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Ordered community detection in directed networks
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We develop a method to infer community structure in directed networks where the groups are ordered in
a latent one-dimensional hierarchy that determines the preferred edge direction. Our nonparametric Bayesian
approach is based on a modification of the stochastic block model (SBM), which can take advantage of rank
alignment and coherence to produce parsimonious descriptions of networks that combine ordered hierarchies
with arbitrary mixing patterns between groups. Since our model also includes directed degree correction, we can
use it to distinguish nonlocal hierarchical structure from local in- and out-degree imbalance—thus, removing a
source of conflation present in most ranking methods. We also demonstrate how we can reliably compare with
the results obtained with the unordered SBM variant to determine whether a hierarchical ordering is statistically
warranted in the first place. We illustrate the application of our method on a wide variety of empirical networks
across several domains.
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I. INTRODUCTION

Interacting entities in a variety of networked systems form
pairwise relationships that are not necessarily symmetric, i.e.,
an interaction from i to j is distinct from one from j to
i. Typical examples are predator-prey relationships in food
webs [1], antagonist animal behavior [2], reported friendships
in social networks [3], and the synaptic connection between
neurons. In many such systems, it is often posited that the
preferred direction of interaction can be ascribed to an unob-
served ordering of the elements involved—placing them on a
strict one-dimensional latent hierarchy that most relationships
tend to respect. Prominent examples of such ordered systems
are species taxa in food webs [4] and dominance hierarchies
in animal societies [2].

However, even when present, directed hierarchies are
rarely the only dimension that determines how interactions
take place. For example, regardless of direction, connections
can occur preferentially between specific types of entities,
resulting in compartmentalization and heterogeneous mixing
patterns that are independent of any underlying ordering.
Furthermore, it is also possible for the directed structure of
a network not to be associated with any latent hierarchy at
all, and to be due instead to entirely different mechanisms.
Although in such situations it may still be possible to order
the nodes in such a way that the majority of interactions end
up respecting a seeming hierarchy, this does not necessarily
mean that this is in fact a plausible explanation for how the
directions were chosen.

In this work we present a method to infer the ordered mod-
ular structure of networks in a manner that simultaneously
captures arbitrary mixing patterns and directed hierarchies.
Our method is based on a modification of the directed ver-
sion of the stochastic block model (SBM) [5,6]—a generative
model that can capture arbitrary preferences between groups
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of nodes. In our modification, the groups themselves are or-
dered, such that the preferred direction of interaction tends
to obey their ranking, while still allowing for the groups
to be connected in arbitrary ways, independent of direction.
One important ingredient of our model is directed degree-
correction [7], which allows nodes that belong to the same
group/rank to possess an arbitrarily varied number of in-
coming and out-going connections. This means that our
method is capable of distinguishing between merely local
asymmetries—that stem solely from a node’s tendency to have
a particular balance of in and out-connections—and actual
hierarchies that affect the structure of the network at a larger
scale.

In our methodology we exploit the formal equivalence
between statistical inference and data compression [6,8,9]. In
this setting, we seek to obtain the model inference with the
optimal balance between quality of fit and model complex-
ity, such that the amount of information required to describe
the network is minimized. This amounts to a nonparametric
Bayesian method that can not only determine in a principled
manner the most appropriate number of ordered groups, but
it also allows us to decide whether a hierarchical structure
is warranted at all in the first place, or if we have more
evidence instead for a model alternative without any particular
ordering between the nodes, but which happens to be more
compressive.

Our approach can be compared to previous work in the
literature in some important ways. There are several methods
that extract relative rankings between the nodes of a network,
based on spectral node centrality [10–13], minimum violation
ranking [14–18], random utility models [19–21], and latent
space models [22–25]. The most central difference between
these methods and the one presented in this work is that
none of them attempt to simultaneously detect community
structure, or include degree-correction. Furthermore, with the
exception of the latent space models, these approaches do not
attempt to model the placement of the edges, only their latent
ordering. Additionally, since they do not attempt to make a
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statement about data generative processes, they cannot articu-
late the notion of statistical significance or parsimony [26].

The works that are perhaps closest to ours are the ap-
proaches from Letizia et al. [27] and Iacovissi et al. [28].
Letizia et al. [27] considered a ranked SBM with uniform
connection probabilities between groups depending only on
whether the edge direction violates or not the hierarchy. Be-
sides being unable to uncover heterogeneous mixing patterns
and lacking degree correction, the approach of Ref. [27] is
not based on a model likelihood, and hence cannot be used
to evaluate statistical evidence. The method of Iacovissi et al.
[28] is based on a different idea, and combines the SBM with
Springrank [24], such that a node can either have a group
membership or a ranking, but not both simultaneously. Their
model not only lacks degree correction, but its inference is
performed in a parametric fashion: the number of groups in
the SBM needs to be set a priori, and cannot be extracted
from the data itself. Furthermore, the inference procedure de-
veloped in Ref. [28] is based on a variational approximation,
whereas our approach is based on MCMC using an exact
likelihood.

This work is organized as follows. In Sec. II we describe
the model and its inference, and in Sec. III we demonstrate
how it can be used to simultaneously uncover connection
preference and ranking. In Sec. IV we investigate the role of
degree-correction in distinguishing local from global order-
ing, and in Sec. V we consider the problem of model selection
between alternatives without latent ordering. We finalize in
Sec. VI with a conclusion.

II. NETWORK COMPRESSION VIA MODULAR
STRUCTURE, RANK COHERENCE, AND ALIGNMENT

We begin by reviewing how the arbitrary mixing pattern
between groups of nodes of a directed network can be mod-
eled by the microcanonical degree-corrected stochastic block
model (DC-SBM) [29]. In this model, the N nodes are di-
vided into B groups, according to a labeled partition b = {bi},
where bi ∈ [0, B − 1] is the group membership of node i. As
an additional set of parameters, we have the group affinity
matrix e = {ers}, where ers is the number of directed edges
that are allowed to exist from group s to r, as well of the
out-/in-degree sequence k = {(kout

i , kin
i )}, where kout

i and kin
i

are the out- and in-degrees of node i, respectively. With these
constraints in place, a directed multigraph A = {Ai j}, where
Ai j is the number of edges from j to i, is generated by placing
kout

i and kin
i “half-edges” on each node i, and then pairing them

uniformly at random while respecting the counts ers between
all groups r and s. A resulting multigraph A is sampled in this
manner with probability [29]

P(A|k, e, b) =
∏

rs ers!
∏

i kout
i !kin

i !∏
i j Ai j!

∏
r eout

r !ein
r !

, (1)

with eout
r = ∑

s esr and ein
r = ∑

s ers, as long as the imposed
constraints are respected, otherwise the probability is zero.1

1It is possible derive our approach in an entirely equivalent man-
ner by replacing Eq. (1) with independent Poisson distributions for

The task of identifying the most plausible division of a
directed network A into groups consists in inverting the above
procedure, and obtaining the posterior distribution

P(b|A) = P(A|b)P(b)

P(A)
, (2)

where P(b) is the prior for the node partition, and P(A|b) is
the marginal likelihood,

P(A|b) =
∑
k,e

P(A|k, e, b)P(k, e|b) (3)

= P(A|k̂, ê, b)P(k̂, ê|b), (4)

where k̂ and ê are the only parameter values compatible with
the network A and partition b. The prior P(k, e, b) is derived
in Ref. [29] and described in Appendix A for completeness.
Finding the partition b that maximizes Eq. (2) is equivalent to
minimizing the description length of the model [9], given by

�(A, b) = − log2 P(A|k̂, ê, b) − log2 P(k̂, ê, b). (5)

The first term in the right-hand side of above equation de-
termines the minimum length of a binary message that is
required to transmit the matrix A, in such a manner that it
can be decoded from the message without errors, provided the
parameter values k̂, ê, and b are already known by the receiver.
Likewise, the second term determines the amount of infor-
mation needed to transmit the model parameters themselves.
Therefore, the resulting value �(A, b) corresponds to the total
length of the shortest message that is required to transmit the
network A to a receiver that has no prior information on its
structure, which must involve sending the parameter values as
well.

Minimizing the description length �(A, b) has the de-
sirable effect of preventing overfitting, which happens for
example when we choose a number of groups B that is too
large, and the inferred modular structure captures spurious
random fluctuations [30]. This is because if a portion of the
network (or its entirety) has been generated by a maximally
random placement of the edges, it becomes asymptotically
impossible to compress it with any algorithm—maximally
random data are inherently incompressible [31]. Therefore,
if splitting a set of nodes into two groups significantly re-
duces the description length, this means that the placement
of the edges involved is very unlikely to have been maximally
random, and hence the division is capturing statistically sig-
nificant structure.

More operationally, the second term in right hand side of
Eq. (5) serves as a penalty to the first term, since it tends to in-
crease together with the model complexity, while the first term
tends to decrease as the larger number of constraints match the
data more closely. The optimal inference is therefore a balance
between these two aspects—model complexity and quality of
fit—and the overall method serves as formal implementation
of Occam’s razor (or the principle of parsimony), which states
that simpler models are preferable to more complex ones,
provided they have the same explanatory power.

each entry Ai j , and marginalizing over their parameters [29], but the
microcanonical formulation is more convenient for our purposes.
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With the posterior of Eq. (2) in place, we can proceed
in two ways, depending on our objective. We can find the
single partition b that maximizes that probability, which also
minimizes the description length. Alternatively, we can sam-
ple partitions from this distribution, and in this way explore
the entire landscape of hypotheses, weighted according to
their plausibility. The latter can also be seen as a minimum
description length (MDL) scheme, with a “one part” de-
scription length given by the full marginal distribution, i.e.,
�(A) = − log2 P(A), with P(A) = ∑

b P(A|b)P(b), and not-
ing that �(A) � �(A, b), i.e., the full marginal description
length is strictly shorter or equal to the one conditioned on
a single partition. Both tasks can be accomplished efficiently
using Markov chain Monte-Carlo (MCMC), as described in
Refs. [32,33].

A. Identifying group orderings

Although the above model is capable of uncovering di-
rected preferences between groups of nodes, including those
where an underlying ordering is present, the ordering itself
is not revealed by the model parameters. This is because the
posterior distribution of Eq. (2)—and therefore also the de-
scription length of Eq. (5)—is invariant to permutations of the
group labels. More specifically, if we consider two partitions
b and c, such that

bi = μ(ci ), (6)

where μ(r) is a bijection of the group labels, then we have

P(b|A) = P(c|A), �(A, b) = �(A, c). (7)

Therefore, the ordering of the groups is entirely immaterial
and cannot be used to attain compression under this model,
and reveal any aspect of the network structure.

Here we modify precisely this property of the model via a
relatively simple, but consequential change. In fact, we keep
the model of Eq. (1) exactly as it is, together with the priors
for k and b, and we change only the prior for the group
affinities, e. First, we introduce the auxiliary parameter mrs,
which counts the total number of edges between groups r and
s (or twice that number if r = s), regardless of edge direction,
i.e.,

mrs =
∑

i j

(Ai j + Aji )δbi,rδb j ,s. (8)

Conditioned on this number, we sample the upstream (ers,
with r > s) and downstream (ers, with r < s) affinities accord-
ing to

P(ers, esr |mrs, p) =
{
δesr ,mrs−ers P(ers|mrs, p) if r < s,
δers,mrs−esr P(esr |mrs, p) if r > s,

(9)
ensuring that ers + esr = mrs, and with the downstream
affinity sampled according to a binomial distribution with
parameter p,

P(ers|mrs, p) =
(

mrs

ers

)
pers (1 − p)mrs−ers . (10)

We call edges that connect nodes of the same group as “lat-
eral,” since they go neither upstream nor downstream. The

lateral affinities are given directly by m,

P(err |mrr ) = δerr ,mrr/2. (11)

Introducing the total number of upstream, downstream, and
lateral edges,

E+ =
∑
r<s

esr, E− =
∑
r<s

ers, E0 =
∑

r

err, (12)

respectively, allows us to write the total conditional probabil-
ity,

P(e|m, p) =
[∏

r<s

(
mrs

ers

)]
pE−

(1 − p)E+
. (13)

The parameter p is considered to be unknown a priori, so we
compute the marginal probability,

P(e|m) =
∫ 1

0
P(e|m, p)P(p) d p (14)

=
[∏

r<s

(
mrs

ers

)](
E+ + E−

E+

)−1

(15)

× 1

E+ + E− + 1
, (16)

where we have used a uniform prior density P(p) = 1. For
the symmetric matrix m, we use a uniform distribution con-
ditioned on the total number of edges E = E+ + E− + E0,
given by

P(m|E , B) =
((((B

2

))
E

))−1

, (17)

where (( n
m )) = (n+m−1

m

)
is the number of m-combinations from

a set of size n, allowing for repetitions. Putting all together,
we have

P(e|E , B) =
[∏

r<s

(
ers + esr

ers

)](
E+ + E−

E+

)−1

× 1

E+ + E− + 1
×

((((B
2

))
E

))−1

. (18)

Since this probability will depend on the overall number of
downstream, upstream, and lateral edges, the resulting de-
scription length will no longer be invariant to arbitrary label
permutations. However, it is still invariant to full rank rever-
sals, i.e., the specific group label bijection μ(r) = B − 1 − r,
which would cause an overall reversal of the upstream and
downstream directions. Therefore, the overall top-down or
down-top orientation of the ordering is not identifiable with
this model—but this is hardly relevant in most contexts, since
we are interested only in relative rankings. Without loss of
generality, for presentation purposes we will adopt the con-
vention that most edges always flow upstream, i.e., E+ � E−,
since a result obtained with the opposite flow can always be
reversed without changing the description length.

This model formulation can exploit latent orderings as
an opportunity for compression, via the contribution to the
description length given by �(e) = − log2 P(e|E , B). There
are two different properties that can make this possible, which
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FIG. 1. Illustration of the properties of rank alignment and coher-
ence. Each panel shows an affinity matrix ers with upstream entries
(r > s) and shown in blue and downstream entries (r < s) shown in
red, and lateral entries (r = s) shown in gray, and area of the square
corresponding to the entry magnitude. High rank alignment means an
overall abundance of upstream edges, whereas high rank coherence
means an overall uniformity of pairwise alignments, �rs = ers − esr .

we describe in turn: rank alignment and rank coherence, as
illustrated in Fig. 1.

The local rank alignment between two groups r and s,
with r > s, is simply by the difference between upstream and
downstream affinities,

�rs = ers − esr . (19)

The overall rank alignment is then simply

� =
∑
r>s

�rs = E+ − E− (20)

The larger the magnitude of the overall alignment �, the
shortest will be the description length. We can see this by
writing the contribution to the description length as

�(e) = −
∑
r>s

log2

(
mrs

mrs+�rs
2

)
+ log2

(
E − E0

E−E0+�
2

)

+ log2(E − E0 + 1) + log2

((((B
2

))
E

))
, (21)

where we use the shorthand mrs = ers + esr . The maximal
rank alignment, � = E − E0, achieved with �rs = mrs, will
result in the smallest possible description length contribution,

�(e) = log2

((((B
2

))
E

))
+ log2(E − E0 + 1), (22)

for fixed values of B, E , and E0.
Rank coherence, however, is the uniformity of the values of

�rs across all pairs (r, s). Maximal rank coherence is when all
pairwise rank alignments coincide with the overall alignment,

FIG. 2. Description length contribution �(e), as a function of
the rank alignment �/(E+ + E−), considering both maximal (solid
lines) and minimal (dashed lines) rank coherence, for different frac-
tions of lateral edges (as indicated by the legend), and a value of
E = 5 × 106 and B = 100. The solid horizontal line marks the value
log2(( B2

E )) given by Eq. (25), and the shaded region below it corre-
sponds to a relative compression of the ordered parametrization.

i.e.,

�rs = �

E − E0
× mrs, ∀ r > s. (23)

This results in the first term of right hand side of Eq. (21)
given by

−
∑
r<s

log2

(
mrs

�+E−E0

2(E−E0 ) mrs

)
. (24)

This is the smallest value this term can take, for fixed � and
m values. Conversely, minimal rank coherence is when the
values of �rs are distributed only between their maximum and
minimum values for different (r, s), i.e., �rs ∈ {mrs,−mrs}.
In this case, the first term will vanish completely from the
right hand side of Eq. (21), yielding in a strictly larger de-
scription length contribution, if the overall rank alignment �

stays the same. Therefore, rank coherence will always provide
improved compression for fixed � and m values.

From the above, we can conclude that when rank align-
ment is maximal, rank coherence must also be maximal, and
therefore it amounts for the largest compression possible un-
der this scheme. For intermediary alignment, a range of rank
coherence is allowed, with a larger coherence providing better
compression.

To understand better the compression that is achievable
with group ordering, it is useful to compare the above prior
with the original uniform choice of the DC-SBM, where the
asymmetric matrix e is sampled directly from a uniform dis-
tribution,

P′(e|E , B) =
((

B2

E

))−1

. (25)

With this original choice we recover group label invariance,
and hence cannot profit from any compressibility associated
with latent group orderings. In Fig. 2 we compare Eq. (21)
with Eq. (25), as a function of rank alignment, both for
maximum and minimum rank coherence. As we can see,
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maximal rank coherence can achieve better compression than
the uniform distribution independent of the rank alignment
magnitude. This means that even when the rank alignment is
zero, with ers = esr for every group pair (r, s), we nevertheless
have a more parsimonious explanation of the data using this
model. [This is understandable, since for the matrix e is sym-
metric in this situation, which is a kind of structure that cannot
be exploited by the model Eq. (25) to achieve compression.]

However, if the rank coherence is sufficiently decreased,
then the ordered model no longer offers improved compres-
sion over the uniform distribution of Eq. (25). In this situation,
the rank violations become so heterogeneous, that it becomes
no longer parsimonious to describe the group affinities via a
group ordering, even if a majority of edges go in the same
direction—we are better off simply abandoning the ordering
altogether, and describing the matrix e according to arbitrary
group labels.

With this modification of the model, we can perform in-
ference using MCMC in the same way as with the original
model, using only a different posterior distribution. However,
there are some special considerations that can improve the
mixing time when group orderings are relevant, which we
describe in Appendix B.

B. Nested SBM

The uniform prior for the matrix m of Eq. (17) encodes the
assumption that all matrices are equally likely a priori, and
therefore that the preferences between groups are expected to
be unstructured. Not only is this an unrealistic assumption,
but it has also been shown that it leads to a “resolution limit,”
where the maximum number of groups that can be inferred
scales as O(

√
N ) for sparse networks [34]. An effective solu-

tion for this problem has been proposed in Ref. [35], where
the uniform prior is replaced by a multigraph SBM, where the
nodes are groups and the edge counts m are the edge multiplic-
ities. The groups and edge counts of this additional SBM are
again modelled as another SBM, forming a nested hierarchy
of SBMs. Since the matrix m is symmetric, we can replace
Eq. (17) by the undirected prior derived in Ref. [29], which
we omit here for brevity—the reader can refer to Refs. [29,35]
for a comprehensive description of this modeling approach.

With this modification we can uncover ordered community
structures without such a resolution limit, which is what we
will employ in the rest of this work.

We emphasize that the hierarchical structure present in the
nested SBM is of an entirely different nature than the ordered
hierarchies we have been considering. In the nested model, the
hierarchy exists in the model structure itself, i.e., the fact that
we have a sequence of priors and hyperpriors, not necessarily
in the actual networks that it generates.

III. PREFERENCE AND RANKING

We demonstrate how our model can simultaneously
accommodate preference of connections and ranking, by
studying the food web of Little Rock lake [36]. In this network
the nodes are taxa, where each taxon is either an individual
species, a species subset with distinct set of predators and
preys (e.g., different stages of development of individuals

of the same species), or an aggregate of similar species. In
our representation, a directed edge i → j exists if taxon i is
eaten by taxon j. In Fig. 3(a) we can see the result of our
method applied to this network of N = 183 nodes. We can
identify B = 22 ordered taxonomic groups. The vast majority
of edges go upstream, revealing a substantial degree of trophic
ordering—although the network is far from being acyclic, and
we can observe trophic rank violations, cannibalism (self-
loops), and lateral predation within the same trophic group.
Overall, the ordering uncovered matches the trophic structure
that is well understood for food webs of this type: The basal
taxon at the bottom of the hierarchy is an aggregate of mi-
croorganisms labeled only “fine organic matter,” which are
consumed by a large number of algae species. Intermediary
taxa include insects, crustaceans, and fish, whereas taxa at
the top of the hierarchy correspond to decomposers. However,
besides the trophic ordering, we can also identify clear preda-
tion preferences that are not associated directly with rank. For
example, taxonomic group 7 is predated by group 8, but not at
all by group 9, which prefers instead to predate groups 5 and
1, predominantly.

Our methodology allows for a more detailed assessment
of the group ordering by inspecting the entire posterior dis-
tribution of Eq. (2), instead of the single best partition. For
example, we can obtain the marginal rank distribution of node
i given by

πi(r) =
∑

b

δbi,rP(b|A), (26)

The above mean over all possible partitions b sampled from
the posterior distribution can obtained directly from our
MCMC sampling algorithm. (Note that the lack of invariance
to label permutation renders moot issues that complicate the
computation of such marginal probabilities in the case of the
unordered SBM [37].) The above computation allows for a
continuous ranking of the nodes, via the mean

b̄i =
∑

r

rπi(r), (27)

and a decoupling of rank and group, in the sense that nodes
that always belong to different groups can in principle have
the same marginal rank distribution. This will happen when
the clustering is due predominantly to preference, and not a
particular position in the hierarchy.

In Fig. 3(b) we show the marginal rank distribution for the
individual taxa, allowing us to identify a fair amount of rank
uncertainty at intermediary levels.

IV. DEGREE CORRECTION: LOCAL VERSUS GLOBAL
ORDERING

We move now to the role of degree correction in our
modeling approach. Typical techniques for ordering nodes in
a one-dimensional hierarchy attempt, in one way or another,
to minimize the rank violations produced by edges that flow
in the direction opposite to the rank relationship. As a result,
methods of this kind have the tendency to produce order-
ings that are positively correlated with the difference between
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FIG. 3. Inferred ordered group structure of the food web of Little Rock lake. Panel (a) shows the identified groups for each taxon, with the
rank labels shown on the nodes. The edge colors indicate the direction: upstream (blue), downstream (red), and lateral (gray). Panel (b) shows
the marginal posterior distribution of rank positions πi(r) (semitransparent green symbols, with opacity indicating probability) and mean value
b̄i (solid black symbols), for each species.

out-degree and in-degree of each node,

di = kout
i − kin

i . (28)

In other words, a node with high out-degree but low in-degree
will tend to occupy a low position in hierarchy, whereas a node
with low out-degree but high in-degree will tend to occupy a
position at the top.

However, we can easily imagine a situation where an arbi-
trary out-/in-degree sequence leads to an inherent ordering
given by di, but the edges of the network are placed oth-
erwise completely at random. In this scenario, this ordering
only conveys information about the degree sequence itself,
not any additional propensity of placing edges in a manner
that respects the ranking of the nodes. Methods that cannot
make this distinction will conflate out-/in-degree imbalance
with a position in the hierarchy that goes beyond this local
property.

Our model allows us to make the distinction between out-
/in-degree imbalance and a more meaningful latent hierarchy
because it accepts the out-/in-degree sequence k as a set of
parameters that are independent from the group affinities e. In
this way, it will put nodes in different hierarchical levels only
if there is sufficient evidence to justify a preference that goes
beyond degree imbalance.

We illustrate this with a simple artificial network model,
where all nodes have the same total degree kout

i + kin
i = k,

but the imbalance is given by an out-degree sampled from a
binomial distribution with mean (N − i)/(N − 1), i.e.,

P
(
kout

i , kin
i

∣∣k) = δkin
i ,k−kout

(
k

kout
i

)( N − i

N − 1

)kout
i

(
i − 1

N − 1

)k−kout
i

.

(29)

Conditioned on a degree sequence sampled in this manner
as a hard constraint,2 we then generate a pairing between
the corresponding half-edges uniformly at random, and then
obtain a final multigraph A.

When applied to a network sampled from this model, our
approach assigns all nodes to a single group—meaning that
it (correctly) does not identify any preference of connections
that go beyond the degree sequence. As a comparison, we
show in Fig. 4(a) the result obtained with the SpringRank
method [24] on the same example. Since this method does
not include degree-correction, it also reveals only the degree
imbalance. As a means of circumventing the identification
of spurious hierarchies of this kind, the authors of Ref. [24]
have suggested a null model test, using the rank score pro-
vided by the method itself is a test statistic. Unfortunately,
this approach is overly sensitive to minor deviations from
the null model, as we demonstrate in the following. After
generating a network from the above model, we modify the
sampled network by adding a small number of random up-
stream edges involving only the first 5% of the nodes (i.e.,
nodes with index 1 to N/20). The result, as we can see in
Fig. 4(c), is that the statistical test (correctly) rejects the
null model, while the inferred rankings still predominantly
reveal only the degree imbalance for the majority of the nodes
[Fig. 4(b)]. This is very much the same problem we encounter
when using null model rejection to prevent the detection of
spurious communities when doing community detection [26]:
the statistical significance of a global quality score tells us

2Sampling out-/in-degrees from Eq. (29) may result in values for
which the total sum of in- and out-degrees are not identical, which
makes a half-edge pairing impossible. If this happens, then we re-
sample values for a node chosen uniformly at random, repeatedly,
until a feasible degree sequence is obtained.
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FIG. 4. (a) SpringRank values for a network sampled uniformly
at random with imposed in/out-degrees themselves sampled from
Eq. (29), with k = 50 and N = 1000. (b) Same as panel (a) but with
500 additional upstream edges added uniformly at random between
nodes with index in the range [1, N/20] (shown in red). (c) Distri-
bution of SpringRank score values for networks sampled uniformly
at random with imposed degree sequence identical to panel (a). The
solid vertical line marks the value obtained for the network consid-
ered in panel (b). (d) Marginal rank b̄i obtained with the DC-OSBM
for the same network as in panel (b).

very little about the statistical significance of the actual latent
variables uncovered—the questions “is the value of the quality
score significant?” and “are the inferred latent variables sig-
nificant?” are not equivalent, and the answer to the first serves
as a very poor proxy to the second. Ultimately, the rejection
of a null model tells us what kind of structure a network
does not have, but cannot tell us what structure it does have.
Because of this problem, with a method such as SpringRank,
it is not in general possible in uncontrolled empirical settings
to fully distinguish between degree imbalance and statistically
significant nonlocal hierarchies.

Since our approach is based on the inference of a flex-
ible generative model, rather than the rejection of a null
model, we are able to deal with the above situation in a more
satisfying manner. In Fig. 4(d) we show the inferred rank-
ings of same modified network considered above, according
to the degree-corrected ordered SBM (DC-OSBM). Due to
degree-correction, the method puts all unperturbed nodes into
a single hierarchical level—despite their varied out-/in-degree
imbalance—and the perturbed nodes into lower levels, reflect-
ing the upstream edges that were added between them. The
interpretation becomes more straightforward: the structure of
the first N/20 nodes cannot be explained solely by the out-/in-
degree imbalance, and the model reveals instead a nonlocal
ordering.

Degree correction is a property that is optional in our
approach. It can be “turned off” by choosing an alternative
prior for the degree sequence, P(k|e, b) [29]. Therefore, in
situations where degree imbalance is expressively desired as a

FIG. 5. Comparison of Kendall’s rank correlation coefficient τ

between the degree imbalance di and rank bi for each network in
our dataset, for both the degree-corrected and non-degree-corrected
version of our model. The sloped dashed line shows the diagonal
where the two values are the same.

ranking criterion, our method can still be used. However, even
with degree-correction, it is still possible to use the degree im-
balance to “locally” order nodes that otherwise belong to the
same rank, simply by using a lexicographical partial ordering,
i.e., (bi, di ) � (b j, d j ) if bi < b j or bi = b j and di � d j . More
importantly, our approach allows for model selection: Given
the same network A, we can decide if the degree-corrected
model variant is more compressive or not, by computing its
description length, and therefore if there is more statistical
evidence justifying its description of the data.

In Fig. 5 we show a comparison between the degree-
corrected and non-degree-corrected version of our model for
251 empirical directed networks of different domains (see
Appendix C for descriptions). We compute Kendall’s rank
correlation coefficient τ between the degree imbalance di

and the ranking obtained for each model, for each network
in our dataset. The typical case is that the correlation with
degree imbalance decreases when degree-correction is used,
often substantially, indicating that in those cases the degree
sequence is a major contribution to the inferred hierarchy
obtained without degree-correction, and there is otherwise
no significant support for it. There are also situations when
the same correlation values—sometimes also high—are ob-
served for both model variants. This indicates that although
the degree sequence itself ends up being informative of the
latent hierarchy, this turns out also to be corroborated by an
additional alignment with the group ordering that goes signif-
icantly beyond the degree imbalance. We can also observe a
minority of situations where the correlation increases when
degree-correction is employed, but these are mostly due to
artifacts caused by the number of hierarchical levels changing
significantly from one model to the other.
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V. MODEL SELECTION: IS THERE A HIERARCHY?

Given an arbitrary directed network, it is often possible to
order its nodes in such a way that the majority of edges ends
up following a preferred direction according to that ordering.
However, by itself, finding such an ordering is not evidence
that it in fact had any role in the formation of the network—
in the same manner that finding assortative communities in
maximally random networks [30] is not informative of its
generative process [26].

A tempting approach to evaluate the statistical significance
of a node ordering is to compare it with what can be obtained
with a null model, e.g., a network with the same out-/in-
degree sequence, but otherwise sampled uniformly at random.
This is more easily done via a proxy scalar statistic, such as the
total number of rank violations. But as we have already seen in
the previous section, this approach, although straightforward,
can be quite misleading, since the significance of such global
quantities can be very poorly informative of the significance
of the actual rankings observed. As seen in Fig. 4 we can
obtain overall “significant” results by manipulating only a
small minority of the edges of the network. It is important to
emphasize that this is not simply a technical problem that can
be circumvented by tweaking the test statistic; instead it is a
fundamental limitation of null model testing, which is only
capable of answering the following question with “yes” or
“no”: can the null model be rejected with some confidence?
A “no” answer does not give any information about how the
null model is likely to be true, and a “yes” answer can tell us
nothing more than how the network was not generated—no
further details of its generative process can be inferred from
this test, including any ranking of its nodes.

A more robust alternative to the rejection of null models
is model selection: we articulate a variety of generative mod-
els as alternative hypotheses, and check which one is more
supported by the data. For the particular problem at hand,
we can compare alternative versions of the SBM, containing
any combination of degree-correction and latent ordering, in
how well they can describe the data. Given the same network
A and two model choices H1 and H2, and their uncovered
partitions b(1) and b(2), respectively, this comparison is done
via the posterior odds ratio,

� = P(H1, b(1)|A)

P(H2, b(2)|A)
= P(b(1), A|H1)P(H1)

P(b(2), A|H2)P(H2)
(30)

= P(H1)

P(H2)
2�H2 (A,b(2) )−�H1 (A,b(1) ), (31)

with �Hi (A, b(i) ) = − log2 P(b(i), A|Hi ) being the description
length of the data according to model Hi and its partition b(i).
Therefore, if we are a priori agnostic with P(H1) = P(H2),
then we should a posteriori select the model with the shortest
description length, and the difference between them will give
us the confidence in our selection.

As a case study of the application of the above method-
ology, we turn to networks of antagonistic behavior between
animals [2]. A directed antagonistic relationship between two
animals j → i means that individual j prevails after an ag-
gressive encounter with individual i. The overall dominance
of j over i is recorded in the multigraph adjacency matrix Ai j

as the number of times this particular outcome was observed.
Such antagonistic relationships are assumed to reveal a dom-
inance hierarchy in animal societies, the position in which is
believed to influence an individual’s access to resources, its
chance of survival and reproduction [2].

In Fig. 6 we show the results of some model variants
for antagonistic networks of yellow baboons, female bighorn
sheep, and ant workers. We consider the non-degree-corrected
ordered SBM (OSBM), the degree-corrected ordered SBM
(DC-OSBM), and the degree-corrected unordered SBM (DC-
SBM). In all cases, the degree-corrected variants yield a
shorter description length, indicating that out-/in-degree vari-
ability can be largely decoupled from mesoscale mixing
patterns. Between the ordered models, the degree-corrected
variant yields a smaller number of groups, with a clearer hier-
archical structure. However, when compared to the unordered
model, the results are mixed. For the yellow baboons, the
unordered model yields a significantly improved compression,
meaning that heterogeneity of preference and direction of
interactions is not optimally captured by the ordered model.
This indicates that, although clear asymmetries of outcomes
do exist, they cannot be convincingly ascribed to a one-
dimensional ordering, even if it simultaneously accounts for
group-level preferences. The model variant that discards the
inherent ordering can in this case find a more parsimonious
description of this network, even though it finds a partition
that largely (but not completely) agrees with the ordered
model. The results for female bighorn sheep are similar, but
far less conclusive: the difference between the description
length values from the DC-OSBM and DC-SBM is quite
small, yielding only an insignificant posterior odds ratio of
� ≈ 8.6 in favor of the unordered model. In such a situa-
tion we cannot reliably evaluate if the lack of evidence for
hierarchy is significant, specially since the partitions yielded
by both models differ substantially, and therefore we must
conclude that both models offer competing but approximately
equally plausible accounts of the data. Finally, the results for
the ant worker interactions point in the other direction, and
indicate that the ordered model offers a more parsimonious
description—indeed in this case the network is completely
acyclic, and the inferred model contains only upstream edges.

As the examples above show, the most compressive net-
work representations do not necessarily incorporate rankings
between the nodes, although in all cases we can find such an
ordering that initially may seem plausible. In Fig. 7 we show
a more comprehensive comparison between the ordered and
unordered SBMs for a wider set of 251 empirical networks,
from diverse domains, listed in Appendix C. For this dataset
we find that in fact the DC-OSBM happens to be the most
compressive model for a majority of them, with the DC-SBM
in the second place. Therefore, it does seem to be the case
that node ordering provides opportunities for compression
for many of the networks considered, although the several
exceptions mean that ultimately this needs to be evaluated in
a case-by-case basis. It is worth observing that even when the
ordered model is selected, as we discussed previously, this
does not necessarily mean that the rank alignment is large;
this could simply be due to an overall rank coherence. Indeed,
as we can see in the right inset of Fig. 7, the rank alignment
distribution is bimodal, with an abundance of networks with
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FIG. 6. Inferred dominance hierarchy and community structure of antagonistic animal behavior. The columns from left to right contain the
results of the non-degree-corrected ordered SBM (OSBM), the degree-corrected ordered SBM (DC-OSBM), and the degree-corrected SBM
(DC-SBM). The rows, from top to bottom, show the antagonistic interactions for a group of yellow baboons [38], female bighorn sheep [40],
and ant workers [41]. Each panel shows the identified groups for each individual, with the rank labels shown on the nodes—except for the
rightmost column, where the groups are not ordered. For the first two leftmost columns, the edge colors indicate the direction: upstream (blue),
downstream (red), and lateral (gray). The colors for the rightmost column match the maximum matching with the middle column, and with the
unmatched nodes highlighted in red. The panels show also the description length value for each fit.

moderate values, and another group with very high values, and
hence a more prominent hierarchical structure.

It is useful to remark on the possibly counterintuitive fact
that the ordered versions of the SBM can exploit rank coher-
ence for compression, even when rank alignment is minimal,
as we had shown in Fig. 2. This means that in a situation

where no actual alignment exists between the group ordering
and edge direction, a maximal rank coherence will correspond
to a full reciprocity of the edge counts, ers = esr , which is
a special case of the ordered SBMs, but would occur only
with a very small probability according to the unordered prior,
which expects instead asymmetric matrices. As a result, the
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FIG. 7. Comparison between models for 251 empirical directed networks, listed in Appendix C. The values shown are the description
length differences with respect to the best model, as indicated in the legend. The networks are ordered by the minimum description length
value. The left inset shows the counts that each model type yields a shorter description length, and the right inset shows the distribution of
fraction of upstream edges [E+/(E+ + E−) or zero if E = E 0] for networks that are best modelled by the DC-OSBM.

ordered SBMs will be selected as the preferred model when a
substantial reciprocity between groups exists, which accounts
for many cases in Fig. 7. Furthermore, we point out that
since the ordered and unordered model versions share the
exact same underlying generative model, and differ only in
the prior probability for the group affinities, we should not
expect any strong general tendency on how many groups are
inferred by either variant: If the network has well-defined
groups, then they will be uncovered by either model. Oth-
erwise, if the groups are not well defined, as is typical for
empirical networks that admit different partitions with similar
posterior probability [37], then the most appropriate model
will contribute with a smaller penalty for a subset of them,
making them more likely. Whether the selected partitions have
more or fewer groups will depend on details of the network
structure. We show this in Fig. 8, where it can be seen that
the difference in description length between the DC-OSBM
and DC-SBM is a relatively poor predictor of which of them
uncovers more groups. The larger prevalence of networks for
which DC-OSBM simultaneously provides a shorter descrip-
tion length and a larger number of groups when compared to
the DC-SBM is better understood as a characteristic of the
network corpus considered, rather than a necessary outcome
of the comparison between these models.

VI. CONCLUSION

We have demonstrated how a Bayesian version of the di-
rected degree-corrected stochastic block model (DC-SBM)—
which is originally invariant to group label permutations—can
be suitably modified allowing the relative ordering of the
group labels to be used to achieve improved compression
whenever the underlying network is embedded in a one-
dimensional latent hierarchy, where most edges tend to follow
a preferred direction. The resulting ordered SBM can be used
to infer latent hierarchies together with arbitrary preferences
between groups.

We have investigated how degree correction allows the
decoupling from out-/in-degree imbalance and latent hierar-
chies, thus removing a source of conflation that exists in most
methods that attempt to rank nodes in a network.

Furthermore, via model selection we showed how it can
be determined if the ordering is in fact statistically supported,
or if a better description can be obtained with an unordered
model. This allows us to evaluate if the ordering obtained is
just the necessary outcome of constraints we impose during
inference, or if they indeed provide a more plausible descrip-
tion of the data.

FIG. 8. Comparison between the difference in description
lengths between the DC-OSBM (�DC-OSBM) and DC-SBM (�DC-SBM)
and their respective difference in number of groups, BDC-OSBM and
BDC-SBM, obtained for the networks in Fig. 7 (each point corresponds
to an individual network).
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It is easy to imagine possible extensions of the ideas
presented here that can reveal more detailed relationships be-
tween ranking and community structure. For example, in our
model, lateral edges (i.e., those that do not involve a difference
in rank) can only occur between nodes of the same group.
A potential modification would be to allow lateral edges be-
tween nodes of different groups. Going further, we could even
completely decouple group membership from rank, and infer
the relationship between these properties from the data rather
than assume it a priori—at the expense of a more complicated
model and inference procedure. We leave such possibilities
for future work.

APPENDIX A: THE DIRECTED,
DEGREE-CORRECTED SBM

As shown in the main text, and derived in Ref. [29], the mi-
crocanonical directed degree-corrected SBM has a likelihood
given by

P(A|k, e, b) =
∏

rs ers!
∏

i kout
i !kin

i !∏
i j Ai j!

∏
r eout

r !ein
r !

, (A1)

where k = {(kout
i , kin

i )} is the imposed out-/in-degree se-
quence, with

kout
i =

∑
j

A ji, kin
i =

∑
j

Ai j, (A2)

and e = {ers} being the edge counts between groups, with
marginals given by

eout
r =

∑
s

esr, ein
r =

∑
s

ers. (A3)

The prior for out-/in-degree sequence is conditioned on
the out-/in-degree distributions ηout = {ηr

kout} and ηin = {ηr
kin},

where ηr
kout (ηr

kin ) is the number of nodes in group r with
out-degree (in-degree) equal to kout (kin), and is given by

P(k|ηout, ηin ) =
∏

r

[∏
kout

ηr
kout !

nr!

][∏
kin

ηr
kin !

nr!

]
, (A4)

with nr being the number of nodes in group r. The out-
/in-degree distributions themselves sampled from group-wise
uniform distributions,

P(ηout, ηin|e, b) =
∏

r

q(eout, nr )−1q(ein, nr )−1, (A5)

where q(m, n) = q(m, n − 1) + q(m − n, n), with boundary
conditions q(m, 1) = 1 for m > 0 and q(m, n) = 0 for m � 0
or n � 0, is the number of restricted partitions of the integer
m into at most n parts.

The non-degree-corrected version of the model can be ob-
tained by replacing the above prior for k with

P(k|e, b) =
∏

r

eout
r !

neout

r

∏
i

(
kout

i !
)δbi ,r

× ein
r !

nein

r

∏
i

(
kin

i !
)δbi ,r

. (A6)

For the partition we have the prior

P(b) = P(b|n)P(n|B)P(B) (A7)

=
∏

r nr!

N!

(
N − 1

B − 1

)−1 1

N
. (A8)

Finally, for the edge counts we have a uniform distribution

P(e|E , B) =
((

B2

E

))−1

, (A9)

or a nested sequence of SBMs for the nested version of the
model, as described in Ref. [29].

APPENDIX B: MCMC INFERENCE

The inference procedure we use in this work is Markov
chain Monte Carlo (MCMC), implemented as follows. Start-
ing from a partition b, a new partition b′ is proposed with
probability P(b′|b) and accepted according to the Metropolis-
Hastings criterion [42,43], i.e., with a probability given by

min

(
P(b′|A)P(b|b′)
P(b|A)P(b′|b)

, 1

)
, (B1)

otherwise it is rejected. If the move proposals are ergodic and
aperiodic, then repeating the above procedure will eventually
sample partitions from the target distribution P(b|A), which
needs to be computed only up to a normalization constant. The
move proposals we use are the merge-split moves described
in Ref. [33] which have very good mixing properties, and
allow each sweep of the algorithm (i.e., a number of moves
that allow each node to change its membership at least once)
to be computed in linear time O(N + E ), independent on the
number of groups being considered at any given time.

Although the above method can be used indistinguishably
for the ordered and unordered SBMs, it is beneficial to modify
it in a subtle way for the ordered variant. Since the unordered
SBM is invariant to label permutations, the implementation of
the above algorithm can be done without taking into consid-
eration which labels are used when a new group is created.
However, with the ordered model, the relative ordering of the
newly created group becomes important. Instead of using the
numeric value of the label itself, it is in fact more efficient to
associate with each label r an auxiliary real numeric value
ur ∈ [0, 1] which establishes its ordering, i.e., r < s if and
only if ur < us. Thus, whenever a new group r is created, its
relative placement is given a new value ur sampled uniformly
at random in the interval [0,1]. The ergodicity of this auxiliary
variable is preserved by allowing the move of the nodes of a
group r to a newly created group s, with a new value of us.
In this way, we can sample reorderings of the group labels
without actually having to change them.

The above approach will sample partitions from the poste-
rior distribution. To obtain the partition that maximizes it, we
need simply to add an inverse temperature parameter β, i.e.,
P(b|A) → P(b|A)β , and compute the limit β → ∞, which
means we only accept a move proposal if it strictly increases
the posterior probability.

A C++ implementation of the above algorithm is available
as part of the graph-tool library [44].
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APPENDIX C: NETWORK DATA

In Table I we list the network data used in this work, which are freely available from the Netzschleuder repository [45].

TABLE I. Directed network data used in this work, indexed in increasing order of minimum description length (in accordance with Fig. 7),
together with the number of nodes N and edges E , the description length in bits obtained with the four model variants, as well as the model
with the shortest description length.

Index Network N E �SBM �DC-SBM �OSBM �DC-OSBM Best model

0 genetic_multiplex (1) [46] 79 78 144.3 58.7 145.9 58.7 DC-SBM
1 dom (1) [39] 20 97 238.3 215 235 216 DC-SBM
2 genetic_multiplex (2) [46] 103 136 288.5 229.8 290.1 231.4 DC-SBM
3 genetic_multiplex (3) [46] 31 54 266.3 233.8 263.3 230.3 DC-OSBM
4 fresh_webs (1) [47] 48 110 479.8 434.2 472.9 435.7 DC-SBM
5 genetic_multiplex (4) [46] 64 74 493.6 448.3 493.9 449.7 DC-SBM
6 add_health (1) [48] 25 145 488.5 469.1 483.8 468.3 DC-OSBM
7 add_health (2) [48] 32 127 515.8 487.9 514.5 486 DC-OSBM
8 dom (2) [39] 32 277 579.3 520.2 518.7 499.5 DC-OSBM
9 fresh_webs (2) [47] 54 117 545.1 503.7 538.3 505.2 DC-SBM
10 dutch_school (1) [49] 26 352 531.7 539.2 530.2 537.7 OSBM
11 genetic_multiplex (5) [46] 189 226 748.6 564.5 779.8 573.6 DC-SBM
12 fresh_webs (3) [47] 58 126 620 571.7 614.9 571.7 DC-SBM
13 dutch_school (2) [49] 26 578 627.4 643 626.8 644.3 OSBM
14 dutch_school (3) [49] 26 629 631.3 649.3 631.1 650.6 OSBM
15 high_tech_company [50] 21 312 680 646.8 680.5 646.8 DC-SBM
16 fresh_webs (4) [47] 71 148 716.2 667.9 714 667.9 DC-SBM
17 fresh_webs (5) [47] 71 155 728.2 685.6 716.3 685.6 DC-SBM
18 rhesus_monkey [51] 16 647 720.5 715.3 710.4 704.1 DC-OSBM
19 fresh_webs (6) [47] 66 187 833.8 786.5 821.5 783.6 DC-OSBM
20 dom (3) [39] 18 810 800 791.4 864.7 846.8 DC-SBM
21 dutch_school (4) [49] 26 1042 812.7 846.7 1033.1 933.3 SBM
22 dutch_school (5) [49] 26 1093 817 853 1046 945.9 SBM
23 fresh_webs (7) [47] 77 181 901.8 834.8 887.9 836.3 DC-SBM
24 genetic_multiplex (6) [46] 205 272 1009.8 850.3 1000.5 837 DC-OSBM
25 genetic_multiplex (7) [46] 303 332 1247.9 906.9 1237.6 897.9 DC-OSBM
26 fresh_webs (8) [47] 84 227 1025.7 962.9 1020 964.4 DC-SBM
27 fresh_webs (9) [47] 77 240 1033 975.7 1023.8 977.2 DC-SBM
28 fresh_webs (10) [47] 78 241 1036.7 1001.2 1018.4 995.9 DC-OSBM
29 add_health (3) [48] 43 250 1050.9 1020.3 1044.2 1010.9 DC-OSBM
30 dom (4) [39] 21 838 1030 1022.7 1048.6 1020.5 DC-OSBM
31 hens [52] 32 496 1042.9 1022.8 1040.2 1022.8 DC-SBM
32 dom (5) [39] 48 1305 1139.6 1075.4 1095.6 1046.9 DC-OSBM
33 fresh_webs (11) [47] 78 268 1116.1 1048.2 1103.2 1048.4 DC-SBM
34 cattle [53] 28 498 1109.8 1058.4 1059.8 1058.7 DC-SBM
35 swingers [54] 96 232 1093.4 1063.3 1095 1063.3 DC-SBM
36 dom (6) [39] 28 1667 1244.5 1116.3 1192 1161.2 DC-SBM
37 fresh_webs (12) [47] 80 335 1237.2 1185.2 1233.9 1181.7 DC-OSBM
38 fresh_webs (13) [47] 74 391 1230.5 1206.9 1220.5 1208.5 DC-SBM
39 fresh_webs (14) [47] 87 843 1261.8 1229.4 1247.2 1226.6 DC-OSBM
40 moreno_sheep [40] 28 658 1287.4 1247.8 1275.9 1250.9 DC-SBM
41 fresh_webs (15) [47] 84 353 1344.4 1272.7 1327.2 1263.6 DC-OSBM
42 fresh_webs (16) [47] 78 375 1341.7 1276.3 1331.8 1270.3 DC-OSBM
43 dom (7) [39] 22 2741 1322.7 1274.3 1647.6 1539.7 DC-SBM
44 7th_graders [55] 29 740 1356.1 1358.8 1349.2 1348.2 DC-OSBM
45 fresh_webs (17) [47] 83 415 1441.3 1360.9 1436.1 1354.7 DC-OSBM
46 add_health (4) [48] 69 305 1421.5 1377.9 1398.4 1361.6 DC-OSBM
47 fresh_webs (18) [47] 86 375 1468.8 1412.5 1455.4 1410.7 DC-OSBM
48 bison [56] 26 897 1506.8 1460 1474.8 1443.6 DC-OSBM
49 software_dependencies (1)

[57,57–60]
105 451 1664.6 1519.5 1626.1 1485.8 DC-OSBM

50 fresh_webs (19) [47] 105 343 1600.4 1521.8 1581.6 1510.2 DC-OSBM
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TABLE I. (Continued.)

Index Network N E �SBM �DC-SBM �OSBM �DC-OSBM Best model

51 dom (8) [39] 44 1015 1787 1622.9 1749.5 1646.5 DC-SBM
52 sp_baboons (1) [61] 23 3197 1738.3 1725.1 1657.5 1653.1 DC-OSBM
53 fresh_webs (20) [47] 94 565 1828.8 1742.6 1822.7 1737.8 DC-OSBM
54 fresh_webs (21) [47] 93 538 1834.6 1745.7 1822.5 1741.1 DC-OSBM
55 add_health (5) [48] 96 352 1917.6 1793.5 1898.3 1771.4 DC-OSBM
56 highschool [62] 70 506 1931.5 1886.4 1892.2 1854.3 DC-OSBM
57 add_health (6) [48] 76 440 1977.9 1874.9 1948.3 1858.4 DC-OSBM
58 add_health (7) [48] 74 466 1969.5 1887.6 1952.8 1875.2 DC-OSBM
59 dom (9) [39] 36 2387 2065.1 1905 2153.5 2060.4 DC-SBM
60 fresh_webs (22) [47] 98 629 2072.4 1984.8 2053.6 1983 DC-OSBM
61 fresh_webs (23) [47] 96 634 2144 2040.1 2128.6 2033.5 DC-OSBM
62 add_health (8) [48] 103 445 2285.5 2177.9 2252.8 2160.6 DC-OSBM
63 add_health (9) [48] 108 457 2396.2 2268 2353.2 2255.9 DC-OSBM
64 kidnappings [63] 285 357 2499.5 2382.2 2501.1 2376.9 DC-OSBM
65 fresh_webs (24) [47] 109 875 2492.9 2406.8 2479.3 2387.5 DC-OSBM
66 fresh_webs (25) [47] 112 832 2561.5 2467.6 2546 2456.4 DC-OSBM
67 dom (10) [39] 52 3281 2984.5 2752.2 3037.2 2912.1 DC-SBM
68 dom (11) [39] 53 4464 3069 2843.3 3199 3041.1 DC-SBM
69 fresh_webs (26) [47] 107 966 2997.8 2851.8 2977.3 2844.8 DC-OSBM
70 genetic_multiplex (8) [46] 263 427 3223.4 2925 3161.9 2883.9 DC-OSBM
71 college_freshmen [64] 32 3062 2936.8 2885.1 2960.5 2920.4 DC-SBM
72 physician_trust [65] 117 542 3191.6 3056.5 3175.3 3045.8 DC-OSBM
73 freshmen (1) [64] 34 6908 3054.8 3118.6 3054.8 3118.6 SBM
74 freshmen (2) [64] 34 5781 3199.7 3219.2 3201.2 3219.2 SBM
75 freshmen (3) [64] 34 6484 3213.3 3331.6 3282.9 3350.1 SBM
76 ecoli_transcription (1) [66] 328 497 3511.1 3238.1 3465.9 3216.5 DC-OSBM
77 ecoli_transcription (2) [66] 329 496 3519 3241.5 3474.3 3226.5 DC-OSBM
78 freshmen (4) [64] 34 6009 3247.2 3288.4 3246.9 3288.4 OSBM
79 freshmen (5) [64] 34 6492 3255.2 3312.9 3273 3312.9 SBM
80 software_dependencies (2)

[57,57–60]
192 875 3772.4 3415.6 3660.1 3367.9 DC-OSBM

81 software_dependencies (3)
[57,57–60]

228 813 4068.4 3665.5 3969.6 3589.3 DC-OSBM

82 dom (12) [39] 61 4118 3991.4 3738.1 4100.5 3897.4 DC-SBM
83 macaques [67] 62 2435 4844.4 4777.4 4756.1 4687.3 DC-OSBM
84 add_health (10) [48] 157 945 4975.9 4862.8 4932.9 4834 DC-OSBM
85 genetic_multiplex (9) [46] 1005 1355 6240 5417.7 6306 5441.5 DC-SBM
86 add_health (11) [48] 204 1012 5775.8 5558.7 5718.5 5506.8 DC-OSBM
87 software_dependencies (4)

[57,57–60]
249 1726 6298 5682.3 6138.1 5611.5 DC-OSBM

88 law_firm [68] 71 2571 6075.9 5881.6 5959.7 5845.5 DC-OSBM
89 foodweb_little_rock [36] 183 2494 6195.8 6105.3 6167.2 6090.6 DC-OSBM
90 foodweb_baywet [69] 128 2106 6437.4 6351.8 6423.5 6358.6 DC-SBM
91 add_health (12) [48] 358 869 6820.5 6595.3 6740.4 6516.2 DC-OSBM
92 software_dependencies (5)

[57,57–60]
398 1716 7510.2 6856.7 7303.6 6729.6 DC-OSBM

93 software_dependencies (6)
[57,57–60]

457 2668 7557.4 6852 7421.9 6763.9 DC-OSBM

94 software_dependencies (7)
[57,57–60]

399 1721 7583.9 6895.5 7323 6764.8 DC-OSBM

95 add_health (13) [48] 331 1006 7193.2 6939.7 7081 6848.2 DC-OSBM
96 add_health (14) [48] 248 1264 7312 7051.6 7207.3 6963.9 DC-OSBM
97 yeast_transcription [70] 664 1078 7838.5 7362.2 7773 7321.4 DC-OSBM
98 software_dependencies (8)

[57,57–60]
504 3677 8371.3 7666.6 8256.3 7457.2 DC-OSBM

99 software_dependencies (9)
[57,57–60]

504 3677 8335.3 7637.2 8206.2 7459.3 DC-OSBM

100 add_health (15) [48] 439 1065 8293.2 7851.4 8191 7752.7 DC-OSBM
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101 add_health (16) [48] 281 1396 8585.2 8225.8 8515.6 8192.7 DC-OSBM
102 add_health (17) [48] 284 1511 9513.8 9222.3 9390 9122.4 DC-OSBM
103 add_health (18) [48] 352 1784 10564.9 10112.1 10442.7 10003.3 DC-OSBM
104 faculty_hiring (1) [71] 144 4112 10 923 10516.1 11037.8 10 537 DC-SBM
105 add_health (19) [48] 444 1652 11739.9 11210.5 11550.2 11109.7 DC-OSBM
106 add_health (20) [48] 430 1718 11714.1 11339.7 11529.4 11188.9 DC-OSBM
107 add_health (21) [48] 377 2021 12101.6 11795.6 11932.5 11634.4 DC-OSBM
108 cintestinalis [72] 205 2903 12122.3 11 754 12181.9 11787.7 DC-SBM
109 celegansneural [73,74] 297 2359 12060.8 11814.8 12063.5 11 798 DC-OSBM
110 software_dependencies (10)

[57,57–60]
486 4990 13207.6 12495.1 13066.7 12395.9 DC-OSBM

111 add_health (22) [48] 411 1975 12991.7 12539.5 12865.8 12455.3 DC-OSBM
112 add_health (23) [48] 579 1814 13636.2 13033.2 13514.8 12913.9 DC-OSBM
113 dom (13) [39] 151 9096 13763.9 13469.3 13432.5 13 252 DC-OSBM
114 add_health (24) [48] 437 2155 13927.4 13541.3 13746.9 13381.6 DC-OSBM
115 faculty_hiring (2) [71] 112 7856 14 622 14136.3 15061.4 14310.5 DC-SBM
116 add_health (25) [48] 728 2012 15413.5 14702.3 15266.3 14509.3 DC-OSBM
117 faculty_hiring (3) [71] 205 4388 15247.2 14762.8 15337.2 14725.4 DC-OSBM
118 software_dependencies (11)

[57,57–60]
879 5339 16733.1 15224.4 16252.4 14837 DC-OSBM

119 add_health (26) [48] 676 1949 15628.4 14969 15500.7 14858.7 DC-OSBM
120 add_health (27) [48] 594 2188 15837.5 15153.6 15633.1 15006.6 DC-OSBM
121 add_health (28) [48] 654 2064 16246.7 15499.3 16021.5 15355.6 DC-OSBM
122 add_health (29) [48] 551 2624 16443.4 15748.5 16232.5 15591.9 DC-OSBM
123 add_health (30) [48] 557 2327 16439.6 16023.3 16263.4 15878.6 DC-OSBM
124 add_health (31) [48] 521 2340 16735.7 16180.5 16598.1 16098.9 DC-OSBM
125 celegans_2019 (1) [75] 328 3531 16986.5 16328.4 16775.3 16243.2 DC-OSBM
126 add_health (32) [48] 492 2675 17225.9 16739.2 16969.2 16529.5 DC-OSBM
127 celegans_2019 (2) [75] 313 3534 17045.7 16697.9 17015.3 16653.1 DC-OSBM
128 add_health (33) [48] 612 3132 19786.3 19115.7 19496.2 18872.9 DC-OSBM
129 add_health (34) [48] 569 3203 20018.9 19434.7 19725.8 19216.1 DC-OSBM
130 add_health (35) [48] 652 2935 20602.4 19 814 20397.6 19645.3 DC-OSBM
131 add_health (36) [48] 562 3344 21289.1 20572.8 21085.9 20381.4 DC-OSBM
132 add_health (37) [48] 581 3585 22262.5 21641.5 21965.6 21376.1 DC-OSBM
133 add_health (38) [48] 678 3441 22 795 21888.8 22570.4 21704.8 DC-OSBM
134 residence_hall [76] 217 9028 24200.8 24021.6 22 474 22541.4 OSBM
135 genetic_multiplex (10) [46] 1158 2497 23403.9 22494.9 23456.1 22481.8 DC-OSBM
136 add_health (39) [48] 790 3178 23765.8 22783.5 23490.1 22520.5 DC-OSBM
137 celegans_2019 (3) [75] 446 4879 23328.7 23101.7 23573.4 23092.2 DC-OSBM
138 celegans_2019 (4) [75] 446 4879 23307.7 23097.3 23525.6 23132.2 DC-SBM
139 add_health (40) [48] 718 3442 24778.2 23946.9 24428.6 23696.5 DC-OSBM
140 add_health (41) [48] 644 3591 24628.7 23944.7 24335.8 23728.5 DC-OSBM
141 add_health (42) [48] 667 3783 24955.6 24237.4 24592.4 23963.4 DC-OSBM
142 add_health (43) [48] 694 3544 25398.2 24603.5 25182.8 24393.2 DC-OSBM
143 add_health (44) [48] 921 3223 25872.9 24948.3 25801.7 24828.1 DC-OSBM
144 add_health (45) [48] 849 3735 26328.1 25313.5 26017.6 25097.5 DC-OSBM
145 celegans_2019 (5) [75] 559 5306 26051.5 25510.4 26375.1 25615.6 DC-SBM
146 celegans_2019 (6) [75] 559 5306 26024.5 25542.2 26300.1 25585.1 DC-SBM
147 add_health (46) [48] 1040 3321 27305.3 26 319 27039.7 26041.8 DC-OSBM
148 add_health (47) [48] 1152 3291 27243.4 26662.8 26821.4 26250.7 DC-OSBM
149 add_health (48) [48] 778 4125 28107.7 27176.6 28027.9 27086.7 DC-OSBM
150 add_health (49) [48] 851 3735 29457.2 28352.4 29252.8 28 213 DC-OSBM
151 add_health (50) [48] 1035 3710 29 594 28476.3 29364.3 28234.7 DC-OSBM
152 software_dependencies (12)

[57,57–60]
1225 9553 31018.1 28900.7 30693.2 28550.7 DC-OSBM

153 genetic_multiplex (11) [46] 2350 4014 32290.2 29 697 31 990 29539.3 DC-OSBM
154 add_health (51) [48] 971 4156 31234.1 30135.6 30875.3 29819.2 DC-OSBM
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155 add_health (52) [48] 853 4191 31290.8 30274.7 30931.5 30008.4 DC-OSBM
156 add_health (53) [48] 891 4561 32994.9 32070 32636.5 31821.4 DC-OSBM
157 add_health (54) [48] 1180 4282 34045.8 32902.2 33643.7 32575.8 DC-OSBM
158 messal_shale [77] 700 6444 33400.8 32694.3 33384.4 32688.5 DC-OSBM
159 add_health (55) [48] 1131 4684 34566.7 33331.4 34084.4 32930.3 DC-OSBM
160 add_health (56) [48] 910 5229 36392.8 35564.9 35965.5 35192.4 DC-OSBM
161 add_health (57) [48] 1260 4520 37160.4 35722.2 36628.3 35353.2 DC-OSBM
162 add_health (58) [48] 987 4881 37011.6 35884.5 36608.3 35594.1 DC-OSBM
163 add_health (59) [48] 921 5094 37626.3 36623.8 37210.3 36295.7 DC-OSBM
164 email_company [78] 167 82 927 38086.2 37879.3 37033.3 36905.2 DC-OSBM
165 add_health (60) [48] 994 5459 38842.3 37626.6 38432.4 37354.9 DC-OSBM
166 add_health (61) [48] 985 5410 39106.5 38033.3 38775.4 37732.1 DC-OSBM
167 add_health (62) [48] 1385 4845 39624.3 38411.7 39114.7 37995.8 DC-OSBM
168 add_health (63) [48] 1290 4689 39940.1 38528.1 39519.1 38085.9 DC-OSBM
169 add_health (64) [48] 1062 5370 40111.6 38809.6 39739.2 38448.3 DC-OSBM
170 add_health (65) [48] 1545 4775 40906.3 39124.1 40561.8 38813.4 DC-OSBM
171 add_health (66) [48] 1190 5371 41657 40540.6 41174.7 40037.1 DC-OSBM
172 interactome_figeys [79] 2217 6438 41729.3 40612.4 41798.6 40 546 DC-OSBM
173 interactome_stelzl [80] 1615 6105 45150.1 42551.5 43105.2 41239.6 DC-OSBM
174 add_health (67) [48] 1136 5720 42972.9 41644.3 42624.9 41304.5 DC-OSBM
175 software_dependencies (13)

[57,57–60]
1570 17273 45177.9 41693.2 44567.2 41882.4 DC-SBM

176 add_health (68) [48] 1127 6189 44766.2 43575.2 44442.2 43367.2 DC-OSBM
177 add_health (69) [48] 1710 5380 46082.7 44428.1 45662.4 43 953 DC-OSBM
178 add_health (70) [48] 1171 6217 45615.8 44291.1 45125.7 43998.6 DC-OSBM
179 add_health (71) [48] 1405 5621 48 146 46573.2 48026.1 46463.5 DC-OSBM
180 add_health (72) [48] 1218 6488 50698.2 49 069 50 106 48597.3 DC-OSBM
181 add_health (73) [48] 1638 6339 54897.9 53339.3 54579.8 52 877 DC-OSBM
182 add_health (74) [48] 1703 7015 55615.8 53760.8 55021.1 53277.2 DC-OSBM
183 add_health (75) [48] 1974 5849 56030.6 54067.7 55571.5 53480.8 DC-OSBM
184 add_health (76) [48] 1719 6772 55937.1 53989.9 55285.5 53496.9 DC-OSBM
185 add_health (77) [48] 1605 6984 58002.5 56114.4 57490.6 55638.9 DC-OSBM
186 add_health (78) [48] 1519 7149 59212.8 57543.5 58710.3 56906.2 DC-OSBM
187 word_adjacency (1) [81] 2698 8297 59 830 57085.2 60 715 58249.2 DC-SBM
188 uni_email [82] 1133 10 903 65 340 62916.4 61968.1 60652.5 DC-OSBM
189 add_health (79) [48] 1630 8556 65754.8 63908.4 64956.8 63252.6 DC-OSBM
190 software_dependencies (14)

[57,57–60]
2811 17 373 70 635 65903.9 70183.5 65465.7 DC-OSBM

191 add_health (80) [48] 1877 8869 68314.2 66318.9 67548.6 65659.8 DC-OSBM
192 genetic_multiplex (12) [46] 3692 8058 69341.1 66202.8 69421.2 66008.1 DC-OSBM
193 software_dependencies (15)

[57,57–60]
2378 34 858 78653.7 73278.1 79145.7 73971.2 DC-SBM

194 add_health (81) [48] 2152 9878 79277.9 76641.5 78374.7 75867.8 DC-OSBM
195 add_health (82) [48] 1996 10 485 84806.2 82781.3 84027.1 81842.1 DC-OSBM
196 fao_trade [83] 214 318 346 81952.6 82042.9 117912.1 104149.6 SBM
197 add_health (83) [48] 2064 10 503 85277.1 82662 84598.7 81966.2 DC-OSBM
198 polblogs [84] 1222 19 089 89057.8 84867.2 90735.5 85165.9 DC-SBM
199 add_health (84) [48] 2539 12 969 109236.4 106320.9 107934.2 105453.8 DC-OSBM
200 genetic_multiplex (13) [46] 6692 18 397 152555.6 144702.5 152892.7 143 924 DC-OSBM
201 genetic_multiplex (14) [46] 7402 19 553 174481.5 164850.6 174312.8 164965.1 DC-SBM
202 word_adjacency (2) [81] 8308 24 286 199836.5 190855.8 204061.3 195700.2 DC-SBM
203 gnutella (1) [85] 6299 20 776 210066.1 205119.1 210909.1 205949.4 DC-SBM
204 jung [86] 6120 138 706 253033.7 239074.1 256 683 243697.4 DC-SBM
205 software_dependencies (16)

[57,57–60]
6120 138 706 253610.5 239652.3 255954.9 243249.6 DC-SBM

206 software_dependencies (17)
[57,57–60]

6434 150 985 267 968 254 399 271869.4 258 955 DC-SBM

207 jdk [87] 6434 15 0985 267 842 254631.1 272583.1 257675.3 DC-SBM

024305-15



TIAGO P. PEIXOTO PHYSICAL REVIEW E 106, 024305 (2022)

TABLE I. (Continued.)

Index Network N E �SBM �DC-SBM �OSBM �DC-OSBM Best model

208 gnutella (2) [85] 8104 26 008 274397.7 267235.4 275039.2 268022.8 DC-SBM
209 word_adjacency (3) [81] 7377 46 279 307 720 297 896 316867.3 307916.4 DC-SBM
210 word_adjacency (4) [81] 11 558 45 114 317093.8 305261.6 323260.4 311244.2 DC-SBM
211 advogato [88] 5042 49 631 342611.1 325964.7 340306.7 323051.8 DC-OSBM
212 gnutella (3) [85] 8717 31 525 347389.6 338865.6 349573.1 340673.8 DC-SBM
213 genetic_multiplex (15) [46] 4078 63 667 350660.4 341 319 360342.5 344945.4 DC-SBM
214 genetic_multiplex (16) [46] 8114 43 304 379 841 366866.3 379162.4 365044.6 DC-OSBM
215 dblp_cite [89] 12 494 49 702 424041.2 399 517 427323.1 400700.4 DC-SBM
216 inploid [90] 14 360 57 101 426144.2 408307.9 428266.2 408654.5 DC-SBM
217 anybeat [91] 12 645 67 053 442601.1 418413.9 440836.3 419607.8 DC-SBM
218 gnutella (4) [85] 10 876 39 994 461535.8 450107.1 463416.7 451601.6 DC-SBM
219 chess [92] 7115 64 926 488399.4 476 033 480542.8 469920.4 DC-OSBM
220 elec [93] 7066 103 645 572402.8 545967.9 586592.3 554748.5 DC-SBM
221 caida_as (1) [94] 26 389 105 722 736834.6 683 345 710941.9 659739.5 DC-OSBM
222 python_dependency [95] 58 302 108 118 723383.2 660414.2 724 114 663173.3 DC-SBM
223 google [96] 15 763 171 206 697162.3 673705.9 710447.1 685376.1 DC-SBM
224 gnutella (5) [85] 22 663 54 693 704797.8 687626.8 707145.2 686795.9 DC-OSBM
225 cora [97] 23 166 91 500 854972.6 791698.1 849458.3 787856.1 DC-OSBM
226 nematode_mammal [98] 26 197 140 432 816953.4 811996.1 809148.3 805070.2 DC-OSBM
227 gnutella (6) [85] 26 498 65 359 857564.7 837415.1 861399.6 836 664 DC-OSBM
228 fediverse [99] 4860 484 164 1062391.4 1052004.3 1180717.8 1077672.5 DC-SBM
229 gnutella (7) [85] 36 646 88 303 1169393.7 1138636.4 1176941.9 1144731.6 DC-SBM
230 genetic_multiplex (17) [46] 18 136 170 831 1218093.4 1168743.5 1222213.7 1171322.5 DC-SBM
231 linux [87] 30 817 213 942 1332386.6 1288094.1 1349663 1294157.3 DC-SBM
232 genetic_multiplex (18) [46] 6567 282 752 1 584 214 1534637.8 1 590 960 1537713.9 DC-SBM
233 pgp_strong [100] 39 796 301 498 1885884.9 1780603.7 1816232.7 1731146.7 DC-OSBM
234 scotus_majority (1)

[101,102]
25 389 216 718 1933664.5 1825534.5 1957209.5 1840510.1 DC-SBM

235 scotus_majority (2)
[101,102]

34 428 202 053 2016896.9 1903877.7 2036012.7 1914565.6 DC-SBM

236 email_enron [103] 33 696 361 622 2272843.4 2138109.2 2059220.9 1997285.2 DC-OSBM
237 gnutella (8) [85] 62 561 147 878 2083997.2 2029112.1 2094327.1 2036521.2 DC-SBM
238 arxiv_citation (1) [104] 27 400 352 542 2 391 491 2219924.9 2409700.1 2258057.8 DC-SBM
239 arxiv_citation (2) [104] 34 401 421 485 3005722.6 2792846.7 3017691.7 2812687.5 DC-SBM
240 email_eu [105] 224 832 395 270 3598338.7 3356699.3 3 631 807 3 358 836 DC-SBM
241 word_assoc [106] 23 132 511 764 3722536.2 3529298.9 3746228 3507729.5 DC-OSBM
242 facebook_wall [107] 439 53 872 044 4751164.5 4217967.1 4296512 3922272.1 DC-OSBM
243 epinions_trust [108] 75 877 508 836 4 521 591 4341144.1 4491015.6 4325874.1 DC-OSBM
244 notre_dame_web [109] 325 729 149 7134 9206468.8 8520817.4 9221048.2 8516072.9 DC-OSBM
245 stanford_web [110] 255 265 223 4572 10013497.4 9532902.7 10221145.9 9718934.4 DC-SBM
246 google_plus [111] 201 949 149 6936 10452997.8 10043644.6 10411311.3 9923644.7 DC-OSBM
247 genetic_multiplex (19) [46] 4458 847 3997 13093737.9 13111684.6 13425751.3 13431929.3 SBM
248 academia_edu [111] 200 167 139 8062 14600464.4 13643254.2 14168442.1 13156559.8 DC-OSBM
249 citeseer [112] 365 154 173 6325 19208311.4 17476771.6 18825114.3 17422382.8 DC-OSBM
250 berkstan_web [110] 654 782 7 499 425 30 088 771 28559020.8 30068489.5 28621191.2 DC-SBM
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