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Spiral waves occur in various types of excitable media and their dynamics determine the spatial excitation
patterns. An important type of spiral wave dynamics is drift, as it can control the position of a spiral wave or
eliminate a spiral wave by forcing it to the boundary. In theoretical and experimental studies of the Belousov-
Zhabotinsky reaction, it was shown that the most direct way to induce the controlled drift of spiral waves is by
application of an external electric field. Mathematically such drift occurs due to the onset of additional gradient
terms in the Laplacian operator describing excitable media. However, this approach does not work for cardiac
excitable tissue, where an external electric field does not result in gradient terms. In this paper, we propose a
method of how to induce a directed linear drift of spiral waves in cardiac tissue, which can be realized as an
optical feedback control in tissue where photosensitive ion channels are expressed. We illustrate our method by
using the FitzHugh-Nagumo model for cardiac tissue and the generic model of photosensitive ion channels. We
show that our method works for continuous and discrete light sources and can effectively move spiral waves
in cardiac tissue, or eliminate them by collisions with the boundary or with another spiral wave. We finally
implement our method by using a biophysically motivated photosensitive ion channel model included to the
Luo-Rudy model for cardiac cells and show that the proposed feedback control also induces directed linear drift
of spiral waves in a wide range of light intensities.

DOI: 10.1103/PhysRevE.106.024405

I. INTRODUCTION

Spiral waves occur in various excitable media in chemical,
physical, and biological systems. They have been found in
the cardiac tissue [1], during the aggregation of slime mold
amoebae [2], in the Belousov-Zhabotinsky (BZ) reaction [3],
and in the catalytic oxidation of CO on a Pt(110) surface [4].

Spiral waves organize spatial excitation patterns and their
dynamics determine important processes in excitable media.
For example, stationary rotating spiral waves in the heart
are responsible for an arrhythmia called monomorphic tachy-
cardia [5], while their breakup causes ventricular fibrillation
[6,5], which is the main cause of sudden cardiac death [7]. A
special type of dynamics is the drift of spiral waves. It was
shown that the drift of spiral waves in the heart is respon-
sible for a dangerous cardiac arrhythmia called polymorphic
ventricular tachycardia [8]. Also, directed drift can be used
to control the position of spiral waves in excitable media, for
example, to bring them to the boundary and eliminate them.
Therefore the methods to induce and control the drift of spiral
waves are an important way to control their dynamics.

*Corresponding author: Alexander.Panfilov@UGent.be
†Corresponding author: hongzhang@zju.edu.cn

From theoretical studies, it is known that drift of stationary
rotating spiral waves can occur as a result of spatial het-
erogeneity with respect to properties of nonlinear functions
describing excitability [9,10], or due to heterogeneity in the
spatial operator describing connections in excitable media. In
the second case the drift often occurs as a result of additional
gradient terms in the spatial operator [11–14]. These terms
occur, for example, due to derivatives of the diffusion tensor
if it changes in space, and they account for drift of spiral
waves there [11]. Gradient terms occur in curvilinear coor-
dinate systems linked to the filaments of three-dimensional
(3D) spiral waves, and they account for curvature-dependent
filament drift [12–14].

Such gradient terms also naturally occur in the case of
some external actions on the excitable media. For example
it was shown that a DC electric field in the BZ reaction
causes spiral drift at a constant velocity proportional to the
field magnitude at an angle with the field direction [15–17].
Mathematically the action of the electric field is described as
additional gradient terms in the spatial operator [15].

Application of the electric field provides one of the most
straightforward ways to induce the desired drift of spiral
waves, as the direction and the amplitude of the electric field
are easy to change and control. Unfortunately, such an ap-
proach is impossible to apply to cardiac tissue, as there the
action of the external field to the heart does not result in the
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gradient terms in the equations describing cardiac propaga-
tion, due to the difference in the excitability mechanism. In
this paper, we perform in silico studies and propose a method
that solves such a problem for cardiac tissue. In particular,
we show that similar action can be realized using the modern
experimental technique of cardiac optogenetics. We show that
it is possible to set up a feedback procedure in which some
properties of the excitation pattern are extracted and then used
to modulate a light intensity applied to optogenetic cardiac
tissue. As a result, we obtain the same type of linear drift
as in the BZ reaction with an applied external electric field.
We study this process in detail and show how it depends on
the excitability of cardiac tissue and the type of optogenetic
action. In addition, we show that this approach can also be
realized by a light source composed of discrete light-emitting
diode (LED) sources and study how the spatial resolution
of the sources affects the drift dynamics. We also show that
such drift can eliminate spiral waves by their collisions with
a boundary or result in the annihilation of counter-rotating
spiral waves. Overall we propose a type of feedback procedure
that can induce the linear drift of spiral waves in cardiac tissue
and thus can be used to control their dynamics.

II. MODEL

A. FitzHugh-Nagumo model

The equation used in our two-component (u and v) reac-
tion diffusion system is the FitzHugh-Nagumo (FHN) model
[18,19]:

∂u

∂t
= D∇2u + f (u, v) + Ioptp, (1a)

∂v

∂t
= g(u, v), (1b)

where f (u, v) = (u − u3/3 − v)/ε, g(u, v) = ε(u + β −
γ v). u and v are the fast and slow variables, respectively. In
this paper, we choose D = 1, ε = 0.22, γ = 0.8. In highly
excitable medium, β = 0.58; in weakly excitable medium,
β = 0.78.

The light-induced current Ioptp in cardiac tissue can be
depolarizing or hyperpolarizing [20–23]. In Eq. (1) a de-
polarized state corresponds to u = umax, while a resting
(hyperpolarized) state corresponds to u = umin = urest. umax

and umin are the upper and lower roots of f (u, vrest ) = 0,
where vrest is the value of v in the resting state. Thus we use
u = umax and u = umin as a Nernst potential for the depolariz-
ing and the hyperpolarizing current correspondently. Also we
assume that the conductance of the optogenetic channels is g,
which depends on the local light intensity at given point x, y
and time t , and that we can control the value of g locally by
light. For simplicity, we call g light intensity. Thus we get the
following representations:

Ioptp(x, y, t )=
⎧⎨
⎩

Idepolarizing = −g(x, y, t )[u(x, y, t ) − umax]
or

Ihyperpolarizing = −g(x, y, t )[u(x, y, t ) − umin].

(2)

Note that the light intensity is always positive, so g � 0,
and for umin < u < umax the depolarizing and the hyperpolar-

FIG. 1. Spiral waves dynamics under optical feedback. The
shapes of spiral waves in highly (a) and weakly (d) excitable media
without application of light. The wave in (a) or (d) rotates clockwise
and the path of the spiral tip (yellow) is a circle, which is the core
of the spiral wave. The color in (a), (d) shows the spatial distribution
of the variable u with the red color corresponding to uexcited and the
blue color corresponding to urest . Tip trajectories under the optical
feedback given by Eq. (7) in highly (b) and weakly (e) excitable
media. (c), (f) The same for the optical feedback given by Eq. (8).
go = 3.90625 × 10−3, continuous light sources.

izing currents in Eq. (2) are positive (inward) and negative
(outward), respectively.

Simulations were performed in a medium of the size
25.6 × 25.6 in Figs. 1–7 for single rotating spiral waves and
51.2 × 51.2 in Figs. 8 and 9 for two counter-rotating spiral
waves, corresponding to grids of 512 × 512 and 1024 × 1024,
respectively, with the space step �x = �y = 0.05 and the
time step �t = 0.0005. All are in dimensionless space and
time units.

B. Luo-Rudy model

We also implemented one of the most widely used realistic
models for the membrane action potential, i.e., the Luo-Rudy
model of mammalian ventricular cardiac tissue [24]:

∂V

∂t
= − Iion + Ioptp

Cm
+ D∇2V, (3a)

Iion = INa + Isi + IK + IK1 + IK p + Ib, (3b)
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where V is the transmembrane potential, Cm = 1 μF/cm2

is the membrane capacitance, and D = 0.001 cm2/ms is
the diffusion coefficient. Iion contains six ionic currents:
a fast sodium current INa; a slow inward current Isi; a
time-dependent potassium current IK ; a time-independent
potassium current IK1; a plateau potassium current IK p; and
a time-independent background current Ib. We considered
a rigidly rotating spiral wave with the following parameter
set: the maximum conductances of INa, Isi, IK are GNa =
6 mS/cm2, Gsi = 0.01 mS/cm2, and GK = 0.423 mS/cm2;
the slow inactivation gate j ≡ 1. Simulations are performed
in a medium of size 3 × 3 cm2 with the space step �x =
�y = 0.015 cm and the time step �t = 0.005 ms. The spiral
tip is defined by the intersection point of two −35 mV voltage
contour lines with the time interval of 2 ms.

The optogenetic depolarizing current Ioptp in Eq. 3(a) is de-
scribed by a recent detailed four-state Markov light-sensitive
Channelrhodospin-2 (ChR2) model [25,26] which is based on
experimental measurements of this current [27]. This model is
widely used in detailed studies on optogenetics in cardiology
(see, e.g., Refs. [28–30]). The equation for the model is [27]

Ioptp = gChR2G(V )(O1 + γ O2)(V − EChR2), (4)

with

G(V ) = 10.6408–14.6408 exp(−V/42.7671)

V
,

dO1

dt
= −(Gd1 + e12)O1 + e21O2 + k1C1,

dO2

dt
= e12O1 − (Gd2 + e21)O2 + k2C2,

dC1

dt
= Gd1O1 − k1C1 + GrC2,

dC2

dt
= Gd2O2 − (k2 + Gr )C2,

O1 + O2 + C1 + C2 = 1,

where gChR2 = 0.4 mS/cm2 is the maximal conductance,
G(V ) is the voltage-dependent rectification function, O1, O2,
C1, C2 are the open and the closed state probabilities, γ = 0.1
is the conductance ratio of O2/O1, and EChR2 = 0 mV is the
reversal potential for ChR2. Gd1, Gd2, Gr , e12, e21, k1, k2 are
kinetic parameters for the four-state Markov model:

Gd1 = 0.075 + 0.043 tanh

(
−V + 20

20

)
,

Gd2 = 0.05,

Gr = 4.34587 × 10−5 × exp(−0.0211539274V ),

e12 = 0.011 + 0.005 ln

(
1 + I light

0.024

)
,

e21 = 0.008 + 0.004 ln

(
1 + I light

0.024

)
,

k1 = 0.8535F p,

k2 = 0.14F p,

F = 0.0006Ilightλ

wloss
,

d p

dt
= S0 − p

τChR2
,

S0 = 0.5{1 + tanh[120(100Ilight − 0.1)]},

where Ilight is the light intensity, λ = 470nm is the wavelength
of light, wloss = 0.77 is the scaling factor for losses of pho-
tons, τChR2 = 1.3 ms is the time constant of ChR2 activation,
and F is the photon flux. p and S0 are the state variables, de-
noting the time- and the light-dependent activation functions
for ChR2, respectively.

III. RESULTS

A. Optical feedback system

To describe the effect of electric field on wave propagation
in the BZ reaction, usually a term − �E · ∇u is added to the
equation for the diffusive species [15,31]. In the BZ reaction,
spiral waves under a DC electric field ( �E is a constant) drift
with a two-component velocity [15,16], one of which is paral-
lel to the electric field and the other is perpendicular to it. The
component perpendicular to the electric field changes its sign
with the rotation direction of spiral waves.

To obtain a similar control effect in cardiac tissue we will
use a special control scheme for light-induced current. For
simplicity let us assume that �E is directed parallel to the x
axis. As the system has rotational symmetry, this is not a
limitation. In this case, the DC electric field term in equations
for chemical excitable media is −Ex∂u/∂x and it has the
following property: the sign of −Ex∂u/∂x at each point in
space is correlated with that of ∂u/∂x. For example, if we
apply an electric field along the positive x axis, i.e., Ex > 0,
we have

−Ex∂u/∂x � 0 if ∂u/∂x � 0,

−Ex∂u/∂x < 0 if ∂u/∂x > 0. (5)

According to Eq. (2), we can reproduce the similar term in
cardiac tissue equations for the FHN model if we consider a
specific light-induced current in the following form:

Ioptp(x, y, t )

=
{−go|∂u/∂x|(u − umax) � 0 if ∂u/∂x � 0,

−go|∂u/∂x|(u − umin) < 0 if ∂u/∂x > 0.

(6)

Here, we assume that the optical system produces a light
that activates the optogenetic currents whose conductance is
proportional to |∂u/∂x| with a scaling factor go, and umin <

u < umax. We use two types of light-induced current according
to the sign of ∂u/∂x. It means we apply the depolarizing
current to the spiral pattern at points where the derivative
∂u/∂x is negative, and apply the hyperpolarizing current at
sites where the derivative ∂u/∂x is positive.

Equation (6) constructs a feedback system that makes it
possible for cardiac tissue under light to behave like chemical
media under electric fields. Because a light feedback system
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can have some operational time delay, we also consider a generalized term (7) in which the time delay τ is taken into account:

Ioptp(x, y, t ) =
{−go|∂u(t − τ )/∂x|(u(t ) − umax) if ∂u(t − τ )/∂x � 0,

−go|∂u(t − τ )/∂x|(u(t ) − umin) if ∂u(t − τ )/∂x > 0.
(7)

For most of simulations we will use a small time delay τ = 0.01T , where T is the spiral period.
If the electric field in chemical media is negative Ex < 0, we can adjust Eq. (7) by exchanging the polarizing currents:

Ioptp(x, y, t ) =
{−go|∂u(t − τ )/∂x|(u(t ) − umin) if ∂u(t − τ )/∂x � 0,

−go|∂u(t − τ )/∂x|(u(t ) − umax) if ∂u(t − τ )/∂x > 0.
(8)

Equation (7) and (8) are schemes of the feedback control
for the FHN model.

B. Optically induced drift of spiral waves

We study the tip trajectories of rigidly clockwise rotating
spiral waves in the presence of the light-induced current in
the form of Eq. (7). We considered cases of the highly and
the weakly excitable media. This is because in Ref. [32] it is
shown that spiral waves in highly and weakly excitable media
drift in opposite directions in a DC electric field in chemical
media.

Figures 1(a) and 1(d) show spiral waves and their cores,
and Figs. 1(b) and 1(e) show the drift of spiral waves in the
presence of the light-induced current in the form of Eq. (7).
We see that the spiral waves undergo directional drift, and
the drift has two direction components. One component is
longitudinal directed along the direction of the “electric field”
for highly excitable media or in the opposite direction for

weakly excitable media. This is similar to the spiral wave
drift induced by DC electric fields in a chemical medium (see
Fig. 1 in [33]). There is also another transversal component,
which depends on the rotation direction of the spiral wave.
In Figs. 1(c) and 1(f), we perform similar simulations for
the current given by Eq. (8) corresponding to the opposite
direction of the electric fields in a chemical medium. We see
that under an inverse “electric field” the spiral waves drift in
the opposite direction [Figs. 1(c) and 1(f)].

Our optical feedback of Eqs. (7) and (8) uses both depolar-
izing and hyperpolarizing currents. It requires simultaneous
expression in the cell of two different types of light-sensitive
ion channels and the possibility to control them independently.
This may be a challenging task. Thus, we also checked if
our approach also works if only one type of ion channel is
available. For that we propose two other possible realizations
which rely only on the depolarizing or only on the hyperpo-
larizing current:

Ioptp(x, y, t ) =
{−go|∂u(t − τ )/∂x|(u(t ) − umax) if ∂u(t − τ )/∂x � 0,

0 if ∂u(t − τ )/∂x > 0,
(9)

where only the depolarizing current is used, or

Ioptp(x, y, t ) =
{

0 if ∂u(t − τ )/∂x � 0,

−go|∂u(t − τ )/∂x|(u(t ) − umin) if ∂u(t − τ )/∂x > 0,
(10)

where only the hyperpolarizing current is used.

Figure 2 shows examples of the application of either the
depolarizing current, Eq. (9), or the hyperpolarizing current,
Eq. (10). We see that in both cases spiral wave drift is parallel
to the “electric field” for highly excitable media and antipar-
allel to the “electric field” for weakly excitable media, which
are the same as Figs. 1(b) and 1(e) where both currents are
present. However, the drift in Fig. 2 occurs with slower speeds,
and the ratio of the longitudinal to the transversal velocity
components changes, which results in slightly different drift
angles.

C. Discrete light sources

One of the possible practical realizations of the optical
feedback system is a light source consisting of an array of

computer-controlled LED sources. Such sources were de-
veloped for various applications in neuroscience (see, e.g.,
[34]) and cardiology [29,35,36], and many similar sources
are currently under development. Light in such arrays is
produced by individual LED sources, each of which is con-
trolled separately by a computer and illuminates a small
area.

We performed simulations that mimic the action of such
light sources. We assume that each LED illuminates an area
of 5 × 5 grid points and is controlled by our feedback given
by Eq. (7), with the derivative ∂u/∂x measured at the center
point. Figure 3 shows how the proposed optical feedback
affects the tip trajectory for such discrete sources contain-
ing different numbers of LED sources (keep LEDs × go =
constant). We see that the drift remains straight when the
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FIG. 2. The drift of spiral waves when the optical feedback uses
only depolarizing or hyperpolarizing current. (a), (c) Application of
the depolarizing current given by Eq. (9). (b), (d) Application of
the hyperpolarizing current given by Eq. (10). go = 3.90625 × 10−3,
continuous light sources. (a), (b) Highly excitable media. (c), (d)
Weakly excitable media.

number of LED is 32 × 32 [Figs. 3(a) and 3(d)], slightly
curves when the number is 16 × 16 [Figs. 3(b) and 3(e)], and
becomes not straight and twists when the number turns to
8 × 8 [Figs. 3(c) and 3(f)].

Thus for all cases the proposed feedback produces the drift
of spiral waves and its longitudinal component has the same
direction as for the continuous source. However, LEDs =
16 × 16 [Figs. 3(b) and 3(e)] in our simulation is the min-
imum number of sources when we observe linear drift. We
will use this number in our subsequent simulations.

In Fig. 4, we show how the time delay affects the drift
dynamics. We see that for delays of both 0.02T and 0.05T the
tip trajectories are almost the same as that of the time delay
0.01T. [Compare Figs. 4(a), and 4(c) and Figs. 3(b) and 3(e).]

Figures 5 and 6 show the effect of the light intensity on the
directional drift. We changed the total light intensity in two
different ways. In Fig. 5 we fixed go at 0.04 and increased
the number of sources from 16 × 16 to 32 × 32. We see that
in this case the total drift speed V (V =

√
V 2

x + V 2
y ) linearly

increases with the number of LEDs [Figs. 5(a) and 5(c)], while
the drift angle remains unchanged [Figs. 5(b) and 5(d)].

In Fig. 6 we gradually increase go from 0.04 to 0.18 while
keeping the total LED numbers unchanged (LEDs = 16 ×
16). We see that the drift speeds also linearly increase over
go ranging from 0.04 to 0.18 [Figs. 6(a) and 6(c)], while the
drift angles still keep unchanged [Figs. 6(b) and 6(d)].

D. Other types of induced dynamics

The spiral waves under the optical feedback drift along
straight lines until they approach the boundary. If this drift is
strong enough, spiral waves can collide with the boundary and

FIG. 3. Tip trajectories of spiral waves under discrete spot lights
(LEDs). (a)–(c) Highly excitable media. (d)–(f) Weakly excitable
media. (a), (d) LEDs = 32 × 32, go = 0.04. (b), (e) LEDs = 16 ×
16, go = 0.16. (c), (f) LEDs = 8 × 8, go = 0.64. The feedback is
given by Eq. (7). Time delay τ = 0.01T .

disappear. We illustrate this in Fig. 7 where we show that for
both highly and weakly excitable media the optical feedback
can remove spiral waves by their collisions with the boundary.

We also studied other wave sources. Figures 8 and 9
show the drift of two counter-rotating spiral waves which
in cardiology are called figure-of-eight reentry. We consider
highly excitable media in Fig. 8, weakly excitable media in
Fig. 9, and two possible mutual orientations. We observe two
types of dynamics. Under the light-induced current, the spiral
waves either go apart [Figs. 8(a)–8(c) and 9(a)–9(c)], or move
towards each other and annihilate [Figs. 8(d)–8(f) and 9(d)–
9(f)]. These effects occur because the transversal component
of the drift depends on the rotation direction of spiral waves,
and for counter-rotating spiral waves it will have opposite
directions. Thus this drift can either move spirals apart from
each other as in Figs. 8(a)–8(c) and 9(a)–9(c) or bring them
together as in Figs. 8(d)–8(f) and 9(d)–9(f).

E. Luo-Rudy model

The description for the optogenetic channelrhodopsin cur-
rent used in the FHN model has substantial limitations. First,
in the FHN model we assumed that the reversal potential of
the depolarizing and the hyperpolarizing currents corresponds
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FIG. 4. Tip trajectories of spiral waves with longer time delay
than that in Figs. 3(b) and 3(e): LEDs = 16 × 16, go = 0.16. (a),
(b) Highly excitable media. (c), (d) Weakly excitable media. (a), (c)
Time delay τ = 0.02T . (b), (d) Time delay τ = 0.05T . The feedback
is given by Eq. (7).

to the maximal and the minimal values for voltage. However,
in reality they do not exactly coincide. Also we assumed
instantaneous change in conductivity due to light; however, in
reality the conductance change is a function of time. In order
to check if our conclusions hold for biophysically motivated
cardiac channelrhodopsin models, we performed additional
studies in which we used the most accepted experimentally
based model for the depolarizing channelrhodopsin current
[36], which we included in the Luo-Rudy biophysical model
for cardiac cells. Details on the implementation of the model
are given in the model section.

In the Luo-Rudy model, our scheme of feedback light for
ChR2 depolarizing current is

Ilight =
{

Io|∂V (t − τ )/∂x| if ∂V (t − τ )/∂x � 0,

0 if ∂V (t − τ )/∂x > 0,
(11)

where τ = 0.01T , T is the spiral period in the Luo-Rudy
model, and Io is the scaling factor of light intensity. The
feedback light Ilight in Eq. (11) is a direct analogue of the
feedback current of Eq. (9) in the FHN model.

We used parameters which produce a rigidly rotating
spiral, which together with tip trajectories are shown in
Fig. 10(a). Figures 10(b)–10(f) show examples of spiral drift
in the Luo-Rudy model with a feedback control given by
Eq. (11) for five values of Io = (3, 5, 10, 20, 80) × 10−5. In
all these cases, we eventually observed drift along a straight
line; however, for the case of smaller light intensity it occurred
after some transient time [Fig. 10(b)]. Figures 10(d)–10(f)
also show that the spiral wave can annihilate at boundary if
Io � 10 × 10−5 (similar to Fig. 7 of the FHN model). We also
expect the same annihilation of two counter-rotating spirals in
the Luo-Rudy model, which was observed in the FHN model
(Figs. 8 and 9).

FIG. 5. The effect of the total light intensity on the drift speeds
and directions. The light intensity was changed by increasing the
number of LEDs. The feedback is given by Eq. (7). (a), (c) Rela-
tionships between the drift speeds and the LED numbers. (b), (d)
Relationships between the drift angles and the LED numbers. (a), (b)
Highly excitable media. (c), (d) Weakly excitable media. go = 0.04,
LEDs : 16 × 16, 18 × 18, . . . , 30 × 30, 32 × 32.

FIG. 6. The effect of the total light intensity on the drift speeds
and directions in 16 × 16 LED arrays and the feedback is given by
Eq. (7). The light intensity was changed by increasing go. (a), (c)
Relationships between the drift speeds and go. (b), (d) Relationships
between the drift angles and go. (a), (b) Highly excitable media. (c),
(d) Weakly excitable media.
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FIG. 7. Spiral waves drift and annihilate at the boundary under
the optical feedback control Eq. (7) with go = 0.12, continuous light
sources. (a), (b) Highly excitable media. (c), (d) Weakly excitable
media. (a), (c) The initial patterns of the spirals are the same as in
Figs.1(a) and 1(d).

FIG. 8. Dynamics of two counter-rotating spiral waves under
the optical feedback Eq. (7) in highly excitable media. (a)–(c) Two
counter-rotating spiral waves move apart. go = 2, LEDs = 32 × 32.
(a) t = 0. (b) Tip trajectories. (c) t = 400. (d)–(f) Annihilation of spi-
ral waves. go = 18, LEDs = 32 × 32. (d) t = 0. (e) Tip trajectories.
(f) Annihilation at t = 57.

FIG. 9. Dynamics of two counter-rotating spiral waves under the
optical feedback Eq. (7) in weakly excitable media. (a)–(c) Two
counter-rotating spiral waves move apart. go = 1, LEDs = 32 × 32.
(a) t = 0. (b) Tip trajectories. (c) t = 150. (d)–(f) Annihilation of
spiral waves. go = 5, LEDs = 32 × 32. (d) t = 0. (e) Tip trajectories.
(f) Annihilation at t = 52.

In our model the light intensity Ilight is given by the product
of Io and |∂V/∂x|. Let us estimate the maximum light intensity
which should be produced by our control system. From the
relationship between Io and Ilight it follows that

(Ilight )max = Io|∂V/∂x|max. (12)

We record the maximum |∂V/∂x| that occurred during
simulations of Fig. 10, and obtain |∂V/∂x| < 1.59 × 103 <

1600 (mV/cm). Then, we use |∂V/∂x|max = 1600 (mV/cm)
and estimate the maximum light intensity in each simulation.
The maximum light intensity Ilight for different Io is shown in
the caption of Fig. 10.

From data shown in Fig. 10 we can conclude the following:
our method works for all used intensities of the light. Also,
all intensities are realistic: in Fig. 10, the maximum intensity
(Ilight )max = 1.28 mW/mm2, which is more than four times
lower than the maximum intensity 5.5 mW/mm2 of experi-
mental studies used to construct the ChR2 model [27].

IV. DISCUSSION

In this paper, we propose an algorithm for the feedback
control of spiral waves in cardiac tissue. The proposed scheme
uses optical feedback and can be applied to cardiac tissue in

024405-7



XIA, ZHI, LI, PAN, PANFILOV, AND ZHANG PHYSICAL REVIEW E 106, 024405 (2022)

FIG. 10. Spiral wave dynamics in the Luo-Rudy model
with continuous light sources. Color coding shows the potential
V . (a) The shapes of rigidly rotating spiral wave and its core
without application of light. (b)–(f) End time patterns and
tip trajectories of spiral with different light intensity. (b) The
spiral drift with long transient time when the light is small.
Io = 3 × 10−5, (Ilight )max = 0.048 mW/mm2, t = 2500 ms. (c)
The spiral drift with Io = 5 × 10−5, (Ilight )max = 0.08 mW/mm2,
t = 1500 ms. (d) The spiral annihilates at the boundary when the
drift becomes stronger. Io = 10 × 10−5, (Ilight )max = 0.16 mW/mm2,
t = 1242 ms. (e) The spiral drift faster with Io = 20 × 10−5,
(Ilight )max = 0.32 mW/mm2, t = 675 ms. (f) The drift with large
light intensity. Io = 80 × 10−5, (Ilight )max = 1.28 mW/mm2,
t = 152 ms.

which photosensitive ion channels or pumps are introduced.
We show that if we modify the conductance of ion channels
based on the spatial derivatives of the transmembrane poten-
tial we can induce linear drift of spiral waves in cardiac tissue.
Using the generic FHN model we show that the method works
for the depolarizing optogenetic current, the hyperpolarizing
current, and if both the depolarizing and the hyperpolarizing
photosensitive currents are present. Note that although the
effect is most pronounced when both the depolarizing and
the hyperpolarizing photosensitive currents are present, ex-
perimentally it is very challenging to express in real cells for
both currents and also to control them independently. Because
most of the current experimental research was performed for a
depolarizing photosensitive current [21] we extend our study

and perform additional simulations using a biophysical model
for cardiac cells in which we included the most accepted ex-
perimentally based model for the depolarizing photosensitive
current. We show that in this case our method also induces
stable linear drift of spiral waves for realistic intensities of the
applied light.

In this paper we used a two-dimensional (2D) represen-
tation of cardiac tissue. Such a representation can properly
reproduce processes which occur in cardiac cell cultures [21],
or atria of the heart, which have thin walls. However, the
ventricles of the heart have thick walls, and to study effects of
our control procedure there one needs to perform simulations
in 3D cardiac models, such as those in Refs. [37,20]. Note
that in 3D many additional factors may affect our control
procedures. First of all, the optogenetic signal influences only
the surface of the heart. More specifically, for activation of
optogenetic current the light needs to be delivered at a given
location. Due to scattering, the light intensity reduces when
light propagates inside cardiac tissue. In study [20] it was
estimated that the optogentic effect can be observed only for a
layer of thickness of about 1.5 mm. Also, the intensity of the
light in that case will not be constant, but will reduce with the
thickness by the exponential law [20]. Because the thickness
of ventricles of the heart is between 6 and 12mm, the control
signal will influence only 12–25% of the total thickness of the
tissue. As a result, the control procedure will likely be able to
affect only a part of the filament of a 3D spiral wave (scroll
wave). It is also important to consider additional 3D effects
of its own filament dynamics. The most important of those
is filament tension [12,38,39]. It was shown that the filament
of a 3D spiral wave tends either to decrease its length, which
is called the positive filament tension [12,39], or increase its
length, which is called the negative filament tension [38,39].
The type of the dynamics depends on the parameters of the
equation, e.g., excitability of cardiac tissue [38]. Simulations
in the Luo-Rudy model showed that for most of parameter
values the filament tension in cardiac tissue is positive, and
in a very low excitability case it can become negative as well
[40].

Based on known properties of filaments, we can expect the
following dynamics of 3D spiral wave if we apply our control
procedure. Let us assume that we initially have a 3D spiral
wave with the filament extended from the inner surface of the
heart, the endocardium, to the outer surface of the heart, the
epicardium, and the filament is orthogonal to the surfaces. Let
us apply our optical control procedure and illuminate the outer
surface of the heart, the epicardium. The control procedure
should work normally for the part of 3D spiral wave located
close to the epicardium and thus cause drift as it was in our
2D simulations. However, as light will not penetrate through
all the thickness of the heart, the control procedure will not
affect the other part of 3D spiral wave located close to the
endocardium. As a result, such drift will try to elongate the
filament. Now consider the case of positive filament tension.
Because in the positive tension case the filament will try to
decrease its length, the tension will try to keep the length of
the filament minimal and thus keep the filament orthogonal to
the surfaces of the heart. Consequently, if the control proce-
dure will cause strong drift of one part of the filament at the
epicardium, the filament tension will “pull” its another part,
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and the whole filament should drift in a similar way as in
2D. In contrast, for the case of negative filament tension, the
filament tends to increase its length and thus the drift of one
part of the filament should not induce the drift of the filament
as a whole. Thus we expect that our method will work only
for the positive filament tension case. It would be interesting
to perform simulations of these phenomena, find out if our
assumptions are correct, and quantify them.

V. CONCLUSION

In conclusion, we propose a method of optical feedback
which induces directed linear drift of spiral waves in cardiac
tissue. The method works for continuous and discrete light
sources and for depolarizing and hyperpolarizing photosensi-

tive ion channels. Using this method it is possible to displace
effectively spiral waves in cardiac tissue, or remove them by
collisions with the boundary or with each other.
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