ ︷︷ ︸
1N −

(
1 − kA

N

kB

N

)N

︸ ︷︷ ︸
≈1−e

− kAkB
N

= N2μAμB

[∑
kA

∑
kB

[
e−μAkA

kA

e−μBkB

kB
− e−μAkA

kA

e−μBkB

kB
e− kAkB

N

]]

= N2μAμB

[∑
kA

∑
kB

e−μAkA

kA

e−μBkB

kB
−

∑
kA

∑
kB

e−μAkA

kA

e−kB(μB+ kA
N )

kB

]

= N2μAμB

⎡
⎢⎢⎢⎢⎢⎢⎣

(∑
kA

e−μAkA

kA

)
︸ ︷︷ ︸

≈− ln μA

(∑
kB

e−μBkB

kB

)
︸ ︷︷ ︸

≈− ln μB

−
∑

kA

e−μAkA

kA

(∑
kB

e−kB(μB+ kA
N )

kB

)
︸ ︷︷ ︸

≈− ln (μB+ kA
N )

⎤
⎥⎥⎥⎥⎥⎥⎦

= N2μAμB

[
ln μA ln μB +

∑
kA

e−μAkA

kA
ln

(
μB + kA

N

)]

= N2μAμB

[
ln μA ln μB +

∑
kA

e−μAkA

kA

[
ln μB + ln

(
1 + kA

μBN

)]]

= N2μAμB

⎡
⎢⎢⎢⎢⎣ln μA ln μB + ln μB

(∑
kA

e−μAkA

kA

)
︸ ︷︷ ︸

≈− ln μA

+
∑

kA

e−μAkA

kA
ln

(
1 + kA

μBN

)
⎤
⎥⎥⎥⎥⎦ = N2μAμB

[∑
k

e−μAk

k
ln

(
1 + k

μBN

)]
.

(A14)
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(a)

Infinite site

Upper bound

Infinite site no 

recombination

Simulations

(b)

(c)

FIG. 4. Time series of the simulations. The final equilibrium is
the same whether the recombination process started from time 0 or
after a lag. The mutation rate is 10−4 for the A alleles and 2×10−4

for the B alleles. The number of steps is 1.4×109. The recombination
rate is 0.1. (a) represents the time series for the number of alleles
for genes A and B. (b) represents the time series of the number of
recombination and silent recombination. (c) represents time series of
the simulations of the number of types.

In Eq. (A14), the expected number of haplotypes is actually
different from N2μAμB ln (μA) ln (μB), which represents the
product of all combinations of A and B alleles, since, even in
the steady state, not all possible pairs of alleles are present.
Just as in Eq. (A7), the finite sum can be approximated by
the logarithm since μ � 1 and N is large so the remainder
of the sum is negligible. Although Eq. (A14) does not seem
to be symmetric with respect to gene A and B due to the
approximations we performed in the computation, inverting
μA and μB would yield almost identical results as can be
observed in Fig. 5.

4. Intermediary regime

a. Lower bound interpolation

We tested whether a regular birth-and-death process with
mutations and recombination could be modeled as a com-
bination of the two regimes described above and if the
ratio between those two regimes is linked to the recombina-
tion rate r. We approximate that the creation of new types

FIG. 5. Computation of the expected number of haplotypes in
the infinite recombination model for different values of μA and μB

(dots). The x axis represents m0 from Eq. (A14) and the y axis is
obtained when inverting μA and μB. The dots are on the first diagonal
confirming that Eq. (A14) is symmetric.

(with a size of 1) comes from two sources: either the recombi-
nation regime or the no recombination regime. The extinction
of types of size 1 comes from the mixed regime. At equi-
librium, we assume creations and extinctions are equal. We
denote by 0 the no-recombination regime, by 1 the infinite-
recombination regime, and by r the mixed regime. P1 is the
probability for a type of size 1, m0 is the number of types, and
m1 is the total population. We obtain:

m0(0) = −N (μA + μB) ln(μA + μB) (A15)

P1(0) = − e−(μA+μB )

ln (μA + μB)
(A16)

m0(1) = N2μAμB

[ ∞∑
k=1

e−μAk

k
ln

(
1 + k

μBN

)]
(A17)

P1(1) = E[N (1)]

m0(1)
. (A18)

The number of creations of new types is given by:

r
m0(1)P1(1)

m1
+ (1 − r)

m0(0)P1(0)

m1
. (A19)

The number of extinctions of types of size 1 is given by:

P1(r)m0(r)

m1
. (A20)

At equilibrium, creations and extinctions rates are equal. This
yields:

m0(r)int1 = rm0(1)P1(1) + (1 − r)m0(0)P1(0)

P1(r)
. (A21)

We also assume that P1(r) is a linear combination of P1(0)
and P1(1):

P1(r) = (1 − r)P1(0) + rP1(1). (A22)
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b. Upper bound interpolation

We also developed another interpolation between the two
extreme regimes of no recombination and infinite recombi-
nation. In this version, we simply compute a log regression
between the value of m0 for r = μ given by m0(μ) =
−2N (μA + μB) ln [2(μA + μB)] and m0(1) from Eq. (A14).
This yields:

m0(r)int2 =
{−N (μA + μB + r) ln (μA + μB + r) r � μ

ln r
ln μ

m0(μ) + (
1 − ln r

ln μ

)
m0(1) r > μ

.

(A23)

c. Mixed model

The upper interpolation is quite a good fit to our simu-
lation. Nevertheless, in some cases it slightly overestimates
the actual number of types m0. Since the first interpolation
slightly underestimates m0, we took the average of those two
and achieve an even better fit from our simulations. This
average, although heuristic, provides a more accurate estimate
of the first moment since both aforementioned interpolations
are actually close to each other compared to the upper bounds.
An intermediate estimate is therefore, a natural choice and the
average is the simplest one. We tested other ratios and yield
similar results.

m0(r) = m0(r)int1 + m0(r)int2

2
. (A24)

APPENDIX B: SIMULATIONS

In the simulations, the population is composed of several
haplotypes resulting from the combinations of the alleles from
genes A and B. We assume birth and death rates to be equal
so that the population is constant. For simplicity, at each step,
a birth and a death event occur. Each birth results either in a
regular birth where a haplotype simply increases its size by
1, or a mutation in A or B alleles or in both, hence creating
a new type of size 1, or finally, recombination where the
offspring gets its A allele from one parent and its B allele
from the other. We compute the normalized probabilities for
all those events and randomly choose which will occur. For
the sake of efficiency, all the initial haplotypes (and there-
after all haplotypes) are plugged into a tree, in order to keep
track of each haplotype size. Each leaf corresponds to a
haplotype and the number associated with this entry is the
haplotype size. The value of each internal node in the tree
is the sum of its two sons, the tree root being the size of
the total population. We run those simulations for a num-
ber of steps sufficiently large so that we achieve a steady
state.

APPENDIX C: EFFECTIVE POPULATION

Knowing the actual number of haplotypes m0 for a popu-
lation, we can numerically invert Eq. (A24) and compute r.

(a)

(c)(b)

FIG. 6. (a) represents the respective population and effective
population. Distribution of the alleles (dots). The full line represents
the theoretical distribution with μ = 8×10−6. (b) is for the gene C in
the HIS population. (c) is for the gene B in the KORI population.

We first need to compute the effective population Ne by in-
verting Eq. (A8). Therefore, we also need μ independently
of Ne. One way to do it is to use the probabilities Pk from
Eq. (A9).

We assume an infinite site model, Pk is continuous. We
design bins around k with length �k . Therefore, the number
of alleles Nk with a size comprised in that bin is:

Nk = Pk�km0. (C1)

Taking the log on both sides and using Eq. (A5), we get:

− ln

[
kNk

�km0

]
= μk + ln [|ln (μ)|]. (C2)

Since for each population, we have the frequencies of all
the haplotypes, we determine the marginal distribution for a
given gene and compute Nk for each bin. We then perform a
linear regression to get μ.

One problem we encountered is that the actual distributions
have fat tails (power-law distributions with an exponential cut-
off) and, therefore, deviate from our estimate as in Figs. 6(b)
and 6(c). Thus, we use the mutation rate from an external
source computed using statistics on the genes. We get the
effective populations in Fig. 6(a).

APPENDIX D: HLA COMPLEX

We demonstrated that recombination can be assumed to
behave like mutations only for low rates and large populations.
For mutations, the number of alleles is linear with respect to
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TABLE I. Linear regression coefficients between gene pair and
haplotype ratios.

Ratio Slope p value

m0A/m0C 0.2286 0.1236
m0C /m0B −0.3717 7.1953×10−2

m0B/m0DR −0.2187 0.2255
m0DR/m0DQ 0.74615 1.9447×10−6

m0A,C /m0C 0.4270 2.8047×10−2

m0C,B/m0B 0.5715 1.1130×10−3

m0B,DR/m0DR 0.6226 1.2045×10−5

m0DR,DQ/m0DQ 0.9334 4.3806×10−14

the effective population. If we assume that the effective pop-
ulation is the same for each gene, then the ratio between the
number of alleles in two loci should be constant. On the other
hand, according to our estimate, the number of haplotypes is
not linear in Ne. Therefore, the ratio of the number of haplo-
types and alleles varies among populations. Table I represents
the slope coefficients for linear regression and their p values.
The slopes for the ratio of the number of alleles are close to 0
with high p values, confirming that those ratios do not depend
on Ne, whereas the slopes for the ratio of haplotypes over
alleles are different from 0 with very small p-values. Figure 7
shows the recombination rates across populations in the HLA
region computed with our estimate, the infinite site model,
and Watterson’s estimator, for the pair of adjacent genes C-B,
B-DR, and DR-DQ.

(a)

(c)

(b)

FIG. 7. Recombination rates across populations in the HLA
region computed with our estimate, the infinite site model, and
Watterson’s estimator, for the pair of adjacent genes (a) C-B, (b) B-
DR, and (c) DR-DQ (c).
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