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Pulling a harmonically bound particle subjected to Coulombic friction: A nonequilibrium analysis

T. Feghhi , W. Tichy , and A. W. C. Lau
Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431, USA

(Received 4 May 2022; accepted 27 July 2022; published 11 August 2022)

We address the effects of dry friction, which has emerged only recently to play an important role in some
biological systems. In particular, we investigate the nonequilibrium dynamics of a mesoscopic particle, bound
to a spring being pulled at a definite speed, moving on a surface with dry friction in a noisy environment. We
model the dry friction phenomenologically with a term that is proportional to the sign of the velocity, and by
means of numerical simulations of a Langevin equation we show that (a) the frictional force scales with the
logarithm of the pulling velocity, (b) the probability distribution function of the spatial displacement away from
the potential minimum is non-Gaussian, (c) the fluctuation-dissipation theorem is violated as expected, but (d)
the work function obeys the stationary fluctuation theorem, with an effective temperature related to the noise of
the system.
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I. INTRODUCTION

While Coulombic or dry friction plays an important role
for the sliding of macroscopic objects [1], it has only emerged
recently in biological systems. For example, leukocyte cells
rolling in contact with the endothelium [2] and living cells
migrating on viscoelastic substrates [3] exhibit the stick-slip
motion, one of the hallmarks of dry friction. At a smaller
scale, the movement of kinesin motor protein on microtubules,
when it is dragged by a focused laser tweezer, displays nonlin-
ear friction that is consistent with the behavior of dry friction
[4]. More recently, the friction between two F-actin filaments
has been measured and it is shown to be proportional to the
logarithm of the sliding velocity [5]. The latter behavior is
again a characteristic of dry friction [6]. What these biological
systems show is that the friction at the mesoscopic scales
may be dominated by the Coulombic force rather than the
viscous force, as we usually assume. Indeed, we can estimate
the drag force on a mesoscopic object as Fd = 6πμRv ≈
10−15 N , where μ ≈ mPa is the dynamic viscosity, R ≈ μm
is the linear size of the object, and v ≈ μm/s is the typical
speed. On the other hand, the Coulombic friction can be as
strong as � ≈ 10−12 N [4,5,7]. Thus, to elucidate the statisti-
cal description of biological interaction, we must understand
the interplay of the Coulombic friction, which is a nonlinear
force; the fluctuations arising from the environments, which
may not be purely thermal in origin; and the external force
such as the harmonic potential as in most experimental setups.

In this paper, we report on a nonequilibrium analysis of a
simple model that exhibits interesting behavior under the in-
fluence of dry friction and the fluctuations of the environment,
but otherwise confined to a harmonic potential. A simple
phenomenological model for dry friction was introduced by
de Gennes to address the dynamics of granular grains on a
vibrating surface [8]. To model the dry friction experienced
by the grain and the effect of the vibrating surface, de Gennes

included, respectively, a term that is proportional to the sign of
the velocity and a Gaussian white noise into the equation of
motion. He showed that there are three different regimes: a
viscous, a partly stuck, and a stuck regime [8]. In the partly
stuck regime, the velocity distribution is exponential with a
“kink” at v = 0. Subsequently, there has been a number of
papers investigating various aspect of the model. In Ref. [9],
the authors formulated a path integral approach to understand
the stick-and-slip motion. They also calculated the average
velocity as a function of an external constant force acting
on the particle [10]. In Ref. [11], the authors analyzed the
Fokker-Planck (FP) equation not only for the velocity but also
for the spatial displacement, the statistics of which exhibit
interesting multiscale properties arising from the Coulombic
friction.

However, none of these papers deals with the fundamentals
of measuring dry friction under experimental settings [4]. We
address this problem by exploring, by means of numerical
simulations, the nonequilibrium dynamics of a particle sub-
jected to dry friction and noise (not necessarily arising from
thermal fluctuations), but otherwise confined to a harmonic
potential which pulls the particle at a constant speed (see
Fig. 1). Here is a summary of our results.

(1) We show that for a range of velocity, the frictional force
scales with the logarithm of pulling velocity, in agreement
with recent experimental findings.

(2) We find that the spatial displacement has a non-
Gaussian probability distribution function (PDF).

(3) We demonstrate the violation of the fluctuation-
dissipation theorem (FDT), which is expected for out of
equilibrium system.

(4) Nonetheless, we show that the stationary fluctuation
theorem (FT) for work done on the particle holds if we define
an effective temperature related to the noise of the system.

This paper is organized as follows: In Sec. II, we introduce
the model. In Sec. III, we study the stationary state distribution
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FIG. 1. A mesoscopic particle of mass m bound to harmonic
potential with spring constant Ks, pulled with a speed vs on a surface
with Coulombic friction, and subjected to a Gaussian noise from the
environment.

of the spatial and velocity component of model. In Sec. IV, we
study the frictional force for different noise and pulling speed.
In Secs. V and VI, we study the mean square displacement
(MSD) and fluctuation dissipation theorem in conjunction
with fluctuation theorem for the model.

II. THE MODEL

The Langevin equation for the setup as depicted in Fig. 1
can be written as

m
dv

dt
= −�σ (v) − Ks(x − vst ) + η(t ), (1)

where x is the position of the particle and v = dx/dt is its
velocity. The dry friction is modeled by −�σ (v), where � is
the strength and σ (x) is the sign function, defined as σ (v) = 1
for v > 0, σ (v) = −1 for v < 0, and σ (v) = 0 for v = 0.
The third term represents the harmonic potential moving at
speed vs and Ks is the spring constant. The last term η(t )
represents the stochastic force arising from the fluctuations
of the environment, modeled by a Gaussian white noise, i.e.,
〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 = 2g2δ(t − t ′), where g represents
the strength of the noise.

To show that the dynamics of this system described by
Eq. (1) is intrinsically out of equilibrium, we first derive the
corresponding FP equation. Introducing the comoving frame,
defined by x′ = x − vst and v′ = v − vs, we obtain

∂t P = −∂x′ (v′P) + m−1∂v′ {[�σ (v′ + vs) + Ksx
′]P }

+ (g2/m2) ∂2
v′ P, (2)

where P(v′, x′, t ) is the phase-space distribution function of
the particle as a function of t . Note that this equation, as in any
FP equation, can be written as ∂t P = −∇ · J, which expresses
conservation of probability. The current J consists of two parts
[12]: a reversible part

Jr =
(

v′P
−(Ks/m)x′P − (�/2m)[σ (v′ + vs) + σ (−v′ + vs)]P

)
, (3)

and an irreversible part,

Jir =
(

0
−(�/2m)[σ (v′ + vs) − σ (−v′ + vs)]P − (g2/m2) ∂v′P

)
. (4)

Under time reversal, t → −t , the position and the velocity
components of reversible Jr (irreversible Jir) current are trans-
formed in the same (opposite) way as the time derivative of x′
and of v′, respectively.

An equilibrium system, in addition to being time indepen-
dent, i.e., ∂t P = 0, satisfies the condition of detailed balance,
which dictates that Jir must vanish [12,13]. This gives an
equation for the equilibrium phase distribution, which can
be readily solved. However, this solution does not satisfy the
stationary state condition ∇ · Jr = 0, unless Ks is identically
zero [13]. This implies that a harmonically bound particle
under dry friction and noise is intrinsically out of equilibrium.
Nevertheless, the system does possess a stationary state, and
most of our results are obtained in this regime.

III. STATIONARY STATE DISTRIBUTIONS

In this section, we present the PDFs from the numerical
simulation of Eq. (1). First, for simplicity, we scale out a
characteristic length, � ≡ �/Ks, and a time, τ ≡ √

m/Ks, so
that x̃ = x′/�, t̃ = t/τ , and ṽ = (τ/�) v′. The scaled Langevin
equation only depends on two parameters, ṽs = vs(τ/�) and
g̃ = g/(�

√
τ ). We employ the Euler scheme with conver-

gence of order 1 to integrate Eq. (1) forward in time [14,15].
The probability distribution, P(ṽ, x̃), is obtained by binning
the phase space from a trajectory generated by running the

code for ≈106 τ , which, we believe, is sufficient time to es-
tablish steady state [16].

We find it visually more appealing to report P(ṽ) and
P(x̃), obtained by binning, respectively, ṽ and x̃ from the
trajectories of Eq. (1). The results are plotted in Fig. 2 for
different values of ṽs at a fixed g̃. First, a striking feature
of P(ṽ) is the sharp nondifferentiable point (singularity) for
all g̃ and ṽs at ṽ = 0. The singularity, which is also present
without the spring, arises from the discontinuity of the sign
function in Eq. (1) [8,17]. When the particle is being pulled at
a low velocity, there appears another maximum in P(ṽ) near
ṽ ≈ ṽs. As the pulling speed increases, this peak becomes
more pronounced and eventually it corresponds to the most
probable speed. Physically, at low pulling speed, the particle
does not have enough momentum to overcome dry friction
and becomes stuck momentarily, but at some point the linearly
increasing force sets the particle into motion, in short jumps.
At a higher pulling speed, the particle starts to slide more
frequently, therefore its most probable speed becomes roughly
ṽs. Also, we note that increasing ṽs broadens the width of the
peak at ṽ = ṽs. Interestingly, the two peaks, one at ṽ = 0 and
the other at ṽ = ṽs coexist for a large range of ṽs. Increasing
the strength of the effective noise g̃ causes the transition from
single peak to double peak to happen at larger pulling speed.

For the displacement of the particle x̃ away from the bot-
tom of the potential, we find that, despite being a harmonic
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FIG. 2. The stationary state phase space distribution P(ṽ, x̃) as
obtained from numerical simulations of Eq. (1) for g̃ = 1 where
x̃ = x′/�, ṽ = (τ/�) v′, and g̃ = g/(�

√
τ ). (a) The normalized ve-

locity distribution in the laboratory frame P(ṽ)/PM [where PM is the
maximum of P(ṽ) and P(ṽ) ≡ ∫

dx̃ P(ṽ, x̃)] for different values of
ṽs. From the left, ṽs = 0 (�), 1 (◦), 2 (
), and 10 (
). The sharp
peak at ṽ ≈ 0 for all values of ṽs shown is a signature of dry fric-
tion. However, as ṽs increases, there appears a secondary maximum,
roughly at ṽ ∼ ṽs, corresponding to the object sliding due to the force
from the spring. Increasing ṽs increases the magnitude of the peak
and ṽs becomes the most probable speed. (b) The normalized spatial
distribution in the comoving frame P(x̃) ≡ ∫

d ṽ P(ṽ, x̃) for different
values of ṽs [same legends as in (a)]. Note that the distribution is
not Gaussian in x̃; this can be seen from the inset of (b) which
shows the kurtosis of P(x̃) vs ṽs for g̃ = 1. While the calculated
skewness is small, the kurtosis starts out at roughly 5 for ṽs = 0, and
goes asymptotically to 2 as ṽs increases. For comparison, a purely
Gaussian distribution has a kurtosis of 3 (solid line) and uniform
distribution has a kurtosis of 1.8.

potential, P(x̃) is not Gaussian, as shown in Fig. 2(b). This
non-Gaussianity is likely arising from the nonlinear nature of
the dry friction. To characterize the non-Gaussianity of the
distribution P(x̃), we can measure its skewness and kurtosis.
A purely Gaussian distribution has a kurtosis and a skewness
of three and zero, respectively. In our case, the skewness
is roughly zero and the kurtosis is not 3, as shown in the
inset of Fig. 2(b). For low pulling velocities, the kurtosis is
determined to be more than 3 and decreases to 2 for large
pulling velocities. Another interesting feature of P(x̃) is that
the most probable value of x̃, i.e., the value of x̃ at which P(x̃)
is a maximum, decreases as ṽs increases. This is related to the
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FIG. 3. Frictional force, as obtained from F = Ks〈x′〉 = �〈x̃〉
as a function of the pulling velocity, ṽs, for increasing values of
g̃ = 0.1 (+), 1 (◦), 5 (
), 10 (�). When fluctuations are weak, the
force curve resembles a step function, but as g̃ increases, the force
scales sublinearly for small ṽs and asymptotically goes to a constant
for large ṽs given by �. (b) The force vs pulling velocity curve as in
(a) but plotted in a linear-log scale [same legends as in (a)], showing
that the force scales with ṽs as ln ṽs for sufficiently large g̃. This
scaling is a signature of dry friction. The error bars represent the
standard deviation of simulations [15].

counteracting force due to the harmonic potential to balance
out the Coulombic friction. Note that this also happens for
the case with viscous friction, except that the most probable
value of x̃ decreases linearly with increasing ṽs. For the case of
Coulombic friction, the most probable value of x̃ approaches
to a constant value as the pulling velocity gets larger, as
expected.

IV. FRICTIONAL FORCE AS A FUNCTION
OF PULLING VELOCITY

One of the motivations to study the dynamics of the system
depicted in Fig. 1 is that it represents a typical experimental
setup to measure friction, where the harmonic potential is
generated by an optical tweezer [4]. In a statistical steady
state, the force from the spring balances that of the dry friction
on the average. Therefore, the friction force is given by F =
Ks〈x′〉 = �〈x̃〉, which is a function of pulling speed, ṽs. The
average is calculated directly from the time series of the x̃(t )
in the simulation. The results are plotted in Fig. 3. At low g̃,
we are in the deterministic limit, where 〈x̃〉 = σ (ṽs). However,
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at higher g̃, the magnitude of force initially increases with the
pulling speed, the slope of which decreases as g̃ increases.
We can interpret this behavior as follows: In the deterministic
limit, pulling the object at a constant speed, the average of
applied force must equal the Coulombic friction. However,
increasing the effective noise makes the particle move with
constant speed even with an applied force (on average) smaller
than Coulombic force of the contact surface. In other words,
the solid friction is effectively softened. In fact, as can be
seen in Fig. 3(b), there is a range of the pulling velocity ṽs,
in which the frictional force scales with the logarithm of the
pulling velocity. This scaling is a signature of dry friction, and
has been predicted with microscopic models and confirmed
experimentally [5]. It is interesting to obtain this here using
a phenomenological model. This scaling arises from the ac-
tivation process in a noisy environment. In our case, when
the particle is being pulled, the system has two states: a stuck
phase with ṽ ≈ 0 and a sliding phase with ṽ ≈ ṽs. Note that in
transition from stuck phase to sliding phase, the particle needs
to move faster than ṽs to catch up with the moving spring.
The noise in the system might occasionally kick the system
from a stuck to the sliding phase. Therefore, assuming that the
Kramers law [12] is valid for this system, 〈v〉 ∼ exp −(F/g2),
which implies that F ∼ ln vs.

V. MEAN-SQUARED DISPLACEMENT AND THE
VIOLATION OF THE FLUCTUATION-DISSIPATION

THEOREM

Another interesting quantity that shows the interplay be-
tween diffusion property and dry friction is the MSD of the
particle, defined as d̃2(t ) = 〈[x̃(t ) − x̃(0)]2〉, where the aver-
age represents the average over noise as well as time average.
In Fig. 4, we plot our numerical results for the MSDs, in which
we identify two distinct behaviors of the particle—a diffu-
sive regime which occurs at both small g̃ and small pulling
velocity, ṽs, and an underdamped regime for large g̃ and ṽs,
as shown in the inset of Fig 4(b). We should note that this
behavior is different from a similar system with viscous force
only, in that its behavior does not depend on ṽs.

In the diffusive regime, the MSD rises as time increases
and flattens to an asymptotic value of 2[〈x̃2〉 − 〈x̃〉2], which is
the width of the distribution. In the underdamped regime, the
MSD exhibits oscillatory motion. Interestingly, the higher the
pulling ṽs, the more oscillatory is the MSD. This is expected
because as ṽs increases, we are increasing the energy of the
system and the particle essentially exhibits deterministic mo-
tion.

Next, we discuss the FDT, which is a cornerstone of equi-
librium statistical mechanics; it posits that, at equilibrium, the
correlation function, C(t − s), of an observable is linked to its
response function, R(t − s), via ∂sC(t − s) = kBT R(t − s),
where kB is Boltzmann’s constant and T is the temperature.
Here, the linear response function is defined as R(t − s) ≡
〈δx(t )/δ f (s)〉 for the variable x(t ) in response to an external
force f (t ). Among its many applications, the FDT allows one
to measure the correlation function to back out some infor-
mation encoded in the response function about the dissipative
process of the system [18].

FIG. 4. The mean-squared displacement as a function of time for
g̃ = 0.2 (a) and g̃ = 1 (b) for ṽs = 0 (◦) and ṽs = 2 (�). At low g̃, the
MSD resembles the motion of the particle in the deterministic limit:
at low ṽs, the particle is in the diffusive regime, but at high ṽs, the
particle exhibits oscillatory motion. At high g̃, MSD resembles that
of a damped harmonic oscillator in the underdamped limit. Note that
in both cases, increasing ṽs increases the amplitude of the oscillation.
Inset of (b): A phase diagram showing the region in the parameter
space in which the particle exhibits diffusive (D) and underdamped
(U) behaviors. The regions are obtained by visually inspecting the
behavior of MSD at a particular g̃ and ṽs. If the MSD monotonically
increases to a constant value, we consider it as diffusive (D). On
the other hand, if the MSD exhibits oscillations we consider it as
underdamped (U). We note that only for a small range of g̃ and ṽs

we have diffusive motion. The system crosses over the underdamped
regime by increasing g̃ and ṽs. Red points represent roughly the
boundary of the diffusive and underdamped regimes.

However, as shown earlier, our system is intrinsically out
of equilibrium and we expect the FDT to be violated because
of continuous dissipation of energy as indicated by a nonzero
irreversible current of our system. However, it would be in-
teresting to see if a FDT-like relation could still hold when
an effective temperature is properly defined [19]. To that end,
we take the average kinetic energy to be an effective temper-
ature, i.e., (1/2) kBTeff = (m/2)〈v′2〉 = (�2/2Ks)〈ṽ2〉, and we
plot, from our numerical simulations, 2kBTeff Im χ (ω) versus
ωC(ω), where C(ω) and χ (ω) are the the Fourier transform
of C(t − s) and R(t − s), respectively [20] in scaled units. If
FDT holds, then all data points would collapse onto a straight
line with a slope of 1. The results are plotted in Fig. 5, where
we display our numerical results for four representative cases:
two cases in which the pulling velocity is zero and two cases
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FIG. 5. Plots of the Fourier transform of the linear response
function kBTeff Im χ (ω) ( ) and correlation function ωC(ω) ( ) for
different values of g̃ and ṽs, where Teff represents the effective
temperature. Here, case a corresponds to (g̃ = 1, ṽs = 2), case b
corresponds to (g̃ = 1, ṽs = 5), case c corresponds to (g̃ = 0.1, ṽs =
0), and case d corresponds to (g̃ = 1, ṽs = 0). For a fluctuation-
dissipation theorem to hold, ωC(ω) and 2kBTeff Im χ (ω) must
overlap. For case a, at this particular g̃ and ṽs, the FDT is obeyed.
For cases b–d, the FDT is violated. However, for case c, the FDT can
be restored with a redefinition of the effective temperature, about
1.4 × Teff . (e) A plot of the response function 2kBTeff Im χ (ω) vs
the correlation functions ωC(ω) for cases a ( ), b ( ), c ( ), and d
( ), as indicated. Note that the response function and the correlation
functions have been normalized by the maximum values of ωC(w)
for each cases. For a fluctuation-dissipation-like theorem to hold,
the slope would be 1, as indicated by the solid black line. We also
observe that cases b and d are not single valued, implying a frequency
dependent temperature.

in which the system is driven, i.e., the pulling velocity is not
zero.

When the system is not driven, i.e., ṽs = 0, the FDT is
indeed violated for both low and high g̃ regimes. For these
cases, the correlation functions and response functions are
displayed in cases c and d in Fig. 5. For low g̃, which is the
diffusive regime [see inset of Fig. 4(b)], a FDT-like relation
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FIG. 6. Fluctuation theorem for the time-averaged
work done (over a time period T ) on the particle:
WT ≡ −(Ks/T )

∫ t+T
t dt ′ (x − vst ′) vs. We plot from our numerical

simulations, T −1 ln[P(WT = w)/P(WT = −w)] vs WT /(kBTeff ) for
(a) (g̃ = 1, ṽs = 2), and (b) (g̃ = 1, ṽs = 5), at three different values
of T /τ = 5 (◦), 15 (
), and 20 (
), where τ ≡ √

m/Ks. The error
bars indicate the standard deviation of simulations and for most of
the points it is smaller than the symbols used [15]. We should note
that the parameters for (a) and (b) correspond to the cases in which
the FDT holds or does not, hold, respectively (see Fig. 5). To verify
the stationary state FT, the value of T should be large enough. When
increasing the value of T , the slope of (a) approaches 1, while for
(b) it is 0.84. Thus, the FT holds for (a) but for (b) it holds only if
we redefine Teff , as 1.188 times the average kinetic energy of the
particle. Insets: The probability distribution of work WT for different
values of T .

can be restored if we choose an effective temperature that is
different from Teff above. The exact value of this temperature
is greater than Teff and approaches Teff as g̃ increases to the
boundary of the diffusive regime.

At an even higher g̃ in the underdamped regime, not
only the FDT is violated, but also if we insist on having
a FDT-like relationship, a frequency dependent temperature
must be introduced. This can be seen in Fig. 5(d), where
the ratio of Im χ (ω) and ωC(ω) is no longer single val-
ued due to the asymmetry in the ratio of Imχ (ω) and
ωC(ω) around ω = 1. For example, at ω = 0.57 and 1.37,
the value of the correlation function ωC(ω) is roughly the
same (about 2.05), but the response function Im χ (ω) at
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ω = 1.37 has a value of 1.9 that is smaller than that of ω =
0.57 which is 2.2. Therefore, they appear to be double valued
in Fig. 5(e).

When the system is driven, there is a small range of ṽs at
a particular g̃, in which a FDT-like relation with an effective
temperature so defined holds [see Fig. 5(a)]. However, if the
pulling velocity is increased, the FDT is violated again [see
Fig. 5(b)].

VI. FLUCTUATION THEOREM

Recently, the FT has emerged as a useful tool to character-
ize fluctuations of a system that is driven out of equilibrium. It
provides a precise quantitative statement about the probability
of a dissipative quantity σ t , such as the entropy production
rate or the rate at which work is being done, and states that
[21]

lim
t→∞

1

t
ln

P(σ t = A)

P(σ t = −A)
= A, (5)

where P(σ t = A) is the probability that σ t has a value A.
It attempts to characterize these fluctuations in far-from-
equilibrium regimes where linear response theory fails. FT
has been extensively investigated for the problem of a particle
attached to a moving spring and subjected to viscous friction
and thermal fluctuations [22–24].

Here, we examine the FT associated with the work done
on a particle experiencing Coulombic friction. Following
Ref. [25], we define the rate at which work is being done on
the particle as the work required to keep the potential moving,
and write WT = −(Ks/T )

∫ t+T
t dt ′ (x − vst ′) vs. Note that

this definition of work implies that it vanishes identically
when the pulling velocity is zero. In the inset of Fig. 6, we
plot the probability distribution for WT for different values
of T for two different cases. It is interesting to note that
despite the displacement x̃ having a non-Gaussian distribu-
tion (see Fig. 2), WT is Gaussian distributed for sufficiently
large values of T . Furthermore, it is clear that for a given
T , the probability of having “negative” work WT < 0 is fi-

nite, but increasing T results in a higher probability for the
system of having “positive” work WT > 0. In both cases, the
average of WT /T for all the values of T is Ks〈x′〉 vs, as it
should be.

To verify the conventional steady-state FT for WT , we
plot T −1 ln[P(WT = w)/P(WT = −w)] versus w/(kBTeff ) in
Fig. 6 for two cases: one in which FDT holds and the other
one in which FDT does not. For the first case, the FT holds for
large values of T with the effective temperature Teff . However,
for the second scenario, the FT only holds at large T if we
redefine Teff . Increasing T further does not change the slope
in both cases. Therefore, we have verified for a model of
dry friction, which is intrinsically out of equilibrium, that the
steady-state FT holds, provided T is sufficiently large, even
though FDT does not hold, as previously demonstrated.

VII. CONCLUSION

We have numerically explored a simple model in which
the effects of Coulombic friction and a harmonic potential
are taken into account for a mesoscopic particle moving in
a noisy environment. This problem corresponds to the typical
experimental setup, in which friction is being measured quan-
titatively. For a range of pulling velocity, our model gives a
frictional force that scales with the logarithm of the pulling
velocity. This behavior is typically observed experimentally.
We have also investigated the nonequilibrium properties of
the model. In particular, we demonstrate that the model obeys
a form of the fluctuation theorem, despite the fact that it is
intrinsically out of equilibrium as demonstrated by the vi-
olation of the fluctuation-dissipation theorem. We hope that
these results give insights into those experiments that measure
friction, such as microbalance experiments.
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