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The heart is an excitable medium which is excited by membrane potential depolarization and propagation.
Membrane potential depolarization brings in calcium (Ca) through the Ca channels to trigger intracellular Ca
release for contraction of the heart. Ca also affects voltage via Ca-dependent ionic currents, and thus, voltage and
Ca are bidirectionally coupled. It has been shown that the voltage subsystem or the Ca subsystem can generate
its own dynamical instabilities which are affected by their bidirectional couplings, leading to complex dynamics
of action potential and Ca cycling. Moreover, the dynamics become spatiotemporal in tissue in which cells
are diffusively coupled through voltage. A widely investigated spatiotemporal dynamics is spatially discordant
alternans (SDA) in which action potential duration (APD) or Ca amplitude exhibits temporally period-2 and
spatially out-of-phase patterns, i.e., APD-SDA and Ca-SDA patterns, respectively. However, the mechanisms of
formation, stability, and synchronization of APD-SDA and Ca-SDA patterns remain incompletely understood.
In this paper, we use cardiac tissue models described by an amplitude equation, coupled iterated maps, and
reaction-diffusion equations with detailed physiology (the ionic model) to perform analytical and computational
investigations. We show that, when the Ca subsystem is stable, the Ca-SDA pattern always follows the APD-SDA
pattern, and thus, they are always synchronized. When the Ca subsystem is unstable, synchronization of
APD-SDA and Ca-SDA patterns depends on the stabilities of both subsystems, their coupling strengths, and
the spatial scales of the initial Ca-SDA patterns. Spontaneous (initial condition-independent) synchronization
is promoted by enhancing APD instability and reducing Ca instability as well as stronger Ca-to-APD and
APD-to-Ca coupling, a pattern formation caused by dynamical instabilities. When Ca is more unstable and
APD is less unstable or APD-to-Ca coupling is weak, synchronization of APD-SDA and Ca-SDA patterns is
promoted by larger initially synchronized Ca-SDA clusters, i.e., initial condition-dependent synchronization. The
synchronized APD-SDA and Ca-SDA patterns can be locked in-phase, antiphase, or quasiperiodic depending on
the coupling relationship between APD and Ca. These theoretical and simulation results provide mechanistic
insights into the APD-SDA and Ca-SDA dynamics observed in experimental studies.
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I. INTRODUCTION

The function of the heart is to pump blood via mechanical
contraction and relaxation. Contraction and relaxation of the
heart are regulated by intracellular calcium (Ca) which rises
and decays following the membrane potential depolarization
and repolarization cycle. This process is called excitation-
contraction coupling [1]. On the other hand, the membrane
potential or voltage is also affected by Ca via Ca-dependent
ionic currents, and thus, Ca and voltage are bidirectionally
coupled. Complex action potential duration (APD) and Ca
cycling dynamics can occur due to instabilities originating
from the voltage subsystem (voltage driven) or the Ca sub-
system (Ca driven), as well as their bidirectional couplings
[2]. Alternans, a period-2 behavior, is the most widely in-
vestigated nonlinear dynamics in cardiac systems, including
animal experiments and clinical settings [3–12]. Theoretical
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and simulation studies have shown that alternans can arise
from instabilities originating from voltage [6,7,13] or Ca cy-
cling [14–20], which can be potentiated or attenuated by the
bidirectional couplings of the two [21–23]. Both voltage- and
Ca-driven alternans have been demonstrated in experimental
studies [6,24–30]. Since voltage and Ca are coupled, voltage-
driven alternans can result in Ca alternans, and Ca-driven
alternans can result in APD alternans. Clinically, alternans
manifests in the hearts as either pulsus (mechanical) alternans
or T-wave (electrical) alternans. Pulsus and T-wave alter-
nans are widely known as precursors of lethal ventricular
arrhythmias and sudden cardiac death [3,4,9,10,12]. A poten-
tial mechanism linking alternans to arrhythmias is spatially
discordant alternans (SDA) [31–37] in which APD or Ca
exhibits a temporally period-2 but spatially out-of-phase (or
antiphase) behavior (see Fig. 1), referred to as APD-SDA and
Ca-SDA in this paper, respectively. APD-SDA results in large
APD gradients, making the tissue susceptible to conduction
block and formation of spiral waves [31,33] or generation
of arrhythmia triggers [38]. Therefore, understanding the
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FIG. 1. Spatially discordant action potential duration (APD) and
Ca alternans in a rabbit heart. (a) An image of a rabbit heart and the
optical mapping area. (b) Simultaneous recordings of voltage and Ca
from three different sites marked in (a). (c) Nodal lines (white) in
APD alternans map. (d) Nodal lines (white) in the Ca alternans map.
Modified from Hayashi et al. [44].

mechanisms of SDA can provide insights into the understand-
ing of cardiac arrhythmogenesis.

The genesis of APD-SDA has been widely investigated in
previous studies [33,39–41], which mainly focus on the role of
conduction velocity (CV) restitution (CVR). CVR is an action
potential conduction property in which CV changes as the di-
astolic interval (DI) changes due to incomplete recovery of the
sodium current or changes in excitability [32,33,42,43]. The
role of CVR in APD-SDA is supported by some experiments
[24,44–47] but not by others [47–49]. In recent simulation and
theoretical studies [50,51], we performed systematic analyses
on the roles of CVR, tissue heterogeneities, convection due
to conduction, and nodal line curvature in the genesis and
dynamics of APD-SDA, which provide additional theoretical
insights for those experiments that do not support the mech-
anism of CVR-indued APD-SDA. However, these theoretical
studies do not consider the condition when Ca-driven alter-
nans is also present. Since Ca and voltage are bidirectionally
coupled, when APD alternans becomes spatially discordant,
Ca alternans may also be spatially discordant, or vice versa.
Experimental studies [44,48,49,52] have shown that during
SDA, the nodal lines of APD-SDA may or may not colocalize
with those of the Ca-SDA, i.e., the APD-SDA and Ca-SDA
may or may not synchronize with each other. Figure 1 shows
such an example from optical mapping experiments in a rabbit
heart by Hayashi et al. [44]. In this example, the APD-SDA
nodal lines colocalize with the Ca-SDA nodal lines in the
upper region of the mapping area but not in the lower region.
In the lower region, there are Ca-SDA nodal rings without
corresponding APD-SDA nodal rings. This indicates that, in
the upper region, the Ca-SDA pattern is synchronized with the
APD-SDA pattern but not in the lower region. Therefore, there
is a key question to be addressed: when and how are APD-

FIG. 2. Schematic diagrams of cell-to-cell coupling and Ca and
voltage coupling. (a) A schematic diagram of coupling between
cells and coupling between voltage and Ca in a chain of cardiac
cells. (b) Ca–to–action potential duration (APD) coupling. Increasing
Ca (black dashed) can either lengthen APD (positive Ca-to-APD
coupling) or shorten APD (negative Ca-to-APD coupling). (c) APD-
to-Ca coupling. Lengthening APD in the first beat causes shortening
of diastolic interval (DI), which may result in either a smaller Ca
(positive APD-to-Ca coupling) or a larger Ca (negative APD-to-
Ca coupling) in the second beat. See main text for more detailed
description.

SDA patterns and Ca-SDA patterns synchronized in cardiac
tissue?

Answering this question is important for understanding
cardiac arrhythmogenesis [53]. Since a critical APD gradi-
ent is needed for reentry initiation [54–57], synchronization
of Ca-SDA and APD-SDA patterns is needed for the Ca-
driven alternans to result in a large enough APD gradient. In
other words, since Ca is not directly coupled between cells
[Fig. 2(a)], it can alternate out-of-phase in space. If Ca is
not synchronized in space with APD, its effect on APD will
be averaged out in space since voltage is diffusively coupled
between cells. Previous simulation studies have investigated
the formation of SDA in the presence of Ca-driven alter-
nans [44,58–60], but they have not addressed the question
of when and how APD-SDA and Ca-SDA patterns can be
synchronized. In this paper, we perform a systematic theoret-
ical study combined with computer simulations to understand
the formation and stability of SDA patterns in the presence
of both voltage-driven instability (or voltage-driven alternans)
and Ca-driven instability (or Ca-driven alternans), particularly
synchronization of the APD-SDA pattern with the Ca-SDA
pattern. We use three types of mathematical models of differ-
ent complexity and physiological details, i.e., the amplitude
equation (AE) model with generic kinetics, the coupled map
lattice (CML) model incorporating certain physiological prop-
erties, and the ionic model (i.e., the rabbit ventricular myocyte
model by Mahajan et al. [61]) describing the detailed physi-
ological processes. Spatiotemporal APD and Ca dynamics in
both one-dimensional (1D) cable and two-dimensional (2D)
tissue models are investigated. Through theoretical analyses
and computer simulations of these models, we reveal the
conditions and mechanisms for the formation and synchro-
nization of APD-SDA and Ca-SDA patterns, which provides
mechanistic insights into the formation and synchronization
of the APD-SDA and Ca-SDA patterns observed in experi-
mental studies.
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II. METHODS AND MATERIALS

A. Mathematical models

The AE model is described in the corresponding section
in the Results. Details of the CML and ionic models are
described in the Appendix.

B. Voltage and Ca coupling

Figure 2(a) is a schematic plot for voltage and Ca coupling
and cell-to-cell coupling in cardiac tissue. In cardiac tissue,
the cells are electrically coupled via ion channels called gap
junctions. When one cell depolarizes, the voltage differences
between this cell and its neighbors result in current flows
to its neighbors, causing the neighboring cells to depolarize.
Although Ca may also pass through the gap junction to cause
cell-to-cell Ca coupling [62], it is believed that this coupling
is very weak, which is omitted in computational cardiac tissue
models. Here, we also assume that there is no cell-to-cell Ca
coupling, and the cells are coupled only via voltage.

Ca and voltage are bidirectionally coupled within a cell
via the Ca-dependent ionic currents as well as Ca-dependent
signaling. We refer to the couplings as Ca-to-APD coupling
and APD-to-Ca coupling, as detailed below.

1. Ca-to-APD coupling

Ca affects APD via Ca-dependent ionic currents or Ca-
dependent signaling which then regulates ionic currents. For
example, increasing Ca increases Na-Ca exchange current
(INCX), which is an inward current, prolonging APD. Increas-
ing Ca enhances Ca-dependent inactivation of the L-type Ca
current (ICa,L), shortening APD. Increasing Ca also increases
the slow component of the delayed rectifier potassium current
(IKs) and the Ca-activated small conductance potassium cur-
rent (ISK) [63,64], which are outward currents activated by Ca,
shortening APD. Therefore, increasing Ca can either lengthen
or shorten APD [Fig. 2(b)], which results in positive Ca-to-
APD coupling or negative Ca-to-APD coupling, respectively.

2. APD-to-Ca coupling

APD affects Ca mainly in two ways. First, lengthening
APD affects Ca entry and extrusion via changing ICa,L and
INCX, which change the Ca load for the next beat. The amount
of Ca released is larger for a higher sarcoplasmic reticulum
(SR) Ca load, and this property is called the refractional re-
lease relationship [65,66]. Second, lengthening APD shortens
DI preceding the next beat, reducing the availability of L-type
Ca channels as well as that of the Ca release channels, called
ryanodine receptors, for opening due to incomplete recovery.
Furthermore, the SR Ca load may also be affected by DI due
to refilling from the previous release. These effects together
give rise to a property called Ca release restitution [67–69].
Therefore, lengthening APD in the present beat can either
enhance Ca release or reduce Ca release in the following
beat [Fig. 2(c)], resulting in positive APD-to-Ca coupling or
negative APD-to-Ca coupling, respectively.

FIG. 3. Electromechanically concordant and discordant spatially
discordant alternans (SDA). (a) An example of an electromechani-
cally concordant SDA in which action potential duration (APD) and
Ca alternate in-phase. Top: APD vs cell no. for two consecutive beats.
Middle: Peak Ca vs cell no. for the same two consecutive beats.
Bottom: Alternans amplitude of APD (�a) and Ca (�c) calculated
from the two beats. (b) Same as (a) but for an electromechanically
discordant SDA in which APD and Ca alternate in antiphase. (a) and
(b) are simulation results of the coupled map lattice (CML) model
(see the Appendix) with the following parameters: T = 250 ms,
γ = 0.002, σR = 0.8, τa = 40, and β = 4 for (a) and T = 250 ms,
γ = −0.002, σR = 0.8, τa = 38, and β = 4.6 for (b).

C. Spatially and electromechanically concordant
and discordant alternans

When APD (or Ca) alternates in phase in the whole tissue,
it is called spatially concordant alternans (SCA). When APD
(or Ca) alternates out-of-phase in space, it is called SDA
(Fig. 3). During alternans, APD and Ca may alternate either
in-phase or in antiphase. In the in-phase mode, a large Ca
corresponds to a long APD, and vice versa, which is called
electromechanically concordant alternans. In the antiphase
mode, a large Ca corresponds to a short APD, and vice versa,
which is called electromechanically discordant alternans. The
electromechanically concordant alternans occurs when the
Ca-to-APD coupling is positive, and electromechanically dis-
cordant alternans occurs when the Ca-to-APD coupling is
negative.

In the AE model, the variables are the amplitudes of APD
and Ca alternans. Furthermore, in the CML and ionic models,
we present most of the results using the alternans amplitudes.
The APD alternans amplitude (�an) is defined as

�an = (−1)n an+1 − an

2
, (1)

in which an is the APD of the nth beat. The prefactor (−1)n

maintains the sign of �an during alternans. In other words,
the term (an+1 − an) changes sign in a beat-to-beat manner
during alternans, and the prefactor keeps �an either positive
or negative, unchanged from beat to beat. In a SCA, �an

keeps either positive or negative in the whole spatial domain.
In a steady-state SDA, the sign of �an remains unchanged in
time but changes in space. Here, �an = 0 corresponds to the
SDA node. Similarly, one defines the Ca alternans amplitude
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(�cn) as

�cn = (−1)n cn+1 − cn

2
, (2)

where cn is the peak value of the Ca concentration of the
nth beat. In the real cardiac myocytes, the intracellular Ca
concentration is on the order of 1 μM. For simplicity, we
use an arbitrary unit for cn and �cn but use the real unit
milliseconds for an and �an in the AE and CML models. The
bottom panels of Fig. 3 plot the steady-state patterns of �an

and �cn from the SDA shown in the top and middle panels.
The SDA in Fig. 3(a) is electromechanically concordant in
which the signs of �an and �cn are the same, i.e., a posi-
tive �an corresponds to a positive �cn, and a negative �an

corresponds to a negative �cn. Figure 3(b) shows an SDA of
electromechanically discordant alternans in which the signs of
�an and �cn are opposite, i.e., a positive �an corresponds to
a negative �cn, and vice versa.

D. Pacing protocol

In this paper, we pace all cells in the tissue simultaneously,
i.e., a global pacing protocol, and thus, there is no action
potential conduction. As we clarified previously [50,51], this
protocol is not only physiologically realistic but also a sim-
plified setting that can be helpful for understanding the SDA
dynamics in the presence of conduction. We will investigate in
a future study the effects of conduction on the SDA dynamics
in the presence of Ca alternans using local pacing protocols.

E. Computer simulation methods

Computer simulations are carried out for all three types
of models. Numerical simulations of 1D cable and 2D tissue
are carried out using a forward Euler method with �x =
0.0125 cm and �y = 0.0125 cm. Here, �t = 0.02 ms for the
AE model, and �t = 0.01 ms for the ionic model are used.
Simulations are carried out by GPU (NVIDIA GeForce RTX
3090) accelerated computing with CUDA C++.

III. RESULTS

A. SDA formation and synchronization in the AE
model—Theoretical analyses

The advantage of the AE model is that it is relatively
simple so that we can perform analytical treatments, such
as stability analysis and theoretical solutions [40,51,70]. An
AE model describing voltage-driven SDA dynamics in a 1D
cable was derived by Echebarria and Karma [40,70]. A similar
AE model was developed to describe the effects of voltage
and Ca coupling on subcellular Ca alternans in single my-
ocytes by Shiferaw and Karma [71]. In a recent study [51],
we used the AE model to investigate the voltage-driven SDA
dynamics in tissue models under different conditions, such as
repolarization and coupling heterogeneities. Here, we extend
the AE model to describe the SDA dynamics in the presence
of Ca-driven alternans by phenomenologically adding an AE
describing the amplitude of Ca alternans and the bidirectional
coupling effects. Using this AE model, we can perform sta-
bility analyses for both SCA and SDA in cardiac tissue and
investigate the conditions for synchronization of the APD-

SDA and Ca-SDA patterns. The theoretical predictions are
then examined using both the CML and ionic models which
have more physiological parameters and details.

1. AE model

Under global pacing, the AE model is described by the
following coupled partial differential equations:

T
∂�a

∂t
= α�a − β�a3 + γ�c + ξ 2 ∂2�a

∂x2
, (3)

T
∂�c

∂t
= ρ�c − ε�c3 + σ�a, (4)

where T is the pacing period, and t ≡ nT , with n being
the beat number of pacing. In the AE model, the alternans
amplitude of APD is treated as a time and space continuous
variable, i.e., �a(x, t ). Here, α and β, which are related to the
slope of the APD restitution curve [40,70], are the parameters
determining the stability and amplitude of the APD alternans
in the absence of Ca-driven alternans. In other words, in the
absence of Ca-driven alternans (or when Ca and APD are
decoupled), when α < 0, no APD alternans occurs. When
α > 0, APD alternans occurs with the steady-state alternans

amplitude �a = ±
√

α
β

. Similarly, ρ and ε are parameters

determining the stability and amplitude of the Ca alternans.
Without APD-to-Ca coupling, when ρ < 0, no Ca alternans
occurs. When ρ > 0, Ca alternans occurs with the steady-

state alternans amplitude �c = ±
√

ρ

ε
. In this paper, we fix

β = ε = 0.0001 but vary α and ρ for stability and alternans.
Here, γ in Eq. (3) describes the Ca alternans to APD

alternans coupling, and σ in Eq. (4) describes the APD
alternans–to–Ca alternans coupling, with both couplings as-
sumed to be linear. Note that couplings in Eqs. (3) and (4) are
those for Ca and APD alternans amplitudes (i.e., �a and �c),
not the Ca-to-APD coupling and the APD-to-Ca coupling.
However, as illustrated in Fig. 2(b), for a positive Ca-to-APD
coupling, an increase in Ca amplitude lengthens APD, which
shortens the APD in the following beat due to a shorter DI,
increasing the APD alternans amplitude (�a). The increase
in Ca amplitude also increases the Ca alternans amplitude
(�c). Therefore, a positive Ca-to-APD coupling is equivalent
to a positive γ in Eq. (3). Similarly, a negative Ca-to-APD
coupling corresponds to a negative γ . For the same argument,
a positive APD-to-Ca coupling corresponds to a positive σ in
Eq. (4), and a negative APD-to-Ca coupling corresponds to a
negative σ .

To understand the roles of Ca and APD coupling in the gen-
esis of the spatiotemporal dynamics, we first perform a linear
stability analysis with the following linearized equations:

T
∂�a

∂t
= α�a + γ�c + ξ 2 ∂2�a

∂x2
, (5)

T
∂�c

∂t
= ρ�c + σ�a. (6)
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Inserting [�a(x, t )
�c(x, t )] = (�a0

�c0
)exp(ikx + λt ) into Eqs. (5) and (6),

one obtains the following Jacobian:

J =

(
α − ξ 2k2 γ

σ ρ

)
T

, (7)

whose eigenvalues are

λk =
(α − ξ 2k2 + ρ) ±

√
(α − ξ 2k2 − ρ )2 + 4γ σ

2T
. (8)

As indicated in Eq. (8), λk depends on γ σ . We discuss the
three coupling cases (γ σ = 0, γ σ > 0, and γ σ < 0) in the
sections below.

2. Synchronization of APD-SDA and Ca-SDA
patterns when γσ = 0

We first deal with a special condition, i.e., γ σ = 0. This
condition is satisfied when Ca and APD are either completely
decoupled (γ = 0 and σ = 0) or one-way coupled (γ = 0
and σ �= 0 or γ �= 0 and σ = 0). However, if γ σ = 0, the
eigenvalues in Eq. (8) are decoupled into a voltage-dependent
one and a Ca-dependent one, i.e.,

λk,1 = α − ξ 2k2

T
and λk,2 = ρ

T
. (9)

Note that λk,2 is independent of k, which is because Ca is not
coupled between cells [Fig. 2(a)]. Since the case of γ = 0 and
σ = 0 (APD and Ca are completely decoupled) is trivial, we
discuss the other two cases in detail below.

a. γ = 0 and σ �= 0. In this case, the APD is not affected
by Ca, but Ca is affected by APD. This condition can be
satisfied when the Ca-dependent inward and outward currents
are properly balanced so that changing Ca does not change
APD, i.e., γ = 0. Although this condition may be difficult to
be satisfied in the real system, it still gives us insights for the
condition when the Ca-to-APD coupling is weak, i.e., when γ

is small. When γ = 0, Eqs. (3) and (4) become

T
∂�a

∂t
= α�a − β�a3 + ξ 2 ∂2�a

∂x2
, (10)

T
d�c

dt
= ρ�c − ε�c3 + σ�a(x, t ). (11)

One can categorize the system into four conditions:
(1). When both the APD and the Ca subsystems are stable

(α < 0 and ρ < 0), there is no alternans and thus no SDA
patterns.

(2). When the APD subsystem is stable and the Ca subsys-
tem is unstable (α < 0 and ρ > 0), there is no APD alternans,
and thus, �a(x, t ) = 0; the Ca-SDA pattern can be any pattern
determined by the initial condition.

(3). When the APD subsystem is unstable and the Ca
subsystem is stable (α > 0 and ρ < 0), the Ca-SDA pattern
passively follows the APD-SDA pattern.

(4). When both subsystems are unstable (α > 0 and ρ >

0), the Ca-SDA pattern can be dyssynchronous or synchro-
nized to the APD-SDA pattern, which can be understood as

FIG. 4. Synchronization of Ca–spatially discordant alternans
(SDA) to action potential duration (APD)-SDA patterns in the am-
plitude equation (AE) model without Ca-to-APD coupling (γ = 0).
(a) Plots of function f (�c) [Eq. (12)] for different σ�a values.
(b) Space-time plots of �c for σ = 0.1 (left) and σ = 0.5 (right)
for a one-node APD-SDA as indicated. (c) Space-time plots of �c
for σ = 0.1 with two noise strengths: D = 500 (left) and D = 1000
(right). (d) Svc vs noise strength D. For each D, 20 simulations
with different random initial conditions are carried out with the
corresponding Svc plotted. In the simulations in (b)–(d), the initial
conditions for Ca-SDA are spatially random in which �c is a binary
number, randomly chosen as either −100 or 100. �a is a one-node
SDA as indicated in (b). α = 0.5 and ρ = 0.5.

follows. Under this condition, the steady-state Ca-SDA pat-
tern is determined by the solutions of f (�c) = 0, in which

f (�c) = ρ�c − ε�c3 + σ�a. (12)

Here, f (�c) = 0 can exhibit either three real solutions or
one real solution [Fig. 4(a)], and the transition occurs when

|σc�a| =
√

4ρ3

27ε
or in another form:

|σc| =
√

4

27
ρ

|�c|
|�a| =

√
4ρ3β

27εα
, (13)

in which �a = ±
√

α
β

and �c = ±
√

ρ

ε
are the steady-state

alternans amplitudes of a single cell. Note that Eq. (13) is valid
only for α > 0 since �a = 0 for α � 0. When |σ | > |σc|,
f (�c) = 0 has one real solution, otherwise, there are three
real solutions. When there are three solutions, �c of a cell
can be either the positive or negative solution depending on
the initial condition. Under this condition, the Ca-SDA pat-
tern can be arbitrary, independent of the APD-SDA pattern
and determined solely by the initial condition [left panel in
Fig. 4(b)]. When there is only one solution, �c follows the
same sign of �a, and thus, the Ca-SDA pattern synchronizes
to the APD-SDA pattern [right panel in Fig. 4(b)]. Note that,
in the nodal region, �c still varies from cell to cell, which is
because �a is too small to synchronize �c, as indicated by
Eq. (13). Therefore, when |σ | > |σc|, synchronization of the
Ca-SDA pattern to the APD-SDA pattern occurs, except in the
nodal region where |�a| is small.

In cardiac myocytes, stochastic opening of ion channels
causes random fluctuations in both APD and Ca. However,
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due to the cell-to-cell coupling, the fluctuations in APD be-
come small in cardiac tissue [72]. On the other hand, the
random fluctuations in Ca can be very large [73–77] due
to criticality [17,78]. We hypothesize that the random noise
can lower the threshold of synchronization, i.e., the noise in
Ca can promote synchronization of �c(x, t ) to �a(x, t ). We
demonstrate this by adding noise to the system. Since the
random fluctuation in APD is small, we only add noise to Ca,
i.e., we add noise to Eq. (11) but not Eq. (10). Furthermore,
for simplicity, we add Gaussian white noise to Eq. (11), i.e.,

T
d�c

dt
= ρ�c − ε�c3 + σ�a + η(t ), (14)

where η(t ) is the Gaussian white noise satisfying 〈η(t )〉 = 0
and 〈η(t )η(t ′)〉 = 2Dδ(t−t ′). Here, D is the noise strength.
The corresponding Fokker-Planck equation describing the
probability of �c [p(�c)] is ∂ p

∂t = − ∂ f (�c)p
∂�c + D ∂2 p

∂�c2 . The
steady-state solution of the Fokker-Planck equation is ex-
pressed as [79]

p(�c) ∝ exp

[
−U (�c)

D

]
, (15)

in which U (�c) = − ρ

2 �c2 + ε
4�c4 + σ�a�c is a double-

well potential. When σ�a = 0, the probability distribution
is symmetric for the two potential wells. When σ�a �= 0,
one potential well is higher than the other, which causes the
transition of �c from the higher to the lower potential well,
synchronizing the Ca-SDA pattern to the APD-SDA pattern.
For example, for the case of σ = 0.1 in Fig. 4(b), adding noise
causes the Ca-SDA pattern to synchronize to the one-node
APD-SDA pattern [Fig. 4(c)].

To quantify the degree of synchronization between the
APD-SDA pattern and the Ca-SDA pattern, we define a syn-
chronization index as follows:

Svc(t ) = 1

L

L∑
i=1

sgn[�a(i, t )] sgn[�c(i, t )], (16)

where L is the length of the cable (the total number of cells).
A perfectly synchronized Ca-SDA pattern with an APD-SDA
pattern gives rise to Svc = 1 for electromechanically concor-
dant SDA and Svc = −1 for electromechanically discordant
SDA. Figure 4(d) plots Svc vs the noise strength, showing that,
when the noise is weak, no synchronization occurs, but once
the noise is strong enough, synchronization occurs. However,
the synchronization weakens as the noise strength increases
due to the increased probability of the transitions from the
lower potential well to the higher one.

b. γ �= 0 and σ = 0. In this case, Ca is not affected by
APD, but APD is affected by Ca. This condition can be more
easily satisfied in the real system. For example, this condition
can be satisfied at slow pacing rates since the Ca channels,
ryanodine receptors, and SR Ca load are all recovered before
the next beat so that Ca is not affected by the change of APD
in the previous beat. Under this condition, Eqs. (3) and (4) are
then reduced to:

T
∂�a

∂t
= α�a − β�a3 + γ�c(x, t ) + ξ 2 ∂2�a

∂x2
. (17)

When the Ca subsystem is stable (ρ < 0), i.e., there is no Ca-
driven alternans, then �c(x, t ) = 0; Eq. (17) exhibits a front
solution in an infinite spatial domain as [51]

�a(x, t ) =
√

α

β
tanh

(√
α

2ξ 2
x

)
. (18)

In this case, the node dynamics is determined solely by volt-
age, predicted by λk,1, which has been investigated in detail in
our previous analysis [51]. When the Ca subsystem is unstable
(ρ > 0), Eq. (17) cannot be solved analytically in general.
We first consider a special case in which we assume that
the Ca alternans is spatially concordant, i.e., �c(x, t ) = �c
is a constant. Then Eq. (17) has the following solution in an
infinite spatial domain:

�a(x, t ) ∝ tanh

{√
α′

2ξ 2
[x − ν(γ�c)t]

}
, (19)

in which ν(γ�c) is the front (or node) velocity as a func-
tion of γ�c. The velocity is positive if γ�c is positive or
vice versa. This implies that, if the Ca alternans is spatially
concordant (i.e., Ca-SCA), an initial node in APD alternans
will eventually drift off the tissue, resulting in an APD-SCA
pattern. In other words, if Ca alternans is spatially concordant,
APD alternans must be spatially concordant.

However, when the Ca alternans is spatially discordant
(i.e., Ca-SDA), the APD-SDA patterns are more complex, i.e.,
the APD-SDA can be either synchronized or desynchronized
to the Ca-SDA pattern depending on the spatial scale of the
Ca-SDA pattern and the coupling strength γ . As shown in
our previous analysis [51], in homogeneous tissue without
Ca-driven alternans, the stability of the APD-SDA node is
neutral. However, in the presence of Ca-driven alternans, the
APD-SDA node in homogeneous tissue may become stable
or anchored to the Ca-SDA node, as explained in Fig. 5(a).
We assume a Ca-SDA pattern with a single node [red curve
in Fig. 5(a)]. If the initial node of the APD-SDA is in the
left of the Ca-SDA node, based on Eq. (19), the APD-SDA
node will drift toward the right since γ�c > 0. If the initial
APD-SDA node is in the right of the Ca-SDA node, then it
will drift toward the left since γ�c < 0. The final APD-SDA
state is that its node is completely aligned with the Ca-SDA
node, synchronizing to the Ca-SDA pattern. The theoretical
scenario is demonstrated in simulations of the AE model as
an example shown in Fig. 5(b). However, the synchronization
of the APD-SDA pattern to the Ca-SDA pattern depends on
the coupling strength γ and the spatial scale of the Ca-SDA
pattern, i.e., the size of the synchronized clusters in Ca-SDA
pattern. When the spatial scale of the Ca-SDA pattern is large,
APD-SDA synchronizes to the Ca-SDA [e.g., Fig. 5(c)], but
when the spatial scale is small, they do not synchronize [e.g.,
Fig. 5(d)]. Figure 5(e) plots Svc vs the spatial scale of the given
Ca-SDA patterns, showing that the degree of synchronization
increases with the increase of the spatial scale of Ca-SDA.

The case shown in Fig. 5 is for γ > 0, but the results still
hold for γ < 0. The difference is that, for γ > 0, the SDA pat-
terns are electromechanically concordant, but for γ < 0, the
SDA patterns are electromechanically discordant. Moreover,
the results will also hold for periodic boundary conditions.
Note that the number of nodes can be either even or odd under
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FIG. 5. Synchronization of action potential duration (APD)–spatially discordant alternans (SDA) to Ca-SDA in the amplitude equation
(AE) model without APD-to-Ca coupling (σ = 0). (a) Schematic plot of synchronization of an APD-SDA (blue) to a Ca-SDA (red). Arrows
indicate that an initial APD-SDA node away from the Ca-SDA node drifts toward the Ca-SDA node. (b) Simulation of the AE model showing
the scenarios in (a). (c) Synchronization of APD-SDA to a Ca-SDA pattern when the spatial scale of Ca-SDA pattern is large. (d) Same as (c)
but the spatial scale of Ca-SDA pattern is small. (e) Svc vs the spatial scale (l) of the Ca-SDA pattern. α = 0.5, ρ = 0.5, and γ = 0.5. In the
simulations in (c)–(e), the initial conditions are spatially random SDAs in which �a and �c are binary numbers, randomly chosen as either
−100 or 100 with spatial segmentation length l . l = 80 cells for (c), and l = 10 cells for (d). In (e), 20 random initial conditions are used for
each l .

open boundary conditions, but it must be even for periodic
boundary conditions due to the required symmetry [i.e., Ca
(or APD) must be equal at the two boundaries]. Like the case
of open boundary conditions, if there is no Ca-SDA, then
the APD-SDA nodes are unstable, which will disappear by
drifting toward each other and annihilate, leading to APD-
SCA. When Ca alternans is discordant, then the APD-SDA
will synchronize or desynchronize to the Ca-SDA the same
ways as shown in Fig. 5.

3. Synchronization of APD-SDA and Ca-SDA patterns
when γσ > 0

This condition is satisfied when γ > 0 and σ > 0 or γ < 0
and σ < 0. Since γ σ > 0, the eigenvalues in Eq. (8) are
always real. As λk < 0 changes to λk > 0, a pitchfork bi-
furcation occurs, leading to alternans. Figure 6(a) plots the
stability boundaries [λk = 0 for the larger of the two eigen-
values of Eq. (8)] for different k values. The spatial modes are
unstable (λk > 0) above (or to the right of) the boundaries.
As k increases, the stability boundary moves uprightward,
indicating that high spatial modes are more stable. As k → ∞,
the boundary becomes vertical at ρ → 0, which indicates that,
for ρ > 0, all modes are unstable. Therefore, for ρ < 0, the
number of nodes of a cable is largely determined by the mode
stability, as investigated in detail in our previous study [51].
For ρ > 0, i.e., the Ca subsystem is unstable, since all the
linear modes are unstable, any pattern is possible. However,
due to the coupling between cells and between APD and Ca,
as well as nonlinear interactions, the spatial patterns cannot
be completely arbitrary, which depend on the stabilities of the

APD and Ca subsystems, the coupling strength, and the initial
conditions.

Figures 6(b)–6(e) show some representative steady-state
SDA patterns for the same set of α and ρ values (α = ρ =
0.5). Figures 6(b) and 6(c) show a single-node and a high
spatial periodicity SDA using spatially periodic initial con-
ditions, respectively. As the number of nodes increases, the
magnitudes of APD alternans are attenuated. Figures 6(d)
and 6(e) show SDA from random initial conditions with
strong and weak APD-to-Ca coupling, respectively. Under
strong coupling, synchronous APD-SDA and Ca-SDA pat-
terns form spontaneously although the initial conditions are
purely random. When the coupling is weak, APD-SDA and
Ca-SDA becomes dyssynchronous. The mechanisms of pat-
tern formation and synchronization of the SDA patterns can
be understood based on the simple cases of γ = 0 (Fig. 4)
and σ = 0 (Fig. 5). An APD-SDA pattern forms first because
of the heterogeneous initial condition and spatial mode insta-
bility, which then synchronizes the Ca-SDA pattern via the
mechanism described in Fig. 4. Once they are synchronized,
the Ca-SDA pattern stabilizes the nodes via the mechanism
described in Fig. 5.

Figure 6(f) shows Svc vs σ from simulations done the same
way as in Figs. 6(d) and 6(e). Synchronization occurs when
σ is greater than a certain value, as predicted by Eq. (13).
Note that Eq. (13) is only valid for γ = 0, which predicts
σc = 0.192 for the α and ρ values used. Since γ > 0 in
Fig. 6(f), the σ value for synchronization is smaller, indicating
that positive Ca-to-APD coupling enhances synchronization
[see also the comparison of the boundary for γ = 0 (white
line) with the boundary from the simulation for γ > 0 in
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FIG. 6. Spatiotemporal Ca and action potential duration (APD) dynamics in the amplitude equation (AE) model for γ σ > 0. (a) Stability
boundaries (colored lines) in the ρ-α plane for different spatial modes of the linear stability analysis of the steady state. Shown are the boundary
for k = 0 (red), 4 (blue), and 50 (green). γ = 0.5 and σ = 0.5. (b) Steady-state �a (black) and �c (red) in space for beat no. 100 with 1 node
in both �a and �c. (c) Same as (b) but with 20 nodes in both �a and �c. (d) Space-time plots of �a and �c with an initial condition of
�a = 0 and random �c in which �c is a binary number, uniformly chosen as either −100 or 100. γ = 0.5 and σ = 0.5. (e) Same as (d) but
with σ = 0.1. (f) Svc vs σ . For each σ , 20 Svc values from different initial conditions as in (c) and (d) are plotted. γ = 0.5. (g) Color map of Svc

vs α and ρ. For each set of α and ρ, one random initial condition (spatial scale l = 1 cell) is simulated. γ = 0.5 and σ = 0.3. The white line
is the synchronization boundary predicted by Eq. (13) under γ = 0, showing that positive Ca-to-APD coupling (γ > 0) enhances spontaneous
synchronization. (h) Same as (g) but with a larger spatial scale of the initial conditions: l = 20 cells.

Fig. 6(g)]. As indicated by Eq. (13), the synchronization of
APD-SDA and Ca-SDA depends on α and ρ [Fig. 6(g)], i.e.,
the stabilities of the voltage and Ca subsystems. When ρ < 0,
i.e., the Ca subsystem is stable, Ca-SDA and APD-SDA are
always synchronized. When ρ > 0, i.e., the Ca subsystem
is unstable, spontaneous synchronization is promoted by in-
creasing α and/or decreasing ρ. In other words, larger APD
alternans and/or smaller Ca alternans potentiates synchro-
nization, which is implied in Eq. (13) (|σc| ∝ |�c|

|�a| ). In the
region where spontaneous synchronization fails [green region
in Fig. 6(g)], synchronization can be enhanced by increasing
the spatial scale of the initial Ca-SDA pattern [Fig. 6(h)] via
the mechanism as shown in Fig. 5.

The same applies to the condition of σ < 0 and γ < 0 ex-
cept that the SDA patterns are electromechanically discordant.

4. SDA dynamics when γσ < 0

In this case, Ca-to-APD coupling is negative, and APD-
to-Ca coupling is positive (γ < 0 and σ > 0), or vice versa
(γ > 0 and σ < 0). Since γ σ < 0, the eigenvalues in Eq. (8)
can be either real or a pair of complex conjugates, and thus,
the system can undergo a pitchfork bifurcation or a Hopf
bifurcation. A pitchfork bifurcation leads to alternans, and a

Hopf bifurcation leads to quasiperiodic behavior. Figure 7(a)
shows the stability boundaries in the α-ρ plane for different
spatial modes (k values) of the steady state. The arc lines are
the pitchfork bifurcations, and the straight ones are the Hopf
bifurcations which are determined by ρ = −(α − ξ 2k2) and
γ σ < −(α − ξ 2k2−ρ )2

/4. The stability boundary for k = 0
is the same as for the single cell, which has been investigated
in the previous studies [21,22]. It has been shown that the
alternans can be electromechanically concordant in which
APD and Ca alternate with their phases locked in-phase, elec-
tromechanically discordant in which APD and Ca alternate
with their phases locked antiphase, or electromechanically
quasiperiodic in which APD and Ca alternate with their phases
changing quasiperiodically.

Because of the complex cellular alternans dynamics, the
spatiotemporal dynamics in tissue become more complex.
Figures 7(b)–7(d) show three characteristic SDA patterns:
electromechanically concordant, discordant, and quasiperi-
odic alternans in the 1D cable. However, the stability
boundary shifts upward and leftward as k increases, result-
ing in intersections of the stability boundaries for different
k values. This differs from the γ σ > 0 case, in which there
are no intersections of the stability boundaries for different
k values. The intersection of the stability boundaries results
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FIG. 7. Spatiotemporal Ca and action potential duration (APD) dynamics in the amplitude equation (AE) model for γ σ < 0. (a) Stability
boundaries (colored lines) in the ρ-α plane for different spatial modes of the linear stability analysis of the steady state. Shown are the
boundaries for k = 0 (red), 4 (blue), and 50 (green). The spatial mode is stable inside (in the lower-left direction of) the solid lines. γ = −0.5
and σ = 0.5. (b) Steady-state �a (black) and �c (red) showing an electromechanically concordant spatially discordant alternans (SDA) in
which �a and �c are in-phase. α = 0.6 and ρ = −0.8, marked by the circle in (a). (c) Steady-state �a (black) and �c (red) showing an
electromechanically discordant SDA in which �a and �c are antiphase. α = −0.7 and ρ = 0.5, marked by the square in (a). (d) Space-time
color-scale plots of �a (left) and �c (middle) showing a quasiperiodic SDA in which �a and �c are not phase-locked but quasiperiodic
(right). α = 0.6 and ρ = −0.3, marked by the diamond in (a). (e) A uniform initial condition leads to a stable steady state (left, no alternans),
but a nonuniform (one-node) initial condition leads to multinode electromechanically discordant SDA (right). α = −0.5 and ρ = 0.4, marked
by the triangle in (a). (f) A one-node initial condition leads to a quasiperiodic SDA (left), but a multinode initial condition leads to a multinode
electromechanically discordant SDA. α = 0.6 and ρ = 0.4, marked by the pentagon in (a). In (e) and (f), the upper panels are color-scale plots
of �a, and the lower panels are those of �c.

in more complex dynamics in the cable. For example, in the
location marked by the triangle in Fig. 7(a), it predicts that the
uniform mode (k = 0) is stable, but a nonuniform mode is un-
stable. Examples of this case are shown in Fig. 7(e) in which
the homogeneous solution is stable (no alternans) but the
inhomogeneous initial condition leads to a multiple-node and
electromechanically discordant SDA. In the location marked
by the black square, the low-k modes are quasiperiodic, but
the high-k modes are stable. Figure 7(f) shows an example in
which a single-node (low-k mode) SDA is quasiperiodic, but
a multiple-node (high-k mode) pattern is stable. If one uses
random initial conditions with different spatial scales, patterns
of a mixture of quasiperiodic and stable alternans can coexist.

The results in Fig. 6 are for SDA dynamics vs α and ρ

for positive coupling, and those in Fig. 7 are for negative
coupling. Figure 8 shows Svc in the σ -γ plane for α = 0.5
and ρ = 0.5 for which both the APD subsystem and the Ca
subsystem are unstable. Figure 8(a) is the color map of Svc for
pure random initial conditions, and Fig. 8(b) is that for a larger
spatial scale of the initial conditions. When γ σ > 0, APD-
SDA and Ca-SDA are synchronized when |σ | > |σc|, and the

SDA patterns are electromechanically discordant when γ < 0
(lower-left quadral, Svc ≈ −1) and electromechanically con-
cordant when γ > 0 (upper-right quadral, Svc ≈ 1). When
γ σ < 0, APD-SDA and Ca-SDA are synchronized but in
quasiperiodic modes when |σ | > |σc|. Because of this, the
Svc map (calculated at the last pacing beat) looks random
since the APD-SDA and Ca-SDA are in different phases of
quasiperiodicity at the last beat for different parameter sets.
When |σ | < |σc|, APD alternans exhibits no effects on Ca
alternans; the synchrony between APD-SDA and Ca-SDA is
poor. In this region, the synchrony is enhanced by increasing
the spatial scale of the initial condition [Fig. 8(b)] via the
mechanism of synchronization (due to APD-to-Ca coupling)
shown in Fig. 5.

In summary, the AE model demonstrates that there are two
ways in which the APD-SDA and Ca-SDA patterns can be
synchronized. The first one is spontaneous synchronization
caused by strong APD-to-Ca coupling. In this mechanism of
synchronization, the SDA patterns are selected by the APD-
SDA patterns which are determined by the spatial mode
instability and the initial conditions. This mechanism of
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FIG. 8. Color maps of Svc vs σ and γ in the amplitude equation
(AE) model. (a) Purely random initial conditions of �a and �c
(spatial scale l = 1 cell). (b) Random initial conditions with a spatial
scale of l = 20 cells. α = 0.5 and ρ = 0.5. Note that in the upper-left
and lower-right quadrals, γ σ < 0, the spatially discordant alternans
(SDA) dynamics is quasiperiodic, Svc measured at the last beat de-
pends on the status the SDA pattern, which varies from beat to beat.
Therefore, the Svc values in these two quadrals exhibit a randomlike
pattern in the color map. In the upper-right (electromechanically con-
cordant) and lower-left (electromechanically discordant) quadrals,
the SDA patterns are phase-locked and stable.

synchronization is promoted by strong APD instability. The
second one is the initial condition-dependent synchroniza-
tion in which synchronization is promoted by increasing the
spatial scale of the initial Ca-SDA patterns. This mecha-
nism of synchronization is promoted by strong Ca instability.
Once the system is synchronized, the APD-SDA and Ca-SDA
may be locked into electromechanically concordant, discor-
dant, and quasiperiodic patterns depending on the coupling
relationships.

B. SDA dynamics in the 1D CML model

To examine the theoretical predictions of the AE model
under more physiological conditions, we use a CML model
formulated based on previous studies [51,80], described in
detail in the Appendix. This model contains physiological
parameters, such as APD restitution, fractional Ca release,
and Ca release restitution, allowing us to directly link the
dynamics to physiological parameters. We vary the following
parameters: the slope of the APD restitution [controlled by
τa in Eq. (A6)], the slope of the fractional release [controlled
by β in Eq. (A7)], and the APD and Ca coupling strengths γ

and σR [see Eqs. (A1) and (A9)]. Note that σR determines the
APD-to-Ca coupling in the CML model, which is equivalent
to σ in the AE model but not identical since σR affects the
stability of Ca in the CML model. As shown in Eq. (A9)
[q(dn) = 1 − σRexp(−dn/τq)], the APD-to-Ca coupling be-
comes weaker as the pacing period T is longer. When T is
very long (and thus, dn is very large), q(dn) → 1; APD-to-Ca
coupling vanishes. Therefore, at slow pacing, changing APD
(and thus DI) has little or no effect on Ca release, which
corresponds to γ σ ≈ 0 in the AE model. However, as the
pacing period T decreases (dn becomes smaller), the term
σRexp(−dn/τq) has a bigger effect, thus enhancing the APD-
to-Ca coupling. In the CML model, the APD-to-Ca coupling is
always positive since lengthening APD shortens DI, resulting
in a smaller q(dn) and thus a smaller Ca [see the definition of
positive APD-to-Ca coupling in Fig. 2(c)]. Therefore, the sign
of γ determines the coupling between APD and Ca.

For γ > 0, the coupling is positive, corresponding to γ σ >

0 in the AE model. Figure 9(a) shows the stability boundary
in the τa-β plane for the single cell (or k = 0 mode) for γ =
0.002. The system is stable (no alternans) when both τa and
β are large. Figures 9(b) and 9(c) show two spatial patterns of
alternans with a single node and multiple nodes, respectively.
Figures 9(d) and 9(e) show SDA patterns from random initial
conditions with strong and weak coupling, respectively. The
APD-SDA and Ca-SDA are synchronized (except in the nodal
region) when the APD-to-Ca coupling is strong [Fig. 9(d)]
but not when the coupling is weak [Fig. 9(e)]. The case in
Fig. 9(d) is like that in Fig. 6(d), in which the APD-SDA
forms first and then synchronizes the Ca-SDA pattern to it.
Figures 9(f) and 9(g) show Svc vs σR and Svc vs T , re-
spectively. Synchronization occurs when σR is greater than
a critical value, agreeing with the AE model (Fig. 6). The
dependence of synchronization on T is more complex. Here,
Svc is low for T < 250 ms, high for 250 < T < 285 ms,
low again for 285 < T < 320 ms, and finally, high for T >

320 ms. This can be understood based on the insights for AE
model as follows. Based on Eq. (13), |σc| ∝ |�c|

|�a| , and thus,
synchronization tends to occur when �c is small and �a is
large for a fixed σ . For T < 250 ms, �a is relatively small,
but �c is larger [Fig. 9(h)], and thus, the ability of APD-SDA
to synchronize Ca-SDA is not strong enough. However, as T
increases, �a increases while �c decreases, and when T is
large enough [shaded region in Fig. 9(h)], �a is large enough
to synchronize �c, causing spontaneous synchronization. As
T increases further, �a decreases again, which may be too
small to synchronize �c. As T > 320 ms, both APD and Ca
are stable; the system always synchronizes. Note that, as in
the AE model, when σR is small (or T is short), spontaneous
synchronization fails, but the APD-SDA and Ca-SDA patterns
can still be synchronized if the spatial scale of the initial
Ca-SDA pattern is large.

For γ < 0, the coupling is negative. Figure 10(a) shows
the stability boundary in the τa-β plane for the single cell (or
the k = 0 mode) for γ = −0.002. Unlike in the AE model
in which one can calculate the stability boundaries easily for
any k, it becomes nontrivial for the CML model. We numer-
ically determine the three regions of alternans behaviors for
k = 0: the electromechanically concordant, discordant, and
quasiperiodic alternans regions, which are marked by differ-
ent colors. Figures 10(b)–10(f) show steady-state patterns or
space-time plots for different initial conditions and different
parameter sets marked by the symbols in Fig. 10(a). The
behaviors are almost identical to those predicted by the AE
model shown in Fig. 7.

C. SDA dynamics in a 1D cable of the rabbit ventricular
myocyte model

To further examine the theoretical predictions in phys-
iologically detailed ionic models, we carry out 1D cable
simulations using the rabbit ventricular myocyte model by
Mahajan et al. [61]. Figure 11(a) is a bifurcation diagram
showing APD and peak Ca vs pacing period T . Alter-
nans occurs when T < 230 ms. Figures 11(b)–11(f) show
different SDA patterns resulting from different initial condi-
tions for T = 180 ms. In Figs. 11(b) and 11(c), the initial

024406-10



SYNCHRONIZATION OF SPATIALLY DISCORDANT … PHYSICAL REVIEW E 106, 024406 (2022)

FIG. 9. Spatiotemporal Ca and action potential duration (APD) dynamics in the coupled map lattice (CML) model for γ > 0. (a) Stability
boundary in the τa-β plane for k = 0 (or a single cell). (b) �a and �c vs cell no. recorded from beat no. 999 and no. 1000 with a single node.
(c) Same as (b) but with multiple nodes. (d) �a and �c vs n with a random initial condition. (e) Same as (d) but with a weaker coupling,
σR = 0.3. (f) Svc vs σR. 20 different random initial conditions are used for each σR. (g) Svc vs T . 20 random initial conditions are used for
each T . Arrows mark the T for the transition between desynchronized and synchronized SDA patterns. In (f) and (g), the cases of Svc = 1
correspond to SCA. (h) a and c vs T for a single cell. The default parameters are T = 270 ms, τa = 40, β = 4, γ = 0.002, and σR = 0.4.

conditions are periodic. In Figs. 11(d)–11(f), the initial con-
ditions are random with different spatial scales. In the cases
of random SDA patterns, the Ca-SDA and APD-SDA pat-
terns are synchronized when the spatial scale is large but
become dyssynchronous when it is small. These features are
the same as for the AE and CML models. Since the APD
and Ca coupling is positive, we do not observe electrome-
chanically discordant and quasiperiodic SDA patterns in this
ionic model. We also do not observe spontaneous synchro-
nization with pure random initial conditions, indicating that
the voltage-driven instability in this model is either absent or
not strong enough to promote spontaneous synchronization.
The instability leading to alternans in the model is mainly Ca
driven.

D. Nodal line dynamics and SDA pattern synchronization
in 2D tissue models

SDA nodes form nodal lines in 2D tissue. When the nodal
lines are straight, they behave the same way as the SDA nodes
in 1D cable. However, nodal lines can become curved in 2D
tissue (such as the ones shown in Fig. 1), and a question
arising is how the curvature affects the stability of the nodal
lines and the SDA dynamics. As shown in our previous stud-
ies [50,51], in the absence of Ca alternans, the SDA nodes
or nodal lines are marginally stable in homogeneous tissue.
Curved nodal lines or nodal rings are unstable, which become

straight or shrink and disappear unless the tissue is heteroge-
neous. Here, we investigate the effects of nodal line curvature
on nodal line stability and synchronization of SDA patterns in
2D homogeneous tissue in the presence of Ca alternans. We
extend the AE model into 2D tissue as

T
∂�a

∂t
= α�a − β�a3 + γ�c + ξ 2

(
∂2�a

∂x2
+ ∂2�a

∂y2

)
,

(20)

T
∂�c

∂t
= ρ�c − ε�c3 + σ�a. (21)

First, we consider the stability of a nodal ring, and for the
purpose of theoretical argument, we consider a special case
in which there is no APD-to-Ca coupling (σ = 0). We further
simplify the condition by assuming that the Ca alternans is
spatially concordant and in steady state, i.e., �c(x, y, t ) = �c.
We transform Eq. (20) into a polar coordinate system, which
becomes

T
∂�a

∂t
= α�a − β�a3 + γ�c + ξ 2

r

∂�a

∂r
+ ξ 2 ∂2�a

∂r2
,

(22)

T
∂�c

∂t
= ρ�c − ε�c3. (23)

Assuming an initial APD-SDA nodal ring of radius r, one
can obtain an eikonal-curvature equation for the node speed
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FIG. 10. Spatiotemporal Ca and action potential duration (APD) dynamics in the coupled map lattice (CML) model for γ < 0. (a) Phase
diagram showing different Ca and APD dynamics vs τa and β in a single cell. White: stable steady state; cyan: electromechanically concordant
alternans; green: electromechanically discordant alternans; and red: quasiperiodicity. γ = −0.002, σR = 0.8, and T = 250 ms. (b) Steady-state
�a (black) and �c (red) showing an electromechanically concordant spatially discordant alternans (SDA). τa = 24 and β = 5.7, marked by the
circle in (a). (c) Steady-state �a (black) and �c (red) showing an electromechanically discordant SDA. τa = 38 and β = 4.6, marked by the
square in (a). (d) Space-time color-scale plots of �a (left) and �c (middle) showing a quasiperiodic SDA (right). τa = 24 and β = 5.3, marked
by the diamond in (a). (e) A uniform initial condition leads to a stable steady state (left, no alternans), but a nonuniform (one-node) initial
condition leads to multinode electromechanically discordant SDA (right). τa = 32 and β = 4.6, marked by the triangle in (a). (f) A one-node
initial condition leads to a quasiperiodic SDA (left), but a multinode initial condition leads to a multinode electromechanically discordant SDA.
τa = 27 and β = 4.5, marked by the pentagon in (a). In (e) and (f), the upper panels are color-scale plots of �a, and the lower panels are those
of �c.

FIG. 11. Action potential duration (APD)–spatially discordant
alternans (SDA) and Ca-SDA patterns in a one-dimensional (1D)
cable of the rabbit ventricular cell model. (a) Bifurcation diagrams
showing a and peak ci vs the pacing period T . (b)–(f) Steady-state
APD-SDA and Ca-SDA patterns for different initial conditions. The
spatial scales of random initial conditions in (d)–(f) are l = 50 cells,
l = 10 cells, and l = 1 cell, respectively. T = 180 ms. Random initi-
ation conditions are set by random initial values of the sarcoplasmic
reticulum (SR) Ca load.

as [51]

cnode = ν(γ�c)

T
− ξ 2

Tr
, (24)

where cnode is the velocity of the APD-SDA node, and the first
term is caused by Ca-to-APD coupling and the second term by
curvature. The sign of ν(γ�c) depends on the sign of γ�c.
If ν(γ�c) < 0, the effect of Ca-to-APD coupling and that
of curvature are in synergy. If ν(γ�c) > 0, the two effects
compete, and there is a critical radius at which cnode = 0,
which gives rise to

rc = ξ 2

ν(γ�c)
. (25)

In other words, the drifting direction of the nodal ring depends
on its radius. Now we consider that there is a nodal ring in Ca
alternans. As depicted in Fig. 12(a), ν(γ�c) is positive on
one side and negative on the other side of the node. There-
fore, if the initial APD nodal ring is outside the Ca nodal
ring, the force from the curvature and the one from the Ca
alternans are in synergy, pulling the APD-SDA nodal ring
toward the Ca-SDA nodal ring. If the initial APD nodal ring is

024406-12



SYNCHRONIZATION OF SPATIALLY DISCORDANT … PHYSICAL REVIEW E 106, 024406 (2022)

FIG. 12. Action potential duration (APD)–spatially discordant
alternans (SDA) and Ca-SDA nodal ring dynamics in two-
dimensional (2D) tissue of the amplitude equation (AE) model.
(a) Schematic plots to illustrate the effects of Ca-SDA nodal ring
(red) and curvature on APD-SDA nodal ring (dashed blues). The
blue arrows indicate the force of the Ca-SDA nodal ring, and the
green arrows indicate the force of the curvature on the APD-SDA
ring. (b) The critical ring radius (rc) vs σ determined via computer
simulations of the AE model [Eqs. (20) and (21)]. α = 0.5, ρ = 0.5,
and γ = 0.1. (c) Ring radius r vs beat no. for different initial ring
radius for σ = 0.1. Left: The initial APD-SDA nodal ring (blue)
radius r > rc. Right: The initial APD-SDA nodal ring (green) radius
r < rc. (d) Ring radius r vs beat no. for different initial ring radius
for σ = 0.3. Left: The initial APD-SDA nodal ring (blue) radius
r > rc. Right: The initial APD-SDA nodal ring (green) radius r < rc.
Simulations are done in a 2D tissue of 800 × 800 cells.

smaller than the Ca nodal ring, then the two forces compete.
Therefore, depending on the strength of the two forces, the
APD-SDA nodal ring can either expand to move toward the
Ca-SDA nodal ring and stabilize or shrink to disappear. Based
on Eq. (24), when the APD-SDA nodal ring radius is larger
than rc, it will synchronize to the Ca-SDA nodal ring if the
Ca-SDA nodal ring is larger than rc. When the APD-SDA
nodal ring radius is smaller than rc, it will shrink and disappear
no matter what the Ca-SDA nodal ring radius is. However, in
the presence of APD-to-Ca coupling (σ �= 0), the nodal ring
dynamics becomes more complex, which is demonstrated in
the AE and ionic models below.

To verify the theoretical argument, we carry out numer-
ical simulations of the AE model [Eqs. (20) and (21)].
Figure 12(b) shows rc vs σ obtained from the simulations.
Here, rc remains unchanged for σ < 0.19 but then increases
almost linearly with σ . When σ is smaller than the criti-
cal value, the APD-SDA nodal ring synchronizes with the
Ca-SDA nodal ring if both ring radii are greater than rc or
disappears when either the APD-SDA or Ca-SDA nodal ring
radius is smaller than rc [Fig. 12(c)]. The Ca-SDA nodal
ring can be any size larger than the critical size and remains
unchanged in time. These behaviors are the same as predicted
by the simplified condition [Fig. 12(a)]. When σ is greater
than the critical value, APD-SDA and Ca-SDA nodal rings
will synchronize if their radii are greater than rc, but the final
ring radius depends on the initial ring sizes and the coupling
strength. When either of their radii is smaller than rc, both
nodal rings disappear [Fig. 12(d)]. Note that the critical σ

value is the same as the one when Ca-SDA is synchronized

FIG. 13. Synchronization of action potential duration (APD)–
spatially discordant alternans (SDA) and Ca-SDA patterns when both
APD and Ca are unstable. Simulations are done in the amplitude
equation (AE) model with α = 0.5, ρ = 0.5, and γ = 0.1. Tissue
size is 800 × 800 cells. (a) Svc vs σ for different spatial scales of
the initial condition with random block sizes: 1 × 1 cell (black),
10 × 10 cells (red), 20 × 20 cells (blue), 50 × 50 cells (green), and
100 × 100 cells (magenta). Note: Only one random initial condition
is used for each σ for the calculation of Svc. When σ < σc ≈ 0.19,
Svc depends strongly on the block size of the initial condition. (b)
Example APD-SDA (left) and Ca-SDA (right) patterns for σ = 0.3.
The initial condition block size is 100 × 100 cells. The calculated
synchronization index is Svc = 0.93. (c) Example APD-SDA (left)
and Ca-SDA (right) patterns for σ = 0.1. The initial condition block
size is 100 × 100 cells. The calculated synchronization index is
Svc = 0.75. In (b)–(c), the white lines are the nodal lines (�a = 0
or �c = 0).

to APD-SDA via APD-to-Ca coupling, which is determined
by Eq. (13). Inserting α = 0.5, β = 0.0001, ρ = 0.5, and
ε = 0.0001 into Eq. (13), one obtains σc = 0.192, agreeing
with the simulation results.

To further investigate the synchronization of APD-SDA
and Ca-SDA patterns in 2D tissue, we carry out simulations
of the AE model using random initial conditions with differ-
ent block sizes of both �a and �c. Figure 13(a) shows Svc

vs σ for different spatial scales of the initial SDA pattern.
When σ > 0.19, APD-SDA and Ca-SDA become synchro-
nized (Svc ≈ 1), almost independent of the spatial scales of
the initial pattern. Figure 13(b) shows an example of the
synchronized SDA patterns in which the APD-SDA and Ca-
SDA nodal lines colocalize and the nodal lines are stable and
curved. Under this condition, no small nodal rings can exist, as
predicted by the nodal ring results in Fig. 12. When σ < 0.19,
APD-SDA and Ca-SDA are either completely desynchronized
(Svc ≈ 0) or partially synchronized (0 < Svc < 1). The degree
of synchrony is better (Svc is larger) for a larger spatial scale
of the initial SDA pattern. Figure 13(c) shows an example of
a SDA pattern, in which the APD-SDA nodal lines colocalize
with Ca-SDA nodal lines, but there are several other Ca-SDA
nodal rings without corresponding APD-SDA nodal rings.
This behavior is the same as in the rabbit heart experiments
shown in Fig. 1.

The results shown in Figs. 12 and 13 are for the condition
in which both APD and Ca are unstable. If we use α = −0.5
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FIG. 14. Action potential duration (APD)–spatially discordant
alternans (SDA) and Ca-SDA dynamics in two-dimensional (2D)
tissue when alternans is driven by Ca alone. Simulations are done
in the amplitude equation (AE) model with α = −0.5, ρ = 0.5, and
γ = 0.1. Tissue size is 800 × 800 cells. (a) Steady-state APD-SDA
(black) and Ca-SDA (red) nodal rings. σ = 0.1. (b) Ring radius vs
beat no. showing the time evolution for the APD-SDA (blue and
green) and Ca-SDA (red) nodal rings shown in (a). (c) Svc vs σ

for different spatial scales of the random initial condition. Block
sizes: 1 × 1 cell (black), 10 × 10 cells (red), 20 × 20 cells (blue),
50 × 50 cells (green), and 100 × 100 cells (magenta). (d) Exam-
ple APD-SDA (upper) and Ca-SDA (lower) patterns for σ = 0.1.
The initial condition block size is 160 × 160 cells. The calculated
synchronization index is Svc = 0.99. (e) Example APD-SDA (up-
per) and Ca-SDA (lower) patterns for σ = 0.1. The initial condition
block size is 20 × 20 cells. The calculated synchronization index is
Svc = 0.54. In (d) and (e), the white lines are the nodal lines (�a = 0
or �c = 0).

and ρ = 0.5 for which the APD subsystem is stable and the
Ca subsystem is unstable, then the nodal ring dynamics and
APD-SDA and Ca-SDA synchronization differ from the case
in Figs. 12 and 13. Figures 14(a) and 14(b) show the results
in which two Ca-SDA nodal rings are set initially, but only
one APD-SDA nodal ring can exist, which colocalizes with
the large Ca-SDA nodal ring. This behavior is independent
of the APD-to-Ca coupling strength. Figure 14(c) shows Svc

vs σ for different spatial scales of the initial SDA pattern,
showing that the synchrony does not depend on σ but only
on the spatial scale of the initial condition. Figures 14(d)
and 14(e) show two examples of the SDA patterns resulting
from two initial conditions, respectively. For the large spatial
scale [Fig. 14(d)], the APD-SDA and Ca-SDA patterns are
well synchronized. For the small spatial scale [Fig. 14(e)],
however, the synchrony is much reduced because there are
very small spatial scales in the Ca-SDA pattern but not in the
APD-SDA pattern due to cell-to-cell coupling.

We then carry out simulations of 2D tissue using the rabbit
ventricular myocyte model. Figures 15(a) and 15(b) show
the nodal ring behavior, which is identical to that shown in
Fig. 14. Figures 15(c)–15(e) show example SDA patterns re-
sulting from random initial patterns of different spatial scales,
agreeing completely with those shown in Fig. 14, i.e., syn-

FIG. 15. Action potential duration (APD)–spatially discordant
alternans (SDA) and Ca-SDA dynamics in a two-dimensional (2D)
tissue of the rabbit ventricular cell model. Tissue size is 800 ×
800 cells and T = 180 ms. (a) Steady-state APD-SDA (black) and
Ca-SDA (red) nodal rings. (b) Ring radius vs beat no. showing the
time evolution of the APD-SDA (blue) and Ca-SDA (red) nodal
rings. (c) Example APD-SDA (upper) and Ca-SDA (lower) patterns.
The initial condition block size is 100 × 100 cells. The calculated
synchronization index is Svc = 0.93. (d) Example APD-SDA (upper)
and Ca-SDA (lower) patterns. The initial condition block size is 50 ×
50 cells. The calculated synchronization index is Svc = 0.76. (e) Ex-
ample APD-SDA (upper) and Ca-SDA (lower) patterns. The initial
condition block size is 20 × 20 cells. The calculated synchronization
index is Svc = 0.66. In (c)–(e), the white lines are the nodal lines
(�a = 0 or �c = 0). Random initiation conditions are set by the
random initial values of the sarcoplasmic reticulum (SR) Ca load and
the gating variable of IKs.

chronization occurs when the spatial scales are large but not
for the small ones. Moreover, the SDA patterns always remain
the same as the initial Ca-SDA patterns (note that, in Figs. 14
and 15, the Ca-SDA patterns are composed of discretized
square boxes that are the same as their initial conditions,
while the APD-SDA patterns are smoothed due to cell-to-cell
coupling). Agreeing with the 1D cable results in Fig. 11, the
2D results in Fig. 15 imply that, in the rabbit ventricular
myocyte model, alternans is mainly caused by the Ca-driven
instability.

IV. SUMMARY AND DISCUSSION

In this paper, we investigate the mechanisms of formation
and stability of the SDA dynamics and synchronization of
APD-SDA and Ca-SDA patterns in cardiac tissue models in
the presence of both voltage- and Ca-driven instabilities and
the effects of Ca and voltage coupling. We show that, when the
Ca subsystem is stable, the Ca-SDA pattern always follows
the APD-SDA pattern, and thus, they are always synchro-
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nized. When the Ca subsystem is unstable, synchronization
of APD-SDA and Ca-SDA patterns depends on the stabil-
ities of both subsystems, their coupling strengths, and the
spatial scales of the initial Ca-SDA patterns. Spontaneous
(initial condition independent) synchronization is promoted
by enhancing APD instability and reducing Ca instability
as well as stronger Ca-to-APD and APD-to-Ca coupling, a
pattern formation caused by dynamical instabilities. When
Ca is more unstable and APD is less unstable or APD-to-Ca
coupling is weak, synchronization of APD-SDA and Ca-
SDA patterns is promoted by larger initially synchronized
Ca-SDA clusters, i.e., initial condition-dependent synchro-
nization. The synchronized APD-SDA and Ca-SDA patterns
can be locked in-phase, antiphase, or quasiperiodic depending
on the coupling relationship between APD and Ca. Unlike
the case of absence of Ca-driven instability in which curved
nodal lines are unstable [50,51], curved nodal lines can
be stable in homogeneous tissue when Ca-driven alternans
exists.

The theoretical and simulation results provide mechanistic
insights into APD-SDA and Ca-SDA dynamics observed in
experimental studies. Based on our theoretical insights, when
there is no Ca-driven instability, the APD-SDA and Ca-SDA
patterns are always synchronized. One can imply that Ca is
unstable in those experimental settings [44,48,49] in which
Ca-SDA and APD-SDA patterns are desynchronized (e.g.,
Fig. 1). Moreover, that the large spatial scales in the Ca-SDA
pattern desynchronize with the APD-SDA pattern in these
experiments indicate that the Ca and voltage subsystems may
be both unstable (see Fig. 13) since, when either of the two
subsystems is stable, APD-SDA and Ca-SDA will tend to
be synchronized when the spatial scale of the synchronized
clusters of Ca-SDA pattern is large (Figs. 14 and 15).

The mechanistic insights from this paper provide a better
understanding of the roles of Ca-driven alternans in cardiac ar-
rhythmogenesis. Since Ca in neighboring cells is not directly
coupled, theoretically, the phases of alternans can be arbitrary
from cell to cell. If alternans is caused solely by the Ca insta-
bility and the phases of Ca alternans are arbitrary, due to the
smoothing effect caused by diffusive coupling of voltage, the
amplitudes of APD alternans will be small. This cannot gen-
erate a large enough APD gradient for arrhythmogenesis [56].
Synchronization of the Ca alternans between cells is required
to generate large amplitude APD-SDA for arrhythmogenesis.
As shown in this paper, there are two ways to synchronize the
SDA patterns. The first one is when Ca alternates in phase in
large clusters, which can synchronize APD-SDA to Ca-SDA
to generate large APD gradients [e.g., Figs. 5(c) and 11(d)].
This type of clustering may naturally occur in the real system,
for example, in heterogeneous tissue in which the onset of
alternans is regionally heterogeneous [81,82]. The second way
is when APD-to-Ca coupling is strong enough so that APD-
SDA and Ca-SDA are spontaneously synchronized to form
SDA patterns with large alternans amplitude [e.g., Figs. 6(d)
and 9(d)]. Strong APD-to-Ca coupling can be caused by Ca
release restitution [67–69] [q(dn) in the CML model], which
is promoted by fast heart rates. Therefore, Ca alternans at
fast heart rates can be more arrhythmogenic than the one
at slow heart rates due to stronger APD-to-Ca coupling-
promoted Ca-SDA and APD-SDA synchronization. In other

words, fast heart rates not only promote Ca alternans but also
promote Ca-SDA and APD-SDA synchronization to promote
arrhythmias.

There are some limitations of this paper to be men-
tioned. In the iterated map model, Ca alternans is caused
by steep fractional release and APD alternans caused by
steep APD restitution. Other mechanisms of Ca alternans
and APD alternans exist [83,84] which may affect the SDA
dynamics. However, since the AE model is a generic model
irrespective of the specific mechanisms of alternans, the
mechanisms from the AE model should still be applicable
to the SDA dynamics from other mechanisms of alternans.
Subcellular Ca alternans has been observed in experiments
[27,59,85–87] and computer models [19,59,71,88,89], and tis-
sue models with detailed cell models or multiscale modeling
approaches [59,75,77,90–92] are needed to investigate how
the subcellular Ca alternans dynamics affect the formation
and synchronization of the APD-SDA and Ca-SDA patterns.
We only use a global pacing protocol in which no action
potential conduction exists. As we argued previously [50,51],
this pacing protocol not only has its own physiological real-
ism but also provides a useful means for the understanding
of the SDA dynamics when action potential conduction is
present. We will carry out further investigations to include
action potential conduction in the models to investigate how
conduction and conduction restitution affect the SDA dynam-
ics in the presence of Ca-driven alternans. We omitted the
cell-to-cell coupling of Ca in our models. It is known that
Ca can pass through the gap junction to the neighboring cells
[62], and thus, cell-to-cell Ca coupling exists. However, it
is believed that this coupling is very weak, and therefore,
it has been omitted in computational cardiac tissue models.
Although the cell-to-cell Ca coupling may be weak, it may
become nontrivial under certain conditions. Furthermore, if
this coupling is not weak, it will affect the Ca-SDA patterns
and their synchronization with APD-SDA patterns, which
cannot be omitted. These need to be investigated in future
studies. Finally, we only investigate the nodal line dynamics
in the ionic tissue model using the Mahajan et al. [61] action
potential model in which the alternans is primarily driven by a
Ca instability and the Ca-to-APD coupling is positive. We can
change the Ca-to-APD coupling in the model to be negative by
adding a Ca-activated small conductance potassium current,
as shown in our previous study [19]. However, under the
negative coupling condition, we were still not able to gen-
erate quasiperiodicity in this model by simply changing the
conductance of the L-type Ca current or any of the potassium
currents, likely due to the lack of enough voltage-driven insta-
bilities. Other ionic models may be used in future studies to
investigate the coupled dynamics when both Ca- and voltage-
driven instabilities are present to reveal the predictions from
the AE and CML models.
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APPENDIX: CML AND IONIC MODELS

1. CML model

A CML model is an array of coupled iterated maps of APD
and Ca. In a previous study [51,80], we developed a CML
model to describe the spatiotemporal dynamics of APD in
1D and 2D models. Here, we use the same CML model to
investigate the SDA dynamics in the presence of Ca-driven
alternans.

a. Single-cell iterated map model

We use the iterated map model we developed previously
[22] for APD and Ca dynamics in the presence of Ca and APD
coupling. The equations are

an+1 = F (dn, ln, Bn) = f (dn)
(
1 + γ cp

n+1

)
, (A1)

ln+1 = ln − q(dn)g(ln) + u(T )h
(
cp

n+1

)
, (A2)

Bn+1 = Bn − κ[cn − c(T )], (A3)

where an+1 is the APD of the (n + 1)th beat, and dn is the DI
of the nth beat, satisfying dn = T − an. Here, ln is the SR Ca
load at the end of the nth beat, and Bn is the total cytosolic Ca
at the end of the nth beat. Also, cn is the diastolic Ca at the
end of the nth beat, which is described by

cn = Bn − ln. (A4)

Here, cp
n+1 is the peak cytosolic Ca at the (n + 1)th beat, which

is described by

cp
n+1 = cn + q(dn)g(ln). (A5)

The functions are defined as follows:

f (dn) = a0 + a1

1 + exp
(− dn−d0

τa

) , (A6)

g(ln) = ln

[
1 − 1 − α

1 + exp
( ln−l0

β

)
]
, (A7)

h
(
cp

n+1

) = νcp
n+1

⎡
⎣1 − 1

1 + exp
(

cp
n+1−cp

0

δ

)
⎤
⎦, (A8)

q(dn) = 1 − σRexp

(
−dn

τq

)
, (A9)

u(T ) = 1 − ρexp
(
− T

τu

)
, (A10)

c(T ) = c0

[
1 + εexp

(
− T

τc

)]
, (A11)

where γ is the parameter describing Ca-to-APD coupling,
and σR is the one describing APD-to-Ca coupling. Here, a0,
a1, d0, and τa in Eq. (A6) are the parameters determining
the APD and APD restitution properties. Also, a0 = 50 ms,
a1 = 150 ms, and d0 = 100 ms are used. We change τa to alter
the APD restitution properties. Furthermore, α and β are the
parameters determining the fractional Ca release properties,
and we change β to change the fractional Ca release properties
to promote Ca alternans. Here, α = 0.036, κ = 0.2, ν = 0.4,
δ = 20, ρ = 0.15, ε = 2, l0 = 93.5, cp

0 = 50, c0 = 28, σR =
0.4, τq = 80, τu = 200, and τc = 300. Also, σR is altered for

synchronization of APD-SDA and Ca-SDA. Note that the
Greek letters α, β, ρ, and ε are parameters specific to the
iterated map model, not related to the same Greek letters in
the AE model. The physiological meanings of the functions
and parameters are detailed in the previous study [22].

b. 1D cable CML model

Under global pacing, there is no conduction, and thus,
every cell in the cable has the same excitation period, which is
just the pacing period T . Therefore, the DI and APD of a cell
satisfy the following relationship:

dn(i) = T − an(i), (A12)

where i is the cell index in the cable, and n is the beat
number. Based on our previous formulation [51,80], an(i) is
determined as follows:

an(i) = Fn−1(i) + ε

M∑
k=−M

wk[Fn−1(i + k) − Fn−1(i)], (A13)

where Fn(i) = F [dn(i), ln(i), Bn(i)] is the function described
in Eq. (A1). Here, ε is a parameter controlling the coupling
strength of voltage between cells, and M is the maximum
coupling length (i.e., number of cells). Also, wk describes
the distance-dependent weight of coupling strength, which
is a Gaussian function, i.e., wk = exp(−k2/2σ 2 )√

2πσ
. We use ε = 1,

σ = 25, and M = 100. No-flux boundary conditions are used.
Details of the CML model and boundary conditions are pre-
sented in Wang et al. [80].

2. Ionic model

1D cable and 2D tissue simulations are carried out using
the rabbit ventricular action potential model by Mahajan et al.
[61]. The governing partial differential equation for voltage
(V ) in the 1D cable is

∂V

∂t
= − Iion + Istim

Cm
+ D

∂2V

∂x2
, (A14)

where Cm = 1 μF/cm2, D = 0.001 cm2/ms, and Iion is the
total ionic current density from the rabbit ventricular action
potential model by Mahajan et al. [61]. Here, Istim is the
stimulus current density, which is a 0.5 ms duration and
−80 μA/cm2 pulse applied periodically with a pacing period
T . The governing partial differential equation for V in the
isotropic 2D tissue model is

∂V

∂t
= − Iion + Istim

Cm
+ D

(
∂2V

∂x2
+ ∂2V

∂y2

)
. (A15)

No-flux boundary conditions are used for both 1D and 2D
tissue models.
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