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Scaling of avalanche shape and activity power spectrum in neuronal networks
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Many systems in nature exhibit avalanche dynamics with scale-free features. A general scaling theory has
been proposed for critical avalanche profiles in crackling noise, predicting the collapse onto a universal avalanche
shape, as well as the scaling behavior of the activity power spectrum as Brown noise. Recently, much attention
has been given to the profile of neuronal avalanches, measured in neuronal systems in vitro and in vivo. Although
a universal profile was evidenced, confirming the validity of the general scaling theory, the parallel study of
the power spectrum scaling under the same conditions was not performed. The puzzling observation is that
in the majority of healthy neuronal systems the power spectrum exhibits a behavior close to 1/ f , rather than
Brown, noise. Here we perform a numerical study of the scaling behavior of the avalanche shape and the power
spectrum for a model of integrate and fire neurons with a short-term plasticity parameter able to tune the system to
criticality. We confirm that, at criticality, the average avalanche size and the avalanche profile fulfill the general
avalanche scaling theory. However, the power spectrum consistently exhibits Brown noise behavior, for both
fully excitatory networks and systems with 30% inhibitory networks. Conversely, a behavior closer to 1/ f noise
is observed in systems slightly off criticality. Results suggest that the power spectrum is a good indicator to
determine how close neuronal activity is to criticality.
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I. INTRODUCTION

Besides the well-known rich phenomenology, i.e., insta-
bilities and metastability transitions [1–3], synchronization
[4,5], the presence of multiple spatiotemporal scales [6,7],
and long-range temporal correlations [8], spontaneous brain
activity exhibits bursts of activity, named neuronal avalanches.
These were first detected in vitro in organotypic cultures from
coronal slices of rat cortex [9] and in dissociated neurons
from rat hippocampus and cortex [10,11] or leech ganglia
[10]. Next, neuronal avalanches were identified in vivo in rat
cortical layers during early postnatal development [12], in
the cortex of awake adult rhesus monkeys [13], as well as
in the resting state of the human brain by means of nonin-
vasive techniques such as magnetoencephalography (MEG)
[14]. The statistical properties of neuronal avalanches have
been the object of intensive investigation both experimentally
and numerically [15–17], focusing mainly on the scaling be-
havior of the avalanche size and duration distributions, P(S)
and P(T ). Consistent evidence indicates a scaling behavior
in the universality class of the mean-field branching model
[18,19], namely, P(S) ∝ S−α with α � 1.5 and P(T ) ∝ T −τ

with τ � 2.0, even if the existence of a different universality
class has been also proposed in the literature [20].

Avalanching is a widespread phenomenon, occurring in
systems where many degrees of freedom interact under
slow drive, which had, as the first prototype, the model of
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Gutenberg-Richter [21] for earthquake occurrence in the 50s
and became a general paradigm after the seminal work of Bak
[22,23]. Within this context, a real breakthrough was the for-
mulation of a general scaling theory for avalanche phenomena
at the critical point, encompassing the scaling behavior of
most relevant properties in the process. This scaling theory,
initially formulated for the Barkhausen noise [24,25], has
turned out to be extremely general and found in a variety of
different phenomena, from plastic deformations [26] to earth-
quakes [27]. Among a number of scaling relations for different
quantities [25], some scaling laws have been considered in
the literature as an indicator to determine if a system acts
at the critical point. In particular, the scaling of the average
avalanche size 〈S〉 versus its duration T [24,25,28], 〈S〉 ∼ T γ ,
with the exponent γ related to the exponents of the avalanche
distributions:

γ = τ − 1

α − 1
. (1)

This exponent γ is also predicted to control the collapse of the
profile of avalanches with different durations, as well as the
scaling of the signal power spectral density (PSD), S( f ) ∼
f −γ [25]. Moreover, other features of the avalanche profile
have received a wide interest. In particular, the avalanche
shape, not necessarily symmetric in the scaling theory [24],
has been found to depend on the interaction kernel; namely,
asymmetry appears when the interaction is not fully nonlocal,
reflecting broken time-reversal symmetry in the avalanche
dynamics [29]. Symmetric profiles are found in Barkhausen
noise [24,25] and in mean-field systems [28]; however,
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considering inertial effects leads to leftward asymmetry (pos-
itive skewness) [30], whereas rightward asymmetry (negative
skewness) is observed for increasing interaction range [29].
Interestingly, the symmetry of avalanche shape in experimen-
tal neuronal avalanches shows a variety of features: from an
almost symmetric shape in cortex slices [31] and in nonhuman
primates [32], provided that the modulation of γ oscillations
is carefully taken into account, to a leftward asymmetric shape
in zebrafish larvae [33]. This confirms that the symmetry of
the shape is not a necessary requirement for criticality, as
already observed in Ref. [24].

Interestingly, experimental and numerical studies aimed
at verifying the validity of the avalanche scaling theory for
neuronal avalanches have mainly focused on the scaling of
the average size with duration and the collapse of avalanche
profiles onto a universal curve [31–34]. Little attention has
been given to the parallel investigation of the scaling be-
havior of the activity power spectrum, which is predicted in
Ref. [25] to exhibit Brown noise behavior, i.e., S( f ) ∼ f −β ,
with β = γ = 2 [Eq. (1)]. A variety of experimental studies
on different signals, such as electroencephalography (EEG),
MEG, resting-state functional magnetic resonance imaging,
and the local field potentials (LFPs) of spontaneous cortical
activity, have evidenced the presence of effective power-law
regimes in the PSD [35–39], which are the background for
peaks at characteristic frequencies corresponding to different
brain modes. In the majority of studies, a behavior closer
to 1/ f , rather than Brown, noise, has been detected. For
instance, the PSD scaling behavior in the human eyes-closed
and eyes-open resting EEG [38] provides at low frequencies
(in the range 0.5–8 Hz) β ∼ 1.32 for the eyes-closed condition
and β ∼ 1.27 for the eyes-open condition, with the exponent
varying across brain regions with a standard error of 20%. A
similar analysis of both EEG and MEG signals has recently
proposed [37] an average slope of β = 1.06 ± 0.29, varying
in different brain areas. Conversely, the exponent value β ∼ 2
is typically found in epileptic patients, in the range [2.2, 2.44]
in the awake state and [1.6, 2.87] in the slow wave sleep [40].
In addition, a numerical study of a self-organized model for
neuronal activity has evidenced that the exponent β depends
on the fraction of inhibitory neurons, crossing over from
Brown noise for fully excitatory networks to 1/ f behavior for
30% inhibitory neurons [41], typical of mammal brains.

Finally, it is important to remark that there is evidence
in the literature [42,43] that the observed scaling behavior
for avalanches can be also obtained without invoking the
criticality hypothesis. Recent investigation has been triggered
by the results in Ref. [20] showing that data, ranging from
freely moving to anesthetized mammals, surprisingly show
scaling behavior in a specific activity regime, extending orig-
inal results which focused on spontaneous brain activity. It
has, therefore, been suggested that power laws can emerge
even in models which are not critical [43] and do not sat-
isfy Eq. (1). Therefore, the criteria implemented in Ref. [20]
to confirm criticality would be not sufficient to discrimi-
nate critical from noncritical systems. Indeed, the emergence
of power-law distributions has been recently related to
the presence of fluctuating variables in the process, such
as input stimuli leading to neuronal firings at different rates
[44].

Here we address the issue of scaling for neuronal
avalanches within the context of an integrate and fire neuronal
network model including short- and long-term plasticity [17].
The model presents the advantage of being able to tune the
system at and far from criticality, allowing the investigation of
the scaling behavior in a wider region of phase space. In par-
ticular, we study the scaling properties of the avalanche shape
in parallel with the activity PSD, to identify the conditions
for the validity of the avalanche scaling theory. The analysis
is performed for different percentages of inhibitory neurons,
unveiling their crucial role in the PSD scaling.

II. NETWORK MODEL

We consider a neuronal network consisting of N neu-
rons, randomly placed in a cubic lattice and connected by
directed synapses, with a fraction, Pin, of inhibitory neurons.
In order to construct the network of synaptic connections,
since the out-degree distribution is not fully characterized for
the morphological connections in real brains, the outgoing
connections are assigned according to the scale-free degree
distribution P(kout ) ∝ k−2

out found experimentally for func-
tional networks [45], with kout ∈ [2, 100]. The connections
between two neurons are established using a distance-
dependent probability, P(r) ∝ e−r/r0 , where r is the Euclidean
distance between two neurons and r0 = 5 is a characteristic
connectivity range [46]. We assign to each synaptic connec-
tion between neuron i and j an initial random strength, gi j ,
uniformly chosen in the interval [0.4,0.6]. A recent study
[47] has shown that in scale-free functional networks the
inhibitory neurons are typically hubs; we therefore choose the
inhibitory neurons among the highly connected ones, kout > 5.
We implement in the model two plasticity mechanisms, the
short- and long-term plasticity. The first one models the dy-
namics of synaptic resources that are used in all firing events
and need to be restored in the presynaptic terminal. By tun-
ing the efficiency in restoring neurotransmitter resources, the
model tunes the network at the critical point. This plasticity
mechanism is always active during the avalanche dynamics.
Conversely, the long-term plasticity is a Hebbian mechanism
that models the experience of the neuronal systems by sculpt-
ing the synaptic strengths according to their activity. This
plasticity mechanism mimics the age of the neuronal system
and modifies the synaptic connections starting from an initial
random configuration. For this reason, the long-term plasticity
is active only during an initial training period, during which
avalanche measurements are not monitored, in order to adapt
the synaptic strengths according to previous activity. The im-
plementation of both plasticity measurements, acting on very
different timescales (milliseconds for the first measurement
and up to years for the second measurement) is motivated by
the need to include in the model fundamental experimental ev-
idence for neuronal dynamics. More precisely, each neuron i is
characterized by a membrane potential vi, whose initial values
are distributed uniformly in the interval [0.5,1.0]. At each
time step all neurons with a potential exceeding a threshold
value of vi � vc = 1.0 fire, leading to the release of a fraction
of neurotransmitter δu at all synapses and a change in the
potential of the connected postsynaptic neurons j according
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to the following equations [17,48]:

v j (t + 1) = v j (t ) ± vi(t )ui(t )δugi j,

ui(t + 1) = ui(t )(1 − δu),

vi(t + 1) = 0,

where the ± sign stands for an excitatory or inhibitory
presynaptic neuron and ui is the amount of releasable neuro-
transmitter at neuron i, which is initially set equal to 1 for all
neurons. After a neuron fires, it enters into a refractory state
for the tr = 1 time step, during which it is unable to elicit any
signal. The activity propagates and stops when the potential
of all neurons is below vc. The present model is the discrete
time version of the integrate and fire model of Ref. [16]. Here
the unit time step is of the order of 10 ms and represents the
time elapsed between the elicitation of the action potential and
the change in membrane potential at the postsynaptic neuron.
The amount of available neurotransmitter at each neuron ui is
called the readily releasable pool [49,50] and only a 5% frac-
tion is released at each firing [51,52] (δu = 0.05), according to
short-term synaptic plasticity. When all neurons are below the
firing threshold, activity stops and can be triggered again by
setting any random neuron to its threshold value, generating
another burst of firing neurons, called the neuronal avalanche.
We measure for each avalanche the size S as the number
of firing neurons, independently of their firing rate, and the
duration T as the number of time steps in the activity propaga-
tion. During an avalanche, because of short-term plasticity, the
available neurotransmitter decreases constantly. Therefore to
sustain further activity a recovery mechanism is needed. Since
the synaptic recovery takes a time of the order of seconds
[53–55], whereas synaptic transmission acts on the scale of
milliseconds [9,56], the available neurotransmitter recovery
is implemented at the end of each avalanche propagation as
ui = ui + δurec for all neurons. Here δurec is a tunable param-
eter which determines whether the network is in a subcritical,
a critical, or a supercritical state; i.e., in the critical state the
cutoff in the scale-free avalanche size distribution correctly
scales with the system size N [17,48], showing that the power
law is due to criticality.

The synaptic network structure is sculpted by the activity-
dependent long-term plasticity, following the principles of
Hebbian plasticity [57]. Whenever a neuron i fires, all synap-
tic strengths gi j to postsynaptic neurons j are strengthened
proportionally to the potential variation induced in the post-
synaptic neuron, as gi j (t + 1) = gi j (t ) + δgi j , where δgi j =
ε|(v j (t + 1) − v j (t ))| and ε = 0.04 is a parameter controlling
the strength of plastic adaptation. Conversely, at the end of
each avalanche, all gi j are reduced by the average increase in
synaptic strength per bond, gi j = gi j − ∑

δgi j/Ns, where Ns

is the total number of synapses in the network. Synaptic con-
nections whose strength becomes smaller than gmin = 10−5

are pruned, i.e., permanently removed from the network. In
order to modulate the initially random strengths, the long-term
plastic adaptation is either implemented for a fixed number
of stimulations Np = 10 000 or stopped at the first synaptic
pruning. We have studied systems with N = 16 000 neurons
in a cube of side L = 100 and data are averaged over 5000
network configurations.

III. DISTRIBUTION OF AVALANCHE SIZES AND
DURATIONS

As mentioned in the description of the model, it is possi-
ble to tune the system in different activity states, subcritical,
critical, and supercritical, by adjusting the parameter δurec

[17,48] controlling the efficiency in neurotransmitter recov-
ery. Since inhibitory neurons hamper the activity propagation
and limit large avalanches, by increasing their fraction the
system will move away from the critical state into the sub-
critical region. Here we consider networks in the critical
state, for which δurec is appropriately increased for increasing
fractions of inhibitory neurons. More precisely, we slowly
increase the value of δurec, moving from a subcritical regime
(exponential size distribution) to a regime where a power-
law behavior is detected in the size distribution. The critical
value of δurec is identified as the largest value providing a
power law with the cutoff as close as possible to N . We also
verify that no bump appears in the tail of the distribution,
a sign of an excess of large avalanches. In previous studies
it has been verified that activity can be tuned to be gen-
uinely critical; i.e., the cutoff in the scale-free avalanche size
distribution correctly scales with the system size N [17,48].
The distributions of avalanche sizes P(S) and durations P(T )
are shown in Fig. 1 for different percentages of inhibitory
neurons, each time tuning δurec to the critical state. The
size distribution exhibits a power-law behavior P(S) ∝ S−α ,
with α � 1.5, quite independently of the percentage of in-
hibitory neurons Pin, followed by an exponential cutoff which
moves towards smaller sizes of S as we increase the per-
centage of inhibitory neurons, hindering the occurrence of
large avalanches. The distribution of durations also shows
a power-law behavior P(T ) ∝ T −τ , with τ � 2.0, followed
by an exponential cutoff at long avalanche durations de-
pending on Pin. Both scaling exponents are in agreement
with experimental values [9,13,14,58] and consistent with
the mean-field branching model universality class [18] (see
Table I).

The critical exponents for the avalanche distributions have
been also found in a self-organized neuronal network model
without short-term plasticity, namely, in the absence of any
tuning parameter [15,41]. For this model with different Pin

the size distribution has been found to follow the scaling
form P(S) = S−α f (S/P−θ

in ), where α = 1.5 and the cutoff
size scales with Pin with an exponent θ � 2.2 for scale-free
networks. In self-organized models the fraction of inhibitory
neurons strongly affects the extension of the scaling regime;
however, data collapse confirms the value of α by appropri-
ately considering the cutoff scaling. To understand the role
of inhibitory neurons in the present model, which is not self-
organized but tuned at criticality, we first determine the value
of δurec which sets a purely excitatory system (Pin = 0%) in
the critical state. Then we fix the value of δurec and increase
the percentage of inhibitory neurons in the system. By doing
so, the system moves away from the critical point, into the
subcritical regime, which leads to a decrease of the scaling
regime in the distributions with the exponential cutoff moving
towards smaller avalanche sizes [Fig. 2(a)]. Similar behavior
is also observed for the distribution of avalanche durations
[Fig. 2(b), see Table I].
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FIG. 1. Avalanche size (a) and duration (b) distributions for 5000
configurations of a network of N = 16 000 neurons for Pin = 0, 5, 10,
15, 20, 25, and 30% in the critical state.

As for the self-organized critical model [15,41], upon
implementation of short-term plasticity but with no tuning
parameter, the avalanche size distribution exhibits (Fig. 3) the
scaling behavior

P(S) ∝ S−α f {S[Pinδurec(Pin )/δurec(Pin = 0)]θ }, (2)
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FIG. 2. Avalanche size (a) and duration (b) distributions for 5000
configurations of a network of N = 16 000 neurons for Pin = 0, 5, 10,
15, 20, 25, and 30% for fixed δurec = 0.001 value corresponding to
the critical state for Pin = 0%.

where δurec(Pin ) and δurec(Pin = 0) are the parameter values
for the system with a fraction Pin of inhibitory neurons and
for a fully excitatory system to be in the critical state, re-
spectively. The argument of the scaling function f (x), x =
S[Pinδurec(Pin )/δurec(Pin = 0)]θ , now takes into account that

TABLE I. Avalanche exponents for different Pin. The exponents τ and α have been obtained by fitting the distributions with a power law
in the critical case and by a power law truncated by an exponential in the subcritical case. The error on γ is obtained by propagation of
uncertainty. The exponent of the spectrum S( f ) is obtained by fitting with a power law in the high-frequency regime. The error on γcoll is
obtained by exploring the range of exponent values providing good collapse.

Pin δurec α τ γ = τ−1
α−1 γcoll γ〈S〉 γS( f )

0% 0.0010 1.50 ± 0.05 2.05 ± 0.05 2.1 ± 0.2 2.08 ± 0.02 2.10 ± 0.05 1.98 ± 0.05
10% 0.0014 1.50 ± 0.05 2.07 ± 0.05 2.1 ± 0.2 2.14 ± 0.01 2.14 ± 0.05 1.95 ± 0.05
20% 0.0023 1.50 ± 0.05 2.09 ± 0.05 2.2 ± 0.2 2.16 ± 0.02 2.3 ± 0.2 1.95 ± 0.05
30% 0.0037 1.50 ± 0.05 2.15 ± 0.05 2.3 ± 0.3 2.32 ± 0.03 2.4 ± 0.2 2.00 ± 0.05
10% 0.0010 1.50 ± 0.05 2.1 ± 0.1 2.2 ± 0.3 2.11 ± 0.02 2.15 ± 0.1 1.95 ± 0.05
20% 0.0010 1.5 ± 0.1 1.9 ± 0.2 1.8 ± 0.5 2.18 ± 0.04 2.15 ± 0.1 1.80 ± 0.05
30% 0.0010 1.7 ± 0.2 1.7 ± 0.2 1.0 ± 0.5 2.08 ± 0.04 2.1 ± 0.1 1.3 ± 0.1
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FIG. 3. Collapse of avalanche size distributions off
criticality onto a universal curve by plotting SαP(S) vs
S[Pinδurec(Pin )/δurec(Pin = 0)]θ , with α = 1.5 and θ = 2.4.

the activity is driven in the subcritical regime not only by
increasing the fraction of inhibitory neurons but also by not
tuning δurec: The ratio δurec (Pin )

δurec (Pin=0) is a measure of how far the
system is from the critical state. Interestingly, the values of
the scaling exponents are in good agreement with those found
for the self-organized model, namely, α � 1.50 ± 0.01 and
θ � 2.4 ± 0.1. This result suggests that the extension of the
scaling regime depends solely on the distance from the critical
state and not on the different mechanisms implemented in the
neuronal dynamics.

Within the context of the crackling noise, one has the
scaling relation 〈S〉 ∼ T γ , with γ given in Eq. (1). A simple
argument to justify this relation is the following [59]: Con-
sider an avalanche with size S′ and duration T ′ in the scaling
regime of the distributions. The probability to observe an
avalanche smaller than S′ is P(S < S′) ∼ S′1−α , analogously
P(T < T ′) ∼ T ′1−τ . If S′ is the average size of an avalanche
of duration T ′ and for a narrow distribution of avalanche
sizes with fixed duration, then P(S < S′) ≈ P(T < T ′) and
T ′γ (1−α) ∼ T ′1−τ , leading to Eq. (1). This relation holds for
avalanche sizes and durations in the critical scaling regime
and is very robust. It has been extended to a variety of other
avalanche processes [29,60] and verified experimentally in
neuronal systems in vitro and in vivo [31–33]. Numerically,
Eq. (1) has been recently validated in networks of integrate
and fire neurons [59] and for the Wilson-Cowan model with
different populations of excitatory and inhibitory neurons
[34].

In Fig. 4 we show the scaling of the average size with
fixed duration vs T for avalanches in the power-law regime
for systems with different percentage of inhibitory neurons.
The separate fit of the different curves shows that the slope
for all systems is very close to 2, the value expected on the
basis of Eq. (1) for α = 1.5 and τ = 2.0 (see Table I). Inter-
estingly, this scaling is also verified for systems off criticality,
except for fractions of inhibitory neurons larger than 20%. We
observe in this case that avalanches with a long duration are
not observed, which strongly reduces the scaling regime (inset

FIG. 4. Average avalanche size 〈S〉 vs duration T . The slope for
all values of Pin is close to 2. Inset: The same quantity for systems
not tuned at criticality, i.e., for fixed δurec = 0.001 and Pin = 10, 20,
and 30%.

in Fig. 4). Interestingly, the scaling 〈S〉 ∼ T 2 is still observed
but there is no agreement with the Sethna relation Eq. (1).

IV. SHAPE OF AVALANCHE PROFILE

Next, we analyze the shape of the avalanche profiles
for fixed avalanche duration in the critical state for dif-
ferent percentages of inhibitory neurons. To this end, we
consider avalanches, whose sizes are in the scaling regime
and have a duration in the range T ± 3, and we plot the
average number of firing neurons during the avalanche as
function of the rescaled time t/T . At criticality, the avalanche
profiles are nearly parabolic for all durations [Fig. 5(a)]. Ac-
cording to the scaling of the average avalanche size with
duration, it is possible to rescale the axes to collapse the
curves for different T onto a universal profile, according
to 〈S(t, T )〉 = T γ−1 f (t/T ). The best collapse would then
provide an independent evaluation of the exponent γ and
therefore a validation of the avalanche exponents at criticality.
In Figs. 5(b)–5(f) we show the collapse of avalanche profiles
with different durations for systems with various percentages
of inhibitory neurons. The collapse is obtained in all cases
with an exponent γcoll � 2 (see Table I) and the shape of the
profile is well fitted by a parabolic function for all values of
Pin. Interestingly, the same analysis performed off criticality
by fixing δurec = 0.001, although confirming the value γcoll �
2, exhibits a profile not compatible with a parabolic function.
We have then fitted the profiles with the asymmetric function
[29]

S/T γ−1 ≈ [t/T (1 − t/T )]γ−1[1 − a(t/T − 0.5)], (3)

where a is the measure of asymmetry. The best collapse
[Fig. 5(f)] is obtained for a � −0.25 for 20% inhibitory
neurons, with rightward asymmetry increasing for larger Pin

(a � −0.5 for Pin = 30%). Interestingly, a similar rightward
asymmetric avalanche shape is obtained in the Wilson-Cowan
model for different percentages of inhibitory neurons if the
system is set in the critical state by tuning an appropriate
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FIG. 5. (a) Average avalanche size S vs time for different durations in the critical state for Pin = 0. The behavior of the plots for other
inhibitory percentages are similar (not shown here). (b)–(e) The quantity S/T γcoll−1 versus t/T for different Pin. The average avalanche shape
for different durations collapses onto a universal profile. The green dashed line is a parabolic fit to the data. (f) The quantity S/T γcoll−1 versus
t/T for fixed δurec = 0.001 and Pin = 20%. The dashed green line shows the fit with Eq. (3).

parameter [34]. We have tabulated the exponents obtained
from different methods in Table I.

V. POWER SPECTRAL DENSITY

Next we analyze the behavior of the activity PSD in critical
and subcritical regimes, searching for the best agreement with
experimental data. We consider the temporal sequence of the
number of firing neurons a(t ) and define the power spectrum
as S( f ) = â( f )â∗( f ), where â( f ) is the discrete Fourier trans-
form of a(t ):

â( f ) =
T −1∑

t=0

a(t )e−2iπ f t/T . (4)

We first analyze the networks at criticality, where δurec is
adjusted to the values in Table I for different Pin. Figure 6(a)
shows the scaling behavior S( f ) � f −β which exhibits a sta-
ble critical exponent β � 2.0 for all percentages of inhibitory
neurons, with a crossover towards white noise at small fre-
quencies. This result is fully in agreement with the scaling
expected for crackling noise [24,25], where the theoretical
prediction is S( f ) � f −γ for avalanches at criticality. Un-
fortunately, this result does not comply with experimental
evidence, which rather exhibits an exponent β close to unity
for a variety of healthy neuronal systems.

Next we evaluate the PSD for the activity signal in net-
works not tuned at criticality but fixing the parameter δurec

at the value for the critical state of Pin = 0%. Results shown
in Fig. 6(b) confirm an effective power-law behavior over a
scaling regime decreasing with Pin and a crossover towards
white noise at small frequencies. Moreover, as shown in the

inset, the effective exponent β continuously varies with Pin,
from β � 2.0 for purely excitatory systems to β � 1.0 for
30% inhibitory neurons, the fraction typically found in mam-
mal brains (see Table I). Moreover, the crossover to white
noise moves to larger frequencies for increasing Pin, corre-
sponding to the inverse of the longest avalanche duration in
the system. The behavior observed in Fig. 6(b) has been also
evidenced in the self-organized model for neuronal activity
[41]. To fully characterize the properties of the PSD in the
entire phase diagram, we have systematically tuned the pa-
rameter δurec over a range of values at and off criticality for
different Pin and measured the exponent β. The contour plot
in Fig. 7 suggests an interesting behavior: At criticality (con-
tinuous black line) and in the supercritical phase, Brown noise
(β ∼ 2) is always found, which is in fact the value measured in
epileptic patients. Conversely, moving away from the critical
line, into the subcritical region, provides β values closer to
experimental data for healthy patients. The model, therefore,
suggests that systems in healthy conditions act slightly off
criticality, in the subcritical regime.

VI. CONCLUSIONS

In neuronal systems inhibition has a crucial role in keeping
activity balanced under healthy conditions. Inhibitory neurons
act as sinks, hampering activity propagation; therefore, their
presence affects avalanche dynamics. In particular, the open
question is how their dissipative role can affect the predictions
by the general scaling theory for avalanches, initially formu-
lated for crackling noise [24]. Among a variety of scaling
relations we investigate the robustness of the predictions on
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(a)

(b)

FIG. 6. (a) Power spectral density for systems at criticality pro-
vides an exponent β � 2.0 for all fractions of inhibitory neurons.
(b) Power spectral density for different percentages of inhibitory neu-
rons and fixed δurec corresponding to the critical state for Pin = 0%.
The effective exponent β decreases toward unity and the scaling
regime shrinks for increasing Pin → 30%. Inset: The effective ex-
ponent β as function of Pin.

the scaling of the average size with duration, the universal
profile, and the activity spectra. All these properties, except
the last one, have been intensively investigated experimentally
and numerically in different contexts, confirming the general
validity of the scaling theory. Here we performed a numerical
study of a neuronal network model, able to simulate systems
at and off criticality and therefore to monitor the role of inhi-
bition. We evidence that the expected scaling behavior for the
average size with duration and the collapse onto a universal
profile are robust properties verified in systems with different
fractions of inhibitory neurons at and near criticality, provided
that we consider avalanches in the scaling regime. Therefore,
the arguments of the Sethna scaling appear to be very robust
also for neuronal avalanches, confirming the existence of a
universal exponent γ ∼ 2 even when the system is not tuned at
criticality. In this case the exponents for the size and duration
distributions show effective values because of the exponential
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FIG. 7. Contour plot of the β exponent values for different δurec

and Pin. The value of the exponent is given by the color code. The
continuous black line is the critical line, with the supercritical (sub-
critical) region for larger (smaller) δurec, respectively. Irregularities in
the contour shape are an artifact due to the numerical discretization.

corrections due to dissipative effects introduced by inhibitory
neurons, but these do not affect the scaling of the average size
and the avalanche shape, except for the emergence of a slight
asymmetry. Interestingly, since the system is off criticality, the
scaling relation, Eq. (1), in this case no longer provides the
value of the exponent describing how the average size scales
with duration and avalanche profiles collapse.

Moreover, the avalanche scaling theory predicts the same
exponent for the power spectrum, S( f ) ∼ f −γ [25], which is
in stark contrast with experimental data for healthy brains,
which rather exhibit effectively 1/ f noise. We evidence that
inhibition is responsible for the crossover in the scaling be-
havior of the power spectrum: Without tuning the parameter
setting the system at criticality, a fraction of 30% inhibitory
neurons leads to a behavior closer to 1/ f noise, the same
evidence found in self-organized models in the absence of
a tuning parameter [41]. Not compensating inhibition by in-
creasing the parameter δurec amounts to driving the system
away from criticality, in the subcritical regime, as the per-
centage of inhibitory neurons increases. In this case, effective
exponents close to 1/ f noise can be measured. Therefore,
numerical results suggest that deviations of β from the Brown
noise value can provide an indicator of how far from criticality
the system operates.
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