
PHYSICAL REVIEW E 106, 024215 (2022)

Additional complex conjugate feedback-induced explosive death and multistabilities
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Many natural and man-made systems require suitable feedback to function properly. In this study, we aim to
investigate the impact of additional complex conjugate feedback on globally coupled Stuart-Landau oscillators.
We find that this additional feedback results in the onset of symmetry breaking clusters and out-of-phase clusters.
Interestingly, we also find the existence of explosive amplitude death along with disparate multistable states.
We characterize the first-order transition to explosive death through the amplitude order parameter and show
that the transition from oscillatory to death state indeed shows a hysteresis nature. Further, we map the global
dynamical transitions in the parametric spaces. In addition, to understand the existence of multistabilities and
their transitions, we analyze the bifurcation scenarios of the reduced model and also explore their basin stability.
Our study will shed light on the emergent dynamics in the presence of additional feedback.
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I. INTRODUCTION

In many natural and man-made systems including neural
networks, vision systems, lasers, etc., feedback is essential for
proper functioning and it can be used for enhancing the perfor-
mance of such systems [1–4]. Besides, several investigations
have been conducted using various nonlinear models to get a
better understanding of the dynamical characteristics as well
as the impact of feedback [5–10]. Recent investigations reveal
that appropriate feedback can restore oscillatory dynamics or
induce the oscillation death state depending on the proper-
ties of the ensembles, coupling architecture, and the kind of
feedback and its strength [11–13]. Importantly, among the
various intrinsic and extrinsic parameters such as time delay,
low-pass filtering, mean-field density, etc., typically, the feed-
back is used for controlling purposes [14–22]. For instance,
the conjugate feedback or the self-feedback approach is used
for controlling the birhythmicity in different realistic models
such as energy harvesting systems as well as biochemical
systems [23,24]. The self-feedback factor can also be used for
controlling the spontaneous symmetry breaking oscillations
[25]. The linear feedback in the diffusion term can cause
suppression of aging whereas by providing the feedback in the
mean-field term one can enhance the aging region [26–28].
The robustness of dynamical activity has also been demon-
strated in damaged scale-free and small-world networks using
external feedback mechanisms [29].

On the other hand, explosive transitions like explosive per-
colation (EP), explosive synchronization (ES), and explosive
death (ED) have also been extensively studied in networks of
coupled systems by various research groups [30–33]. Each of
these transitions has its own merits and demerits. Among all

of them, explosive death is an interesting phenomenon that
exhibits a first-order jump from oscillatory state to oscillation
death state [34]. Understanding the reason behind the emer-
gence of such ED may help to predict or prevent them earlier
in real-time instances. Originally, the explosive death was
reported in frequency weighted coupling under three differ-
ent frequency distributions [34]. Subsequently, ED was also
investigated in mean-field diffusive coupling, and the occur-
rence of ED was reported in van der Pol and Lorenz oscillators
[35]. Later, it was also demonstrated in the coupled limit
cycle and chaotic oscillators under different kinds of network
topologies including nearest neighbors, all to all, nonlocal,
and star network connectivities [36,37]. Very recently, conju-
gately coupled van der Pol oscillator induced ED (first-order
transitions during the forward and backward transitions) and
semi-ED (first-order transitions occur during forward transi-
tions, while second-order transitions occur during backward
transitions, or vice versa) have also been demonstrated [38].
Further, dynamical mean-field interaction induced ED was
reported under the limit cycle, chaotic oscillators, and neu-
ral networks [39]. As of now, the explosive death state has
been identified due to various kinds of interactions and fre-
quency distribution. In this paper, we examine whether an
additional complex conjugate feedback can exhibit explosive
transitions and multistabilities. Interestingly, we show that
the additional complex conjugate feedback induces distinct
symmetry-breaking states as well as an explosive transition
to an amplitude death state.

In order to find out the effect of an additional complex
conjugate feedback factor, we considered a network of glob-
ally coupled Stuart-Landau (SL) oscillators. With increasing
feedback strength of the additional conjugate coupling, we
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find a transition from a complete synchronization (CS) to non-
trivial amplitude death (NAD) via symmetry breaking clusters
(SBCs) and out-of-phase clusters (OPCs). Remarkably, an
explosive transition to amplitude death is observed with the
variation of the complex conjugate feedback factor. Interest-
ingly, the hysteresis width decrease with the coupling strength
of the global coupling is analyzed using the amplitude order
parameter, and we find the existence of a first-order transition
with hysteresis. In addition, the global dynamical transitions
are illustrated in parametric space to map the occurrence of ex-
plosive transitions and multistabilities. Increasing the strength
or frequency of feedback enhances the multistability regions.
The observed multistability regions are confirmed further by
performing a bifurcation analysis and a basin of attraction in
the reduced model. Furthermore, the stability condition for
NAD is obtained using linear stability (LS) analysis.

The rest of the article is organized as follows: The model
of globally coupled SL oscillators is introduced with ad-
ditional conjugate feedback in Sec. II. Following this, the
corresponding dynamical states and their transitions are an-
alyzed in Sec. III; particularly, in Secs. III and IV, we show
the existence of explosive transitions and the correspond-
ing dynamical behaviors in the parametric spaces. Further,
to confirm the existence of distinct multistability among the
dynamical states, we illustrated the one-parameter bifurcation
diagram and the basin of attraction using the reduced model in
Sec. V. Finally, we summarize our findings in the conclusion,
Sec. VI.

II. THE MODEL

To delineate the effect of additional complex conjugate
feedback, we consider a general, paradigmatic model of
identical Stuart-Landau (SL) oscillators which are coupled
through mean-field diffusive coupling [40–44]. Additionally,
a complex conjugate mean-field feedback is introduced into
the system of globally coupled SL oscillators; the dynamical
model reads

ẇk = (α + i� − |wk|2)wk + ε[w − wk]

+ η[w∗], k = 1, 2, . . . , M, (1)

where M is the chosen number of oscillators (M = 100 in
our studies). wk = xk + iyk . α is the Hopf bifurcation param-
eter and � is the system frequency. Here w = 1

M

∑M
k=1 wk

is the mean-field and w∗ = 1
M

∑M
k=1 w∗

k or 1
M

∑M
k=1 (xk − iyk )

is the conjugate mean-field. ε (>0) is the coupling strength
of the conventional mean-field diffusive coupling and η (>0)
is the strength of the complex conjugate mean-field feedback.
The numerical simulations are carried out using fourth-order
Runge-Kutta algorithm with a fixed step size h = 0.01. In the
following, we will mainly explore the effect of the additional
feedback factor η on the dynamics of the system.

III. DYNAMICAL STATES AND THEIR TRANSITIONS

In the absence of additional conjugate feedback, i.e., η =
0.0, the coupled system Eq. (1) exhibits complete synchro-
nization for all the nonzero values of coupling strength ε.
When the additional feedback is introduced into the coupled

system, it results in the existence of two different cluster states
and nontrivial amplitude death while increasing the feedback
strength η. Spatiotemporal evolution and snapshots of the
observed dynamical states are demonstrated in Fig. 1 for ε =
0.2 (� = 1.3). The inset in each of the snapshots represents
the time evolution of representative oscillators x1 and x51.
Figure 1(a) shows the emergence of complete synchronization
(CS) for η = 0.2. Due to the coherent oscillatory behavior of
the CS state, all the x j variables take the same value in the
snapshot as depicted in Fig. 1(e). The time series trajectory
of the representative oscillators x1 and x51 are also synchro-
nized and oscillates with the same amplitudes and zero phase
difference, as can be seen in the inset in Fig. 1(e). If the
feedback strength is increased, we find that the oscillators in
the network split into two subgroups and result in two cluster
states: this is shown in Fig. 1(b) for η = 1.3. Interestingly, we
noticed that the observed x j variables of the two clusters have
asymmetric values, as depicted in Fig. 1(f). Such cluster states
is referred to as symmetry breaking clusters (SBCs) [45,46].
From the inset in Fig. 1(f), it is clear that the oscillators x1

and x51 from the two different clusters oscillate with differ-
ent amplitudes and phases. Further increase in the feedback
strength results in symmetric clusters with π phase difference.
Therefore, the values are exactly equal and take opposite signs
[see Figs. 1(c) and 1(g) for η = 1.5], and are further referred
as out-of-phase clusters (OPCs). The representative oscillators
x1 and x51 from the OPC state have identical amplitudes but
with a π phase difference [see the inset in Fig. 1(g)]. Further
increase in η gives rise to an oscillation quenching state. Here,
we observe a nontrivial amplitude death (NAD) state as seen
in Figs. 1(d) and 1(h). In NAD, all the oscillators attain the
same steady state with nontrivial coupling dependent nonzero
value, as is evident from Fig. 1(h) and the representative
oscillators in the inset. In the next section, we point out the
occurrence of explosive transition as a function of the feed-
back strength in the following.

IV. EXPLOSIVE TRANSITIONS

To illustrate the occurrence of explosive transition due to
additional conjugate feedback, we have plotted the normalized
average amplitude order parameter as a function of η as shown
in Fig. 2. The order parameter in terms of normalized average
amplitude [RA(η)] is defined by

RA(η) = A(η)

A(0)
, (2)

where A(η) is estimated by finding the difference between
the global maxima and minima of all the oscillators av-
eraged over a long time interval at a particular feedback

strength which can be defined as A(η) = (
∑M

k=1〈xk,max〉t −∑M
k=1〈xk,min〉t )/M. A(0) denotes the average amplitude of the

oscillators in the absence of feedback. In the death state,
RA(η) takes null value, otherwise RA(η) > 0 for the oscil-
latory state. Primarily, we have plotted the amplitude order
parameter for variation in η for a fixed coupling strength
ε = 0.2. We can note that on increasing the feedback strength
the system exhibits a first-order transition, that is, a transition
from higher amplitudes to null value of amplitude at a critical
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FIG. 1. Spatiotemporal evolution of globally coupled Stuart-Landau oscillators with additional conjugate feedback strengths (a) η = 1.0
(complete synchronization CS), (b) η = 1.3 (symmetry breaking clusters SBC), (c) η = 1.5 (out-of-phase clusters OPC), and (d) η = 2.0
(nontrivial amplitude death NAD). (e)–(h) are the corresponding snapshots of x j variables and the insets represent the time evolution of
representative oscillators x1 and x51. Other parameters are ε = 0.2, � = 1.3, α = 1.0, and N = 100.

feedback strength η = 1.6 during the forward transition, as
shown in Fig. 2(a). Interestingly, one notes that the amplitude
order parameter takes an intermediate value for the feedback
strength in the range 1.3 � η � 1.6. The reverse transition
(i.e., decreasing η) results in a first-order transition from null
value amplitude to high values at η = 1.3. Importantly, in the
intermediate region, the SBCs or OPCs coexist with the NAD
state. Due to this coexistence, the forward and reverse transi-
tions exhibit a hysteresis behavior. Such first-order transition
to death with hysteresis confirms the appearance of explosive
death. Furthermore, the amplitude order parameter is plotted
for increased values of the coupling strength to ε = 0.4 and
ε = 0.6 in Figs. 2(b) and 2(c). We also observe that increasing
coupling strength ε reduces the hysteresis area and suppresses
it completely at a larger coupling strength.

V. DYNAMICAL TRANSITIONS IN
THE PARAMETRIC SPACES

Furthermore, for a more clear understanding of the explo-
sive transitions and multistabilities, we analyze the dynamical
behavior of the system specified by Eq. (1) through parametric
spaces in detail. Initially, to understand the dynamical tran-
sitions in the parametric space, the two-parameter diagrams
are plotted in (ε, η) parametric space in Fig. 3 by fixing the
frequency at four different values, namely � = 1.3, 1.5, 2.0,
and � = 3.0. The striped patterns indicate the hysteresis area.
In Fig. 3(a) for � = 1.3, at lower feedback strength with

increasing coupling strength, the system (1) exhibits a com-
plete synchronization behavior for the full range of coupling
strength. Increasing the feedback strength, the system (1)
gives rise to multistabilities between SBC and NAD as well
as OPC and NAD states represented by the regions R1 and
R2, respectively. Increasing the feedback to larger values, one
finds a suppression of the multistability regions and one finds
NAD regions in the entire parametric space. On increasing
the frequency to � = 1.5, we observe that the CS region is
increased. Subsequently, the R2 region is suppressed with the
onset of additional multistability regions R3 and R4. In these
regions, CS coexists with OPC and SBC states, respectively.
Increasing the frequency further to � = 1.5 and � = 2.0,
one finds the R3 region gets widened, while the region R4 is
reduced.

In order to illustrate the occurrence of multistabilities and
explosive transition due to the additional conjugate feedback,
the two-parameter diagrams are also plotted in Fig. 4 by
fixing the feedback strength at different values. For feedback
strength η = 1.0, an increasing frequency manifests in a tran-
sition from NAD to CS for all values of coupling strength[see
Fig. 4(a)]. Interestingly, we noticed the onset of the SBC
region at certain critical values of ε and � in the NAD region
(denoted as R2). Increasing the feedback strength to η = 1.2
[depicted in Fig. 4(b)], one finds that the system (1) gives rise
to wider region of R2. Also, we noticed the existence of the
R1 region at lower frequencies. On increasing the feedback
strength to η = 1.5, one finds that the R2 region diminishes.
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FIG. 2. Amplitude order parameter as a function of η for mean-field coupling strengths (a) ε = 0.2, (b) ε = 0.4, and ε = 0.6. The lines
connecting the unfilled circles and the filled triangles denote the forward (down arrow) and backward (up arrow) transitions, respectively.
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FIG. 3. Two-parameter diagrams in (ε, η) space (a) for � = 1.3,
(b) for � = 1.5, (c) for � = 2.0, and (d) for � = 3.0. CS and NAD
are the complete synchronization and nontrivial amplitude death
states, respectively. R1, R2, R3, and R4 are the multistability regions
of OPC-NAD, SBC-NAD, OPC-CS, and CS-SBC, respectively.

Eventually, we observe two additional different multistabil-
ity regions R3 and R4 [see Fig. 4(c)]. Upon increasing the
feedback as shown in Fig. 4(d), one observes an enlarged R3

region. From the above observations, it is clear that the addi-
tional conjugate feedback results in interesting multistability
among the dynamical states in the parametric space.

VI. DYNAMICAL BEHAVIORS THROUGH
REDUCED MODEL

In order to understand the genesis of the explosive tran-
sition and multistability, we perform a bifurcation analysis
and basin stability analysis in the following. For this purpose,
we reduce our considered system [Eq. (1)], by splitting the
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FIG. 4. Two parameter diagram in ε, � space for (a) η = 1.0, (b)
η = 1.2, (c) η = 1.5, and (d) η = 2.0. CS and NAD are the com-
plete synchronization and nontrivial amplitude death, respectively.
R1, R2, R3, and R4 are the multistability regions of OPC-NAD,
SBC-NAD, OPC-CS, and CS-SBC, respectively.
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FIG. 5. One-parameter bifurcation diagram for (a) ε = 0.2, � =
1.3 and (b) ε = 0.3, � = 2.0. R1, R2, R3, and R4 are the multi-
stability regions of OPC-NAD, SBC-NAD, OPC-CS, and CS-SBC,
respectively. The lines connecting filled circles, diamonds, and tri-
angles denote the stable CS, SBC, and OPC states, respectively.
CS, SBC, and OPC are the complete synchronization, symmetry-
breaking clusters, and out-of-phase clusters, respectively. NAD
represents the nontrivial amplitude death state. TR, SN, and PBs

denote the torus, saddle-node, and pitchfork fork bifurcation points,
respectively. The solid red line represents the stable steady state. The
open circles and dashed lines indicate the unstable steady state and
unstable oscillations, respectively.

network into two groups wk = W1 for k = 1, 2, . . . , M(1 − p)
and wk = W2 for k = M(1 − p) + 1, . . . , M, where p = 0.5.
The corresponding dynamical equations can be written as

Ẇ1 = (α + i� − |W1|2)W1 + ε

2
(W2 − W1) + η

2
W

∗
,

(3)
Ẇ2 = (α + i� − |W2|2)W1 + ε

2
(W1 − W2) + η

2
W

∗
,

where W ∗ = W ∗
1 + W ∗

2 . To show the dynamical transitions
and multistability, primarily we have plotted the one-
parameter bifurcation diagram (using XPPAUT [47]) by fixing
ε = 0.2, � = 1.3 in Fig. 5(a). Increasing the feedback
strength shows a direct transition from a homogeneous os-
cillatory state to a homogeneous steady state that is CS to
NAD through saddle-node bifurcation (SN) at the feedback
strength η = 1.3. In addition for a particular value of feedback
(η = 1.29) the onset of the SBC takes place through torus
(TR) bifurcation. The amplitudes of the SBC cluster have
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FIG. 6. Stable NAD regions in (a) (ε,�) space for η = 1.0, (b) (ε, η) space for � = 1.0, and (c) (�, η) space for ε = 1.0. The dashed line
in each figure indicates the stability curve which separates CS and NAD states.

different values which decrease while the value of η increases
and attains the same values of amplitude where it transits to
OPC. Further, the OPC state loses its stability at a critical
feedback strength η = 1.7 and attains the NAD state. The
shaded regions represent the multistability regions R1 and R2,
respectively.

In addition, to delineate other multistability zones, we set
the parameters at ε = 0.3 and � = 2.0 and depict a one-
parameter diagram, as shown in Fig. 5(b). The bifurcation
diagram clearly shows that increasing the value of η results in
the birth of SBC through the TR bifurcation, which coexists
with CS shown by R4. As η increases, the SBC state transits to
the OPC state. The CS state coexists with the OPC state in the
area of multistability region R3. If the feedback is increased
further, the coexistence of the OPC and NAD regions (denoted
by R1) is revealed.

Further, one can also determine the stability criterion for
the oscillation quenching state using the reduced model. In
order to find the stability of the observed nontrivial amplitude
death state, we first estimate the fixed point (x1, y1, x2, y2) =
(±x∗,±y∗,±x∗,±y∗) using Eq. (3),

x∗ = ∓
√

η + α − �2

η
− η̃

η2

√
2

,

y = ∓η3 + η2α − η̃

η(η + α)�
x∗, (4)

where η̃ =
√

η2(η + α)2(η2 − �2). Further, by finding the
Jacobian matrix of Eq. (3) the eigenvalues are obtained, and
are expressed as

λ1,2 = α − 2r∗ ∓
√

r∗2 − �2,
(5)

λ3,4 = α − 2r∗ ∓
√

r∗2 − 2d∗ + η2 − �2,

where r∗ = x∗2
1 + y∗2

1 and d∗ = y∗2
1 − x∗2

1 . The stability con-
dition for NAD is identified by equating the real part of the
eigenvalues to zero, and is obtained as ηSN = �.

Using the stability condition ηSN = �, we present the
stable NAD region in different parametric spaces in Fig. 6.
The stability curve for the NAD region, which separates the
CS and NAD regions, is shown by the dashed line in each
diagram. From Fig. 6(a), it is clear that for η = 1.0 the stable
boundary exists at � = 1 and the stability region occurs for
� � 1.0 for all values of ε. Analogously, from Fig. 6(b) in

(ε, η) space, the stability region occurs at η = 1 and η � 1.0
for all values of ε and � = 1. Furthermore, for any value
of ε, the stable NAD region in (�, η) space exists when
ηSN � �, as seen in Fig. 6(c). It is also noticed that the fixed
points and stability conditions of NAD are independent of the
coupling strength (ε). Hence, the boundary does not change
with respect to ε. It can be seen that the stable boundaries of
NAD region match well with the numerically obtained NAD
region [cf. Figs. 4(a) and 3(a)].

To validate the existence of bistability among the dynam-
ical states, the basin of attraction is plotted in Fig. 7 using
Eq. (2) by fixing the initial state of y1(0) and y2(0) and by
varying x1(0) and x2(0) [48]. First, the upper panel A is plotted
by fixing ε = 0.2 and � = 1.3 for different values of feedback
strength. For η = 1.1, We can observe that the entire initial
state space is filled with a complete synchronization state as
shown in Fig. 7(a)(i). If the feedback strength is increased
to η = 1.37, we notice that some of the asymmetric initial
states favor SBC and the remaining initial states favor the
NAD state [see Fig. 7(a)(ii)]. Here, the asymmetric initial
states represented by x1(0) reach positive initial states while
x2(0) attains negative values or vice versa. Thus, Fig. 7(a)(ii)
provides evidence for the coexistence of SBC and NAD.
Further, on increasing the feedback strength to η = 1.5, one
observes that SBC gets wiped out by OPC [see Fig. 7(a)(iii)].
Upon increasing the feedback strength further we find that
the entire initial state space is occupied by the NAD state
[see Fig. 7(a)(iv)]. Similarly, panel B is plotted for ε = 0.3,
� = 2.0, which corresponds to Fig. 5(b). For η = 1.3, we
observed that the entire basin is filled with the CS state, as
shown in Fig. 7(b)(i). When the feedback strength is increased
to η = 1.58, certain asymmetric initial states result in the SBC
state, while the others lead to the CS state [see Fig. 7(b)(ii)].
If the feedback is increased to η = 1.8, the SBC transits to
the OPC state, which coexists with the CS state, as shown in
Fig. 7(b)(iii). When the feedback strength is increased further
(η = 2.0), the CS in the basin is completely suppressed. Fi-
nally, the NAD state occupies the basin instead of the CS state
[see Fig. 7(b)(iv)]. As the feedback gets stronger, it acquires
NAD for the entire basin, as shown in Fig. 7(b)(v). From these
observations, it is clear that the onset of multistability among
the dynamical states is the major impact of feedback strength.

VII. CONCLUSIONS

The feedback factor is known to be vital for reviving oscil-
lation death or restoring rhythmicity in a dynamical system.
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FIG. 7. Basin of attraction by fixing the initial states at y1(0) = 0.5 and y2(0) = 0.45 and varying x1(0) and x2(0) for panel (a): (i) η = 1.1,
(ii) η = 1.37, (iii) η = 1.5, and (iv) η = 1.8. For panel (b): (i) η = 1.3, (ii) η = 1.58, (iii) η = 1.8, (iv) η = 2.0, and (v) η = 2.3. The other
parameters for the panels (a) and (b) are fixed corresponding to Figs. 5(a) and 5(b), respectively.

The purpose of this study is to analyze whether the feedback
component may lead to explosive death and multistability. To
accomplish this, we have considered a system of globally cou-
pled Stuart-Landau oscillators with conjugate feedback. We
first looked at dynamical transitions by increasing the feed-
back factor. We discovered that the transition from complete
synchronization (CS) to nontrivial amplitude death (NAD)
occurs via symmetry breaking clusters (SBCs) and out-of-
phase clusters (OPCs). The emergence of explosive transitions
is demonstrated using the amplitude order parameter as a
function of feedback strength. The occurrence of first-order
transitions is linked to hysteresis behavior.

The region of multistable states is found to be governed
by the interplay of feedback factors and the natural frequency
of the coupled oscillators. For a better understanding of the
observed scenarios, we have considered a reduced model and
carried out a detailed bifurcation analysis and a linear stability
analysis, which are in good accord with the numerical results
of the extended system. The obtained results imply that the
globally coupled oscillators exhibit an explosive death and
distinct multistable states as a result of additional conjugate

feedback. Additionally, the proposed work raises many open
problems. For instance, extending our study to different topo-
logical structures, such as scale free, small world, and others,
is a practical realization. Feedback is a common way to restore
dynamism to the degraded dynamical units in a complex net-
work, and it is also crucial to investigate the effects of different
feedbacks.

Our findings may offer insight into the impact of additional
feedback in many biological systems where feedback appears
naturally to regulate physiological mechanisms [49,50] and
in engineering systems where often feedback is intentionally
introduced for control purposes (e.g., in phase-locked loops
and laser systems [51,52]).
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