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Excitable reaction-diffusion waves of curvature-inducing proteins on deformable membrane tubes
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Living cells employ excitable reaction-diffusion waves for internal cellular functions, in which curvature-
inducing proteins are often involved. However, the role of their mechanochemical coupling is not well
understood. Here, we report the membrane deformation induced by the excitable reaction-diffusion waves of
curvature-inducing proteins and the alternation in the waves due to the deformation, using a coarse-grained
simulation of tubular membranes with a modified FitzHugh-Nagumo model. Protein-propagating waves deform
tubular membranes and large deformations induce budding and erase waves. The wave speed and shape are de-
termined by a combination of membrane deformation and spatial distribution of the curvature-inducing protein.
Waves are also undulated in the azimuthal direction depending on the condition. Rotationally symmetric waves
locally deform the tubes into a symmetric shape but maintain a straight shape on average. Our simulation method
can be applied to other chemical reaction models and used to investigate various biomembrane phenomena.
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I. INTRODUCTION

Membrane deformation is a common phenomenon in liv-
ing cells [1–4]. The shapes of biomembranes are regulated
by various proteins including curvature-inducing proteins
[1–3,5]. For example, Bin/Amphiphysin/Rvs (BAR) super-
family proteins, which have a banana-shaped dimer structure,
bind to membranes and bend them according to intrinsic
protein shapes [3,5,6]. Clathrin and coat protein complexes
(COPI and COPII) also bend membranes and induce mem-
brane budding. These proteins cooperatively work. For
example, during clathrin-mediated endocytosis, the BAR pro-
teins bind to membranes and, subsequently, clathrin-assembly
forms a spherical bud; the binding of dynamin to the bud
neck induces membrane fission [7]. While proteins bend
membranes as described above, the membrane curvature af-
fects protein binding (curvature sensing) [2,5,6,8–10]. Various
curvature-inducing proteins have different preferences for
high membrane curvatures depending on protein shape. Thus
membrane curvature also affects their dynamics [8].

Recently, there have been experimental and theoretical
studies on the feedback regulation between protein dynam-
ics and membrane mechanics. Reaction-diffusion waves of
proteins coupled with membrane deformation have been ob-
served and theoretically analyzed under various conditions
[11–14]. Further, the membrane shape affects intracellular
proteins’ wave propagation and they subsequently regulate
cell motion [15–17]. The dynamics of the curvature-inducing
proteins are associated with cellular functions, such as cell
migration [18] and cell division [19]. In addition, giant unil-
amellar vesicles (GUVs) containing Min proteins, which
generate reaction-diffusion waves in Escherichia coli and reg-
ulate cell division, exhibit cyclic deformation accompanying
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the Min protein waves [20–22]. In signal transduction, recep-
tors on cell membranes receive extracellular signals, transfer
information downstream in the intracellular reaction network,
and regulate cellular functions according to the surround-
ing environment, such as chemotaxis [23]. Some of these
cell signalings are modeled using excitable reaction-diffusion
models and various studies have shown that the signaling
network regulates cell migration [24,25]. Researchers have
analyzed excitable reaction-diffusion waves on fixed curved
surfaces and found that the surface geometry affects the
stability, speed, and shape of the waves [26,27]. However,
studies that have considered membrane deformation and
reaction-diffusion dynamics are limited and their biological
implications are not understood yet.

In previous studies, we examined the coupling between
the large deformation of a fluid vesicle and reaction-diffusion
dynamics with the binding of curvature-inducing proteins
using a dynamically triangulated membrane model and a
nonexcitable reaction-diffusion model, Brusselator model,
to investigate the mechanochemical feedback [28,29]. We
understood that membrane deformation stabilizes Turing
patterns and simultaneously Turing patterns induce mem-
brane deformation, resulting in the formation of budded and
multispindle-shaped vesicles [28]. Moreover, we successfully
reproduced the self-oscillation of vesicle shapes as seen in
the reconstructed Min system in GUVs and showed that the
starting point of traveling waves is determined by the local
membrane curvature [29].

In this study, we simulated a coupled system between
membrane deformation and excitable reaction-diffusion
waves of curvature-inducing proteins. Excitable reaction-
diffusion waves are fundamental biological phenomena and
models, such as the FitzHugh-Nagumo model for nerve sig-
naling, have been used for studying them [30,31]. Moreover,
various protein waves interacting with membrane mechanics
are demonstrated using excitable reaction-diffusion models
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[11,12]. We employed the modified FitzHugh-Nagumo model
to be coupled with membrane deformation. Here, we consider
that the curvature-inducing proteins have a laterally isotropic
shape. We employed tubular membranes and waves propagat-
ing along the tube axis to reduce the complexity of waves
with higher dimensions. Tubular membrane structures are ob-
served in cell membranes (e.g., axons of neurons) as well as
intracellular organelles [e.g., endoplasmic reticulum (ER) and
mitochondria] [2,4]. Tubular membranes can be produced in
vitro by pulling a vesicle using optical tweezers and a mi-
cropipette, and the tube radius is controlled by the amplitude
of the imposed force [32,33]. Experimentally, tubular mem-
branes are often used to investigate the curvature dependence
of protein binding to membranes [5,9,10]. We investigated the
dynamics of protein-propagating waves using a combination
of the FitzHugh-Nagumo model and tubular membranes.

II. METHODS

A. Membrane model

We applied the membrane model used in our previous
studies [28,29] with a few modifications. We triangulated a
membrane surface to discretize the membrane tube. In this
triangular network, N vertices are connected by bonds of
average length a and the vertices have excluded volumes and
masses m. The surface area S is constrained by the harmonic
potentials [34]. The tube lies along the x axis and is connected
using a periodic boundary condition. Unlike our previous
studies, the volume enclosed by the membrane is left uncon-
strained in this study. This tube is considered to be extended
from a vesicle by optical tweezers or protein filaments, so that
the tube is connected to a reservoir of a large volume. The
triangulated bond network is remeshed using the bond-flip
Monte Carlo method to allow lateral diffusion of vertices [35].

The deformation of the tubular membrane is expressed by
free energy of the curvature, which is modified to include the
effect of curvature-inducing proteins. The curvature energy is
expressed as Fcv = ∫

fcvdS with

fcv = (1 − u)
κ0

2
(2H )2 + u

κ1

2
(2H − C0)2, (1)

where u is the concentration of curvature-inducing proteins on
the membranes (u ∈ [0, 1]), H is the mean curvature, κ1 and
κ0 are the bending rigidity with and without the proteins on the
membranes, respectively, and C0 is the spontaneous curvature
of the curvature-inducing proteins [28,29,36,37]. Although
the difference in the saddle-splay modulus κ̄ (also called the
Gaussian modulus) can modify the protein binding [36,37],
it is not considered here for simplicity. For the budding of a
vesicle, the κ̄ difference can be accounted for by the rescaling
of κ1 and C0 [36]. Similarly, the κ̄ difference does not likely
cause a qualitative change in the present case. When κ̄ is
constant for an entire membrane, κ̄ does not contribute to
membrane shape transformation for a fixed topology because
of the Gauss-Bonnet theorem. According to this curvature
energy expression, the larger the protein concentration u, the
more strongly the membrane bends when C0 is sufficiently
large.

Membrane deformation is solved through molecular dy-
namics simulation using a Langevin thermostat:

m
∂2ri

∂t2
= −∂U

∂ri
− ζ

∂ri

∂t
+ gi(t ), (2)

where ζ is the friction coefficient and gi is Gaussian white
noise, which obeys the fluctuation-dissipation theorem. We
use the potential U = US + Ub + Ur + Ucv, where US is the
constraint potential for the surface area S, Ub and Ur are the
bond and repulsive potentials, respectively, and Ucv is the
discretized potential for the bending energy, Fcv, using the
dual lattice:

US = 1
2 kS(S − S0)2, (3)

Ub =
∑
bond

b exp[1/(lc0 − ri, j )]

lmax − ri, j
�(ri, j − lc0), (4)

Ur =
∑

all pairs

b exp[1/(ri, j − lc1)]

ri, j − lmin
�(lc1 − ri, j ), (5)

Ucv = (1 − u)
κ0

2

∑
i

1

σi
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j(i)

σi, jri, j

ri, j

)2

+ u
κ1

2

∑
i

σi

(
1

σi

∑
j(i)

σi, jri, j

ri, j
− C0ni

)2

, (6)

where �(x) is the unit step function, ri, j is the distance be-
tween two vertices i and j, and ni is the normal vector at the
ith vertex. The sum over j(i) is over the neighbors of the ith
vertex, which are connected by tethers. The length of a bond
in the dual lattice is σi, j = ri, j[cot(θ1) + cot(θ2)]/2, where the
angles θ1 and θ2 are opposite to bond i j in the two triangles
sharing this bond. σi = 0.25

∑
j(i) σi, j ri, j is the area of the

dual cell of vertex i. Here, we use kS = 4kBT , b = 80kBT ,
lmax = 1.33a, lc0 = 1.15a, lc1 = 0.85a, and lmin = 0.67a. The
details of these potentials are provided in Ref. [34].

B. Reaction-diffusion model

We employed the FitzHugh-Nagumo model [30,31] as an
excitable reaction-diffusion model to investigate stable prop-
agating waves with excitable dynamics. Reaction-diffusion
equations for concentrations of curvature-inducing proteins u
and regulatory proteins v are given by

τ
∂u

∂t
= −(u − 0.2)(u − A)(u − 0.9) − v − G

∂ fcv

∂u

+ Du∇2u + Qu, (7)

τ
∂v

∂t
= B[C(u − 0.2) − v] + Dv∇2v + Qv, (8)

where τ is a time constant, Du and Dv are the diffusion
coefficients of the two types of proteins, A, B, and C are
positive reaction parameters, Qu and Qv are the stimuli for
wave initiation at a thin slice of the tube, and G is the mag-
nitude of mechanochemical coupling. To introduce the effect
of membrane curvature on the reaction-diffusion model, we
assumed that the binding rate of curvature-inducing proteins
onto membranes is proportional to the partial derivative of
the local curvature energy with respect to the concentration of
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FIG. 1. Phase plane of the FitzHugh-Nagumo model with the
modified protein unbinding process for A = 0.4, B = 0.001, C =
0.1, and G = 0. Purple and green lines are nullclines for ∂u/∂t = 0
and ∂v/∂t = 0, respectively. Black lines indicate trajectories after
the equilibrium state is stimulated.

curvature-inducing proteins, ∂ fcv/∂u, as in our previous study
[28]. According to this coupling, the binding of curvature-
inducing proteins is enhanced around the preferred curvature
H � C0/2, where ∂ fcv/∂u < 0. We constrain the range of u
during the time evolution to maintain u ∈ [0, 1]; when Eq. (7)
gives u out of this range, it is set to u = 0 or u = 1. When
a small stimulus is given in the equilibrium state, the state
quickly recovers to the fixed point. However, the system
shows excitability when a larger stimulus is given (see Fig. 1).

C. Parameters

In this study, we used membrane tubes with a length of
Lx = 200a, where the number of vertices is N = 15 000 or
30 000. For these numbers of vertices, the tubular surface
areas are S � 12 300a2 and 24 600a2, and the correspond-
ing radii of the tubes are Rt = S/2πLx � 9.79a and 19.6a,
respectively. Unless otherwise mentioned, we applied the con-
ditions κ0/kBT = 20, A = 0.4, B = 0.001, C = 0.1, Du/a2 =
0.1, Dv = 0, GkBT/a2 = 0.002, and τmd = τ , where τmd =
ζa2/kBT . For this ratio of the time units of the reaction
and membrane motion, the membrane motion can follow the
reaction dynamics. The starting protein concentration values
were set around the fixed point calculated using a fixed value
of the membrane curvature (H = 1/2Rt ), with small, random
perturbations.

For the initiation of propagating waves, we added stimuli
at the thin slice of the tubular membrane, given by

Qu = exp[−0.0625(x − 10)2], (9)

Qv = 0.02 exp[−0.25(x − 5)2] (10)

during the initial short period (0 � t/τ � 1). The profiles of
Qu and Qv are shown in Fig. 2(a), and they induce a one-
dimensional wave that propagates on a flat membrane with
G = 0 as shown in Fig. 2(b).

Equations (7) and (8) were integrated numerically using
the forward difference method for time and the finite-volume
scheme for space [28]. Equation (2) was integrated using the

FIG. 2. Initiation of propagating waves. (a) The profiles of the
stimuli Qu and Qv to initiate the propagating wave. (b) Prop-
agating waves induced by the stimuli shown in (a). The color
variation indicates different concentration of the curvature-inducing
protein, u.

leapfrog method. Error bars were calculated based on three
independent runs.

In the estimation of local curvature, we calculated a
smoothed local curvature H̃ by averaging the local curvature
H up to the second-order adjacent vertices. The details are
described in the Supplemental Material of Ref. [28].

D. Stability of nonexcited membrane

In thermal equilibrium, a cylindrical membrane tube gen-
erates an force fex along the tube axis [38]:

fex = 2πκ0C0

{
1

RtC0

[(
κ1

κ0
− 1

)
u + 1

]
− κ1

κ0
u

}
. (11)

For fex > 0, the membrane tube is stable and this force is
balanced with an external force (here imposed by the periodic
boundary condition). In contrast, for fex � 0, the cylindrical
tubes are unstable, so that the unstable condition is given by

C0Rt � 1 + κ0(1 − u)

κ1u
. (12)

This condition is identical to that in Ref. [39] (the membrane
spontaneous curvature � the tube curvature). In particular,
fex = 0, the membrane deforms spherical buds via undu-
loid deformation, maintaining the mean curvature of the

024403-3



NAOKI TAMEMOTO AND HIROSHI NOGUCHI PHYSICAL REVIEW E 106, 024403 (2022)

FIG. 3. Typical sequential snapshots of propagating waves on
nondeformable tubular membranes for (a) I = 0.002, (b) I = 0, (c)
I = −0.002, and (d) I = −0.01. The color variation indicates differ-
ent concentration of the curvature-inducing protein, u.

membrane everywhere [40,41]. Previously, budding of a tubu-
lar membrane with a positive spontaneous curvature has
been reported [38,42–44]. Note that the budding also occurs
slightly below this threshold under thermal fluctuations [38].
Buckling of the tube is induced by a large excess membrane
area when the tube is compressed (negative surface tension)
[45,46]. In our simulation condition, an unexcited membrane
has u � 0.2 (see Fig. 1). For example, the cylindrical tube is
unstable at C0Rt � 3 for κ1/κ0 = 2.

III. RESULTS AND DISCUSSIONS

A. Propagating waves with mechanochemical coupling

We investigated the propagating waves on tubular mem-
branes for Rt = 9.79a and 19.6a (narrow tubes and wide
tubes, respectively). Before examining the deformable tubes,
we evaluated the effects of constant positive or negative in-
puts on waves on a nondeformable narrow membrane tube.
Instead of −G∂ fcv/∂u, we added a constant input I to Eq. (7)
over the entire membrane-tube region. Figures 3(a)–3(c) show
typical snapshots of the propagating waves for I = 0.002,
0, and −0.002, respectively. Among them, the width and
speed of the waves were largest for I = 0.002 and smallest
for I = −0.002. The wave is generated once but shrinks and

FIG. 4. Effect of constant inputs I on the wave properties with
nondeformable membranes. In the gray shaded area, propagating
waves disappear.

disappears without propagating for I = −0.01 [see Fig. 3(d)].
Figure 4 shows the changes in wave width, wwave, and speed,
swave. Both wave speed and width decrease with decreasing I ,
and the waves disappear when I is smaller than the threshold.

First, we investigated the effects of mechanochemical cou-
pling on propagating waves in deformable tubular membranes
with a small radius (Rt = 9.79a). A straight wave propagates
at a small spontaneous curvature C0, similar to nondeformable
tubes, as the coupling effect is weak [see Fig. 5(a) and
Supplemental Movie S1 [47]]. However, undulations of the
membrane shape and wave front are observed at an interme-
diate C0 [see Fig. 5(b) and Supplemental Movie S2 [47]].
At C0Rt = 3 and κ1/κ0 = 3, the tube is deformed into a me-
andering form, as shown in the first snapshot of Fig. 5(b),
owing to the instability of cylindrical shapes. When a wave
is stimulated in this meandering tube, the wave propagates
on the tube. Owing to the tube deformation, the shape of
the protein wave is deformed, which could also affect the
membrane shape. In addition, the waves are unstable and
eventually disappear at large C0 (see Fig. 6 and Supplemental
Movie S3 [47] for C0Rt = 4 and κ1/κ0 = 4). These results
indicate that the interaction between membrane deformation
and propagating waves changes the stability of the membrane
shapes and protein waves.

Figure 7 shows the movement of the center of mass of
the waves (gwave,x) along the tube (x) axis. The wave moves
almost linearly for small spontaneous-curvature conditions
(purple and green lines in Fig. 7); however, the wave is weakly
wobbled by the membrane deformation. The inputs from the
mechanochemical effect on the reaction of u for H = 1/2Rt

are −G∂ fcv/∂u = 0.0002 and −0.0023 for the purple and
green lines in Fig. 7, respectively. These results indicate that
the waves move at an approximate constant speed even on
deformable tubes. The wave speed decreases with decreasing
mechanochemical inputs −G∂ fcv/∂u, as in the case of nonde-
formable tubes (Fig. 4).

At large C0 and κ1/κ0 values, gwave,x moves slightly but
the wave disappears (Fig. 6). However, at C0Rt = 4 and
κ1/κ0 = 4, the mechanochemical input −G∂ fcv/∂u|H=1/2Rt =
−0.0073, which is still in the range of the stable wave for the
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FIG. 5. Typical sequential snapshots of propagating waves on
deformable tubular membranes with a small radius (Rt = 9.79a) and
small spontaneous curvatures C0. (a) C0Rt = 1 and κ1/κ0 = 2. (b)
C0Rt = 3 and κ1/κ0 = 3. The color variation indicates different con-
centration of the curvature-inducing protein, u. The corresponding
movies are provided in Supplemental Movies S1 and S2 [47].

nondeformable tubular membranes (see Fig. 4). Therefore, the
disappearance of the wave is partly caused by the reduction in
diffusion through the narrow neck.

FIG. 6. Typical sequential snapshots of propagating waves on
deformable tubular membranes with the small radius (Rt = 9.79a)
with large spontaneous curvatures C0. C0Rt = 4 and κ1/κ0 = 4. The
corresponding movie is provided in Supplemental Movie S3 [47].

The wave width also decreases with decreasing
mechanochemical input −G∂ fcv/∂u (Fig. 8). Figure 8(a)
shows the time evolution of the wave width at C0Rt = 3
for κ1/κ0 = 1, 2, and 6 (−G∂ fcv/∂u = −0.0006, −0.0015,
and −0.0048 at H = 1/2Rt , respectively). Straight waves
propagate at κ1/κ0 = 1 and 2. The wave widths are also
approximately the same everywhere and maintain a constant
value in time. Similar changes were observed at κ1/κ0 = 6
for C0Rt = 1, 2, and 3 (−G∂ fcv/∂u = 0.0002, −0.001, and
−0.0048 at H = 1/2Rt , respectively) [Fig. 8(b)].

Mechanochemical effects were also observed for the wide
tubes (Figs. 9 and 10). At C0Rt = 4 and κ1/κ0 = 4, the wave
front is undulated with a small azimuthal deformation of

FIG. 7. Time evolution of x coordinate of the center of mass of
the wave (gwave,x), on deformable tubular membranes with the small
radius (Rt = 9.79a). The simulation condition is the same as that of
Figs. 5 and 6.
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FIG. 8. Time evolution of the wave width on deformable tubular
membranes with a small radius (Rt = 9.79a). (a) κ1/κ0 varied at
C0Rt = 3. (b) C0Rt varied at κ1/κ0 = 6.

the membrane. In contrast, the other tube regions maintain
a straight shape (see Fig. 9 and Supplemental Movie S4
[47]). The wave front undulation also occurs even for small
C0 and large κ1/κ0 (see Supplemental Movie S5 [47]). The
detection and evaluation methods of the wave front undu-
lation are described in the Appendix A. A large membrane
deformation is induced when the value of C0 is large, and
the wave locally disappears and breaks due to the winding
membrane shape (Fig. 10, t/τ = 1500–2000; see also Supple-
mental Movie S6 [47]). Once the wave breaks, the shapes of
the wave and membrane become largely disordered (Fig. 10,
t/τ = 3000–8000).

Figure 11 shows the movements of the x coordinate of
the vertices in the wave (rwave,x) on a deformable wide tube
(Rt = 19.6a) at C0Rt = 8 and κ1/κ0 = 8. The wave breaks and
splits into two or three pieces (Fig. 11, t/τ = 3500–7000).
Even though the shapes of the waves and membranes are dis-
ordered, the waves move almost linearly along the membrane
tube after division.

Based on these results, we classified the waves into three
phases, straight, undulated, and unstable, as shown in Fig. 12.
The shapes of the tubes and waves remain straight in the
straight wave phase, similar to the case of nondeformable
tubes [see Figs. 3 and 5(a)]. This phase is observed when the
effect of the mechanochemical coupling is weak. In the unsta-
ble wave phase at large C0, the waves disappear and break. At
large κ1/κ0, the wave phase appears at smaller values of C0,
since the mechanochemical coupling is strong. Large mem-
brane deformations, such as the formation of narrow necks,

FIG. 9. Typical sequential snapshots of propagating waves on
deformable wide tubes (Rt = 19.6a) at C0Rt = 4 and κ1/κ0 = 4. The
color variation indicates different concentration of the curvature-
inducing protein, u. The corresponding movie is provided in
Supplemental Movie S4 [47].

are also induced due to large values of C0 (see Fig. 6). The
wave’s shape is disordered when the wave breaks. When the
disordered wave does not disappear, the tube’s shape is largely
deformed due to the disordered wave (see Fig. 10). In the
intermediate condition, tube shape and/or the wave front is
undulated but the wave propagates. We call it undulated wave
phase. The membrane shape and wave front are undulated and
unstable, depending on the spontaneous curvature, bending
rigidity, and tube radius. At C0 = 0, a cylindrical tube is stable
at any value of κ1/κ0 in thermal equilibrium. However, the
wave deforms the tube in azimuthal direction at large κ1/κ0,
as explained in Sec. III B.

B. Analysis of undulated waves

For further investigation, we focused on the undulated
wave phase (green triangles in Fig. 12). Figure 13 shows
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FIG. 10. Typical sequential snapshots of propagating waves on
deformable wide tubes (Rt = 19.6a) at C0Rt = 8 and κ1/κ0 = 8. The
color variation indicates different concentration of the curvature-
inducing protein, u. The corresponding movie is provided in
Supplemental Movie S6 [47].

FIG. 11. Time evolution of the x coordinate of vertices in the
wave (rwave,x) on a deformable wide tube (Rt = 19.6a) at C0Rt = 8
and κ1/κ0 = 8. The simulation condition is the same as that of
Fig. 10.

0
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(b) Rt = 19.6a
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straight

undulated

unstable

FIG. 12. Pattern diagrams with deformable tubular membranes
for Rt = 9.79a and 19.6a (narrow tube and wide tube, respectively).
The symbols represent the simulation results. Overlapped symbols
indicate the coexistence of multiple patterns. The dashed lines are
given by Eq. (12) with u = 0.2.

typical snapshots of the undulated waves and their cross-
section views. For a wide tube (Rt = 19.6a), at C0Rt = 4 and
κ1/κ0 = 4, the global shape of the tube is not undulated, but
the wave front is winding [Fig. 13(a)]. The front and rear
edges of the wave elongate perpendicularly (major axes of
their elliptical shapes at the cross sections are perpendicular).
Curvature-inducing proteins exist in two separate regions in
the cross-sectional view at the edges of the wave owing to
this wave front shape, which induce azimuthal deformation
in the membrane shape. In the azimuthal spatial distribu-
tion, the dominant azimuthal wave number is two. At large
κ1/κ0 and C0 = 0, a winding wave front appears [e.g., at
C0Rt = 0 and κ1/κ0 = 32; see Fig. 13(b) and Supplemen-
tal Movie S5 [47]]. In contrast, for a narrow tube (Rt =
9.79a), such winding wave fronts with the locally elliptic
tube shape are not observed. At C0Rt = 0 and κ1/κ0 = 12,
the wave front is winding [Fig. 13(c)]. In this condition, the
dominant azimuthal wave number of protein distribution is
one.

We focused on the wave front of the propagating wave
and performed a discrete Fourier transformation (DFT) on
the cross sections at the wave front to quantify the azimuthal
deformation (Rt = 19.6a, C0Rt = 4, and κ1/κ0 = 4). Auq and
AHq indicate the qth amplitudes of DFT for the concentra-
tion of the curvature-inducing protein u and smoothed local
membrane curvature H̃ in an azimuthal direction, respectively.

024403-7



NAOKI TAMEMOTO AND HIROSHI NOGUCHI PHYSICAL REVIEW E 106, 024403 (2022)

FIG. 13. Typical snapshots of undulated waves and cross-
section views of the waves at front and rear edges. (a) C0R = 4,
κ1/κ0 = 4, and Rt = 19.6a (wide tube). (b) C0Rt = 0 and κ1/κ0 =
32, and Rt = 19.6a (wide tube). (c) C0Rt = 0 and κ1/κ0 = 12, and
Rt = 9.8a (narrow tube). The color variation indicates different con-
centration of the curvature-inducing proteins, u.

The magnitude of undulation of the wave front is quantified
by the value 〈dRMSD〉, which is the average of root mean
squared deviations between the wave front and local geodesic
lines, described in the Appendix A. Figure 14 shows that the
undulation of the wave front increases and the q = 2 modes
of u and H̃ dominantly grow together.

It is considered that the azimuthal wave number is de-
termined by a combination of the spatial structures of the
reaction-diffusion waves and tubular membrane deformation
through mechanochemical coupling. For the wide tube, the
circumference is long enough to form the winding wave
front with azimuthal wave number q = 2. The tubes de-
form into the locally elliptic shape. For the narrow tube, the
winding wave front with azimuthal wave number q = 1 is
formed.

FIG. 14. Time evolution of the magnitude of undulation of wave
fronts, 〈dRMSD〉 for C0Rt = 4, κ1/κ0 = 4, and Rt = 19.6a (wide tube),
with qth amplitudes of DFT for (a) u and (b) H̃ in an azimuthal
direction, Auq and AHq , respectively (q = 1 and 2). The simulation
condition is the same as that of Figs. 9 and 13(a).

IV. CONCLUSIONS

In this study, we have studied the coupled dynam-
ics between the deformation of tubular membranes and
excitable reaction-diffusion waves of curvature-inducing pro-
teins. Three dynamic modes appear depending on sponta-
neous curvature, bending rigidity, and tube radius: the straight
wave phase with small membrane deformation, undulated
wave phase, and unstable wave phase. Membrane deformation
changes the protein-binding rate and diffusion along the tube
axis, and they modify the wave shape. The waves disappear at
narrow membrane necks in the unstable phase.

The waves with azimuthal wave number q = 2 (twofold
rotationally symmetric) grow with the undulation of the wave
front for the wide tubes, in which the membrane locally de-
forms in an elliptic shape and the front and rear edges of the
wave elongate perpendicularly. Three (or more) -fold sym-
metric waves may propagate for much wider tubes. Although
axisymmetric assumption has often been used for membrane
simulations, full three-dimensional simulations are needed to
investigate nonaxisymmetric waves, as demonstrated in this
study.

The shape of organelles is dynamically regulated in living
cells. For example, the stack structure of the Golgi apparatus
is formed by the cis side and deconstructed from the opposite
side [48,49]. In this dynamic equilibrium state, curved mem-
brane structures such as the cisternae and tubular networks
are regulated by various proteins at different maturation stages
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[50]. Pearled tubular membranes are formed as transport inter-
mediates for cargo delivery from ER to Golgi. The formation
of these structures is associated with COPI and COPII [51,52].
In addition, the COPI travels during the cargo delivery [51].
Reaction-diffusion waves may play a role in these structural
changes. Further, endocytosis in hotspots (emerging from the
same position) is enhanced in the presence of propagating
waves of curvature-inducing proteins [53]. The propagation
of membrane undulations of a certain wave number with
protein propagation waves might be related to the mech-
anism of this spatial pattern generation. We employed the
FitzHugh-Nagumo model to generate an excitable chemical
wave. However, our simulation method can be applied to
other chemical reaction models and used to investigate various
biomembrane phenomena.

This study considered the proteins that induce laterally
isotropic spontaneous curvatures. BAR superfamily proteins
and other proteins have laterally anisotropic shapes (often
modeled as an elliptic shape) and bend the bound membrane
anisotropically [3,5]; they exhibit different behaviors from
isotropic proteins. The BAR proteins induce membrane tubu-
lation [3,5,54–56], whereas the isotropic proteins induce the
formation of spherical buds [36,57–59]. The maximum bind-
ing (sensing) curvature of anisotropic proteins depends on the
binding chemical potential, whereas that of isotropic proteins
is constant [37,60]. Chemical waves involving BAR proteins
have been observed [11,19,53], but the effects of anisotropy
in the waves are not understood so far. It is essential to further
studies how such differences in curvature-inducing proteins
change coupling with reaction-diffusion dynamics.
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APPENDIX: ALGORITHM TO EVALUATE THE WAVE
FRONT UNDULATION

First, we determine that a spatial wave exists if umax � 0.55
and umax − umin > 0.4, where umax and umin are the maximum
and minimum values of u, respectively. Vertices for u � 0.55
are classified to the wave region when the wave exists and
the other vertices to the nonwave region. When vertices in
the wave and nonwave regions are adjacent to each other,
the internally dividing point, in which u = 0.55 on the bond
between the vertices, is considered a wave edge. The wave
front is determined by the condition on v at the edge, v <

vmin + 0.4(vmax − vmin), where vmax and vmin are the maxi-
mum and minimum values of v, respectively, because, when
the reaction-diffusion wave propagates, the oscillation phase
of v should shift from that of u toward the reverse direction of
wave propagation.

Let Vwf be a vertex on the wave front [black point in
Fig. 15(a)]. Since Vwf is on a bond of the original triangular
network graph, it faces two triangles and is adjacent to the two
other vertices of the wave edge. Let Lwf be a line connecting
those two vertices. We roughly estimate the direction of the
line tangent to the wave front at Vwf as the direction of Lwf .

FIG. 15. Calculation of local geodesic lines and 〈dRMSD〉 for
a narrow tube (Rt = 9.79a, C0Rt = 2, and κ1/κ0 = 6). (a) Lines
and points obtained in the calculation process of the local
geodesic line. (b) Snapshots of waves and local geodesic lines at
t/τ = 2000 and t/τ = 3000. The color in snapshots indicates the
concentration of curvature-inducing proteins, u. (c) Time develop-
ment of 〈dRMSD〉.

Next, we calculate the cutting line of the tube along the x axis
through Vwf using a greedy algorithm to advance in the x-axis
direction with a lookahead search with a depth of ten on a
discrete graph [black dotted line (Lcl0) in Fig. 15(a)]. Then, we
determine the shortest path from Vwf to V ′

wf (the corresponding
vertex to Vwf duplicated by cutting) on the graph cut by Lcl0.
Thus we obtain a path that starts from Vwf , circles the tube,
and returns to itself [green circle line (Cwf ) in Fig. 15(a)]. As
well as Lcl0, we obtain two cutting lines Lcl1 and Lcl2, which
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are through vertices where Cwf is divided by one-quarter and
three-quarters, respectively [yellow and red dotted lines in
Fig. 15(a)]. Then, we select several vertices on Lcl1 and Lcl2

(Vcl1 and Vcl2) and calculate the approximate shortest path on
the graph from Vcl1 and Vcl2 to Vwf [Lgeo1 and Lgeo2, depicted
by cyan and orange lines in Fig. 15(a)]. The algorithm for
obtaining geodesic lines is an iterative refinement of the dis-
crete graph and Dijkstra’s algorithm, the details of which can
be found in Ref. [61]. We find the best two geodesic lines,
one from Lgeo1 and one from Lgeo2, which are (i) smoothly
connected at Vwf and (ii) nearly parallel to Lwf . These local
geodesic lines are calculated for approximately 20 points on
the wave front, and the root mean squared deviation between
the geodesic line and the wave front (dRMSD) is calculated as
below:

dRMSD =
√

1

Ng

∑
i

|rg,i − rwf,c|2, (A1)

where Ng is the number of vertices of the local geodesic line,
rg,i is a position vector of the ith vertex of the local geodesic
line, and rwf,c is the position vector of the vertex of the wave
front closest to the ith vertex of the local geodesic line. The
average of dRMSD (〈dRMSD〉) is used to evaluate the wave front
undulation at each time step.

Examples of the calculation results are shown in
Figs. 15(b) and 15(c). At t/τ = 2000, the wave front is not
undulated and the local geodesic line is aligned along the wave
front, whereas, at t/τ = 3000, the wave front is undulated and
a local geodesic line deviates slightly from the wave front [see
Fig. 15(b)]. Thus 〈dRMSD〉 has a small value at t/τ � 2000 but
increases around t/τ = 3000 [see Fig. 15(c)]. These results
demonstrate that the undulation of the wave front can be
evaluated using 〈dRMSD〉.
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