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Dark soliton is usually seen as one of the simplest topological solitons, due to phase shift across its intensity
dip. We investigate phase characters of single-valley dark soliton (SVDS) and double-valley dark soliton (DVDS)
in a single-mode optical fiber with third-order dispersion and delayed nonlinear response. Notably, two different
phase shifts can produce an SVDS with the same velocity under some conditions, which is not admitted for a
dark soliton with only the second-order dispersion and self-phase modulation, whose phase shift and velocity is
a one-to-one match. This phase property of SVDS can be used to explain the generation of previously reported
DVDS in Hirota equation and make DVDSs show two types of phase profiles. Moreover, the different topological
vector potentials underlying the distinct phase profiles have been uncovered. We further explore the collision
properties of the DVDSs by analyzing their topological phases. Strikingly, the inelastic collision can lead to the
conversion between the two types of phase profiles for DVDS. The results reveal that inelastic or elastic collision
can be judged by analyzing virtual topological magnetic fields.
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I. INTRODUCTION

Nonlinear optical fibers are known to be the most conve-
nient quasi-one-dimensional system to investigate dynamical
properties of solitons, owing to the simplicity and precise
control on the experimental parameters [1–5]. In the picosec-
ond regime, the propagation of optical pulses is modeled by
the one-dimensional nonlinear Schrödinger equation (NLSE)
[6,7], which accounts for the second-order dispersion and self-
phase modulation. This generic model with self-defocusing
(self-focusing) nonlinearity admits dark (bright) soliton [6,7].
In contrast to the bright soliton, dark soliton has a nontrivial
distribution of their phase, so there exists a finite phase shift
across the intensity dip [3,4]. Because of this, dark soliton
is usually seen as one of the simplest topological solitons
[8–10]. A phase shift is always necessary to create a dark
soliton in experiments [3,4], which is absent for usual bright
solitons. This has been confirmed in many dark soliton ex-
periments [2–4]. Generally, an abrupt π phase shift produces
a stationary dark soliton [2–4]. While a continuous changing
phase creates a moving dark soliton, the dependence of the
momentum on the velocity determines its stability [11,12].
Recently, the intriguing topological phases of the SVDS in
scalar NLSE and multivalley dark soliton in vector NLSE have
been revealed [13,14], via extending the complex coordinate
space to explore the intensity zeros of dark solitons. The phase
variations of dark solitons are usually velocity-dependent.
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Specifically, there is a one-to-one match between the phase
shift and velocity of dark solitons in NLSE [3,4,13,14].

For ultrashort pulses (in the subpicosecond or femtosecond
regime), the higher-order effects such as higher-order disper-
sion and delayed nonlinear response can no longer be ignored
[15,16]. In this case, the evolution of optical solitons follows
from the higher-order NLSE rather than the standard NLSE,
such as the Hirota equation (HE) and Sasa-Satsuma equa-
tion [15–22]. Remarkably, a recent study has demonstrated
that in the single-mode HE, a single dark soliton can admit
two kinds of intensity profiles [23]. One is the well-known
dark soliton which generally has a single valley (denoted as
SVDS). The other is a dark soliton with double valleys (de-
noted as DVDS). The DVDS cannot exist in scalar NLSE, and
their formation mechanism in HE is still not explained well.
On the other hand, the phase properties of these dark solitons
with high-order effects have not been studied systematically.
Noting that the DVDS is composed of two parallel SVDSs
[20,23,24], we expect that the relations between phase shift
and velocity of an SVDS could be helpful in understanding
the formation mechanism of DVDSs.

In this study, we focus on the phase properties of dark
solitons in a single-mode optical fiber with the third-order dis-
persion and delayed nonlinear response, with the aid of exact
dark solitons solution of scalar defocusing HE. Interestingly,
there are two types of correspondence relations between the
velocity and phase shift of an SVDS under some conditions.
For type I, there is a one-to-one match between the phase
shift and velocity, similar to the ones in NLSE. For type II,
an SVDS at the same velocity possesses two different phase
profiles; that is why the DVDS can be formed in scalar HE.
The phase profile of a DVDS can be U-shaped or double-step
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type. We present the existence diagrams for the two types of
correspondence relations with varying the background wave
number or the higher-order nonlinearity. Meanwhile, the dif-
ferent topological vector potentials underlying the distinct
phase shifts have been revealed. Furthermore, we discuss
solitons’ collision containing the DVDSs from a phase stand-
point, via combining the topological vector theory with the
developed asymptotic analysis technique. Strikingly, the type
of phase distribution of a DVDS can be changed after the
inelastic collision, due to the variations of virtual topological
magnetic fields. The inelastic collision must result in changes
in topological magnetic fields in the complex space. For the
elastic collision, both the intensity and phase profiles remain
unchanged. These phase properties provide an alternative ap-
proach to understanding dark solitons’ physical mechanism
and collision properties.

Our paper is organized as follows. In Sec. II, we present
the physical model and study phase characters of an SVDS.
The existence diagrams for the two types of correspondence
relations between the velocity and phase shift are presented.
In Sec. III, two types of phase distributions for a DVDS with
the same velocity have been studied in detail. In Sec. IV, we
discuss the collision properties of DVDSs based on the topo-
logical vector potential theory and the asymptotic analysis
technique. Finally, the summary is given in Sec. V.

II. PHYSICAL MODEL AND PHASE CHARACTERS
OF SINGLE-VALLEY DARK SOLITON

The single mode optical fibers with the third-order disper-
sion and delayed nonlinear response can be governed by the
well-known HE [17–19]. In dimensionless form it is given by

i
∂q

∂t
+ 1

2

∂2q

∂x2
+ σ |q|2q − iβ

(
∂3q

∂x3
+ 6σ |q|2 ∂q

∂x

)
= 0, (1)

where t , x are time evolution and spatial distribution coordi-
nates, and q(x, t ) is the envelope of the wave field. However,
in the context of optical fibers, the roles of t and x are reversed.
This model can describe the propagations of ultrashort light
pulses, such as subpicosecond or femtosecond pulses. The
last two terms in Eq. (1) that enter with a real coefficient
β are responsible for the third-order dispersion and delayed
nonlinear response, respectively. Based on the integrability
of HE, many kinds of exact localized wave solutions have
been obtained by various methods. There are dark solitons
in defocusing case (σ = −1) [20,23–26], and bright solitons,
rogue waves, rational solitons and breathers in focusing case
(σ = 1) [21,22,27–32].

In this study, we will investigate the phase characters of
SVDS and DVDS in defocusing case, based on the exact
n-dark solitons solution [see Eq. (A5)] of Eq. (1). The de-
tailed derivation processes have been given in Appendix A,
by applying n-fold Darboux transformation (DT) on plane
wave background q[0] = ceiθ with θ = ax − [β(a2 + 6c2)a +
1/2a2 + c2]t [33]. Here, c and a are the amplitude and wave
number of the background, respectively. Since the units of
Eq. (1) are dimensionless, the background velocity equals
the value of wave number, based on the quantum mechanics
theory [34]. In our calculations, we introduce the spectral

TABLE I. The velocity ranges of SVDS. Here, the expres-
sions vds|z1=π = 3β(a2 + 2ac + 2c2) + c, vds|z1=0 = 3β(a2 − 2ac +
2c2) − c, vds|z1=ze = (3a2 + 2c2)β − (1+6aβ )2

16β
, and ze = arccos( ρ

2 )
with ρ = (6aβ + 1)/(4cβ ).

β a vds

β > 0 a < − 8cβ+1
6β

vds|z1=π � vds � vds|z1=0

a >
8cβ−1

6β
vds|z1=0 � vds � vds|z1=π

− 1
6β

� a <
8cβ−1

6β
vds|z1=ze � vds � vds|z1=π

− 8cβ+1
6β

< a � − 1
6β

vds|z1=ze � vds � vds|z1=0

β < 0 a < − 8cβ+1
6β

vds|z1=0 � vds � vds|z1=π

a >
8cβ−1

6β
vds|z1=π � vds � vds|z1=0

− 1
6β

� a <
8cβ−1

6β
vds|z1=π � vds � vds|z1=ze

− 8cβ+1
6β

< a � − 1
6β

vds|z1=0 � vds � vds|z1=ze

parameters with the form λi = c cos zi − a
2 [zi ∈ (0, π ), i =

1, . . . , n] to simplify soliton solutions.

A. The velocity ranges

We start with one SVDS solution of Eq. (1), with choosing
n = 1 of Eq. (A5),

q[1] =
{
κ1 + i

√
c2 − κ2

1 tanh
[√

c2 − κ2
1 (x − v1t + γ1)

]}
eiθ ,

(2)

with κ1 = c cos z1, κ1 ∈ (−c, c). γ1 is the position of SVDS in
the distribution direction. v1 = vds + a is the sum of the soli-
ton velocity and the background velocity, where the soliton
velocity is

vds = β
(
4κ2

1 − 6aκ1 + 3a2 + 2c2) − κ1, (3)

As it can be seen, the vds is a quadratic function of κ1, so the
upper and lower speed limits are changed with β and a, as
summarized in Table I. With fixing the sign of β, the ranges
of vds can be categorized into four classes according to the
regions of wave number a, because the HE does not have the
Galilean symmetry. On the contrary, for an SVDS in NLSE,
the soliton velocity is independent of the wave number (i.e.,
for β = 0, |v| < c), which the Galilean transformation can
remove. Unlike the dark soliton, the velocity of bright soliton
in HE is inversely proportional to the strength of high-order
effects, so its velocity range is unrestricted [17,27,35]. For
the other nonlinear waves in HE, such as rational solutions
and breathers, the background wave number affects the ve-
locity value of nonlinear waves rather than the velocity range
[29,36].

As we mentioned, the input pulse containing a continuous
changing phase can create a moving dark soliton. Thus, there
is a close connection between the velocity and phase shift. For
a dark soliton in NLSE, there is a one-to-one correspondence
between the velocity and phase shift [13]. The discussions of
the velocity properties imply that both the high-order effects
and background wave number will be crucial to the phase shift
of a single dark soliton in HE. This motivates us to study its
phase properties.
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B. Two correspondence relations between velocity
and phase shift

Based on Eq. (2), the phase shift of an SVDS can be
exactly calculated as �φ = φ(x → +∞) − φ(x → −∞) =
2 arctan(

√
c2 − κ2

1 /κ1), �φ ∈ [−π, π ]. By combining it with
Eq. (3), the correspondence relations between the velocity and
phase shift of an SVDS in HE take the following forms:

vds = β[4 + 3a2 + 2 cos(�φ)] − cos
(�φ

2

)
(6aβ + 1),

for 0 � �φ � π, (4a)

vds = β[4 + 3a2 + 2 cos(�φ)] + cos

(
�φ

2

)
(6aβ + 1),

for − π � �φ � 0, (4b)

The velocity is codetermined by �φ, a and β. Surprisingly,
we find that there are two types of corresponding relations
between the phase shift and the velocity for an SVDS (as
shown in Fig. 1):

(1) Type I: There is a one-to-one match between the phase
shift and velocity for an SVDS, which is similar to that in
NLSE.

(2) Type II: There is a two-to-one correspondence relation
between the phase shift and velocity for an SVDS, which is
not admitted in NLSE.
These indicate that the phase properties for an SVDS with
higher-order effects will be more abundant than the one with
only the second-order dispersion and self-phase modulation.

We first look briefly at variations of soliton velocity with
phase shift by taking β = −0.3 and a = 0, as shown in
Fig. 1(a1) with the solid blue curve. For comparative analysis,
we also show the case of β = 0 (i.e., NLSE) with a black
dashed-dotted curve. Obviously, even if the background wave
number is not considered, the variations of the soliton velocity
with phase shift in HE are quite distinct from that of dark
solitons in NLSE, where the relation between the velocity and
phase shift is a one-to-one correspondence. Particularly, there
exists a critical phase shift �φc1 marked by the red triangle
symbol between two types of correspondence relations. It is
seen that only when �φ ∈ (0,�φc1 ), the function vds(�φ) is
injective, thus the relation between the phase shift and velocity
satisfies the type I. However, this feature no longer holds in the
regions �φ ∈ [−π, 0] ∩ [�φc1 , π ], where two distinct phase
shifts can bring about an SVDS with the same velocity. This
two-to-one match between the phase shift and velocity is type
II, which has never been reported in previous literature.

Moreover, the type II includes two subtypes (denoted as
type II-A and type II-B), which are distinguished by the sec-
ond critical phase shift �φc2 marked as the left red triangle
symbol, as shown in Fig. 1(a2). For the type II-A, �φ ∈
[−π,�φc2 ], the two distinct phase shifts are the same in sign
but different in value for an SVDS at the same velocity. While
for the type II-B, �φ ∈ (�φc2 , 0] ∩ [�φc1 , π ], both the values
and the signs of two phase shifts of an SVDS at the same
velocity are different.

More interestingly, we find that background wave num-
ber a and coefficient of high-order effects β significantly
affect the existence regions of type I and II. For example,
we demonstrate the changes of soliton velocity with phase

FIG. 1. Two types of correspondence relations between the phase
shift (�φ) and velocity (vds) for an SVDS in HE. (a1) The variations
of velocity with phase shift. The solid blue curves are obtained with
a = 0 and β = −0.3, and the dashed black dotted curves are given by
β = 0. The red symbol denotes the first critical phase shift between
type I and II, �φc1 = 2 arccos(1/6). (a2) The corresponding two
subtypes of type II. The second critical phase shift between two
subtypes is �φc2 = −2 arccos(5/6). (b1) The variations of soliton
velocity vds vs phase shift �φ and background wave number a with
fixing β = −0.3. (b2) Phase diagram for the two subtypes of type
II shown in panel (b1). (c1) The change of soliton velocity vds vs
phase shift �φ and high-order effects β with fixing a = 0. (c2) Phase
diagram for the two subtypes of type II depicted in panel (c1). In
panels (b1) and (c1), type II exists in the regions surrounded by solid
white curves. The outside of these regions is the type I. In the phase
diagrams panels (b2) and (c2), type II-A and type II-B is presented
by yellow and cyan regions, respectively.

shift and background wave number in Fig. 1(b1) by fixing
β = −0.3. The areas surrounded by white curves are type
II, and outside these areas is the type I. It is shown that
the type II can emerge when the background wave num-
ber a ∈ (− 1

9 , 11
9 ) and the phase shift in some ranges. The

first critical phase shift �φc1 between the type I and type II
varies with the background wave number. For a ∈ (− 1

9 , 5
9 ),

we get �φc1 = 2 arctan [
√

(5−9a)(7+9a)
9a+1 ]; for a ∈ [ 5

9 , 11
9 ), we

obtain �φc1 = 2 arctan [
√

(17−9a)(9a−5)
9a−11 ]. We also present the

corresponding two subtypes of type II in Fig. 1(b2). For
this case, the type II-A (yellow regions) and type II-B (cyan
regions) are distinguished by the second critical phase shift

�φc2 = 2 arctan [
√

(11−9a)(1+9a)
9a−5 ].
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We further study the impact of the high-order effects on
the correspondence relations between the phase shift and
soliton velocity by fixing a = 0. The result has been shown
in Fig. 1(c1). Since the high-order effects are usually weak,
we consider β ∈ [−1, 1] herein. For this case, the type II
can exist when β ∈ [−1, 1

4 ) ∩ ( 1
4 , 1] (existent regions are sur-

rounded by white lines). We also give the phase diagram
Fig. 1(c2) to show the corresponding two subtypes of type
II in more detail. When β ∈ [−1,− 1

4 ), two related criti-

cal phase shifts are �φc1 = −2 arctan (
√−1−8β

1+4β
) and �φc2 =

−2 arctan(
√

16β2 − 1). When β ∈ ( 1
4 , 1], we get �φc1 =

2 arctan (
√−1+8β

1−4β
) and �φc2 = 2 arctan(

√
16β2 − 1).

The above analyses clearly illustrate that an SVDS with
the same velocity can correspond to two distinct phase shifts
under certain conditions in HE, in sharp contrast to the one
with only the second-order dispersion and self-phase modula-
tion, which admits a one-to-one match between the velocity
and phase shift. Recently, the topological phases of nonlinear
waves such as dark solitons [13,14], bright solitons [37], rogue
waves, and breathers [38] have garnered much attention. It
was demonstrated that phase shift is determined solely by the
topological vector potential defined in an extended complex
plane. It inspires us to investigate the topological vector poten-
tials underlying the distinct phase shifts to further understand
the phase characters of an SVDS in the type II region, by
utilizing the topological vector potential theory proposed in
Refs. [13,38] directly.

C. The topological vector potential underlying the phase shift

We focus on the phase variation of wave function q[n]

with leaving out the background’s phase eiθ , which can be

described by φ = arctan [ Im(q[n]e−iθ )
Re(q[n]e−iθ ) ] + kπ . Here k is an inte-

ger which is determined by phase gradient flow F (x) = ∂xφ.
Then, the wave function q[n] can be expressed in exponen-
tial form q[n] = |q[n]|eiφ . By substituting it into the model
Eq. (1), we can get the equation ∂|q[n]|2

∂t = − ∂ (|q[n]|2F (x))
∂x −

3β
∂ (|q[n]|2(F (x))2 )

∂x − 3β
∂|q[n]|4

∂x + 2β|q[n]| ∂3|q[n]|
∂x3 , based on the

imaginary part. Then, by conducting the integral over x, the
relations between F (x) and intensity |q[n]| can be derived as

F (x) = −|q[n]|±
√

|q[n]|2+12β(g2−g1 )
6β|q[n]| , where g1 = ∫

∂|q[n]|2
∂t dx and

g2 = (2
∫ |q[n]| ∂3|q[n]|

∂x3 dx − 3|q[n]|4)β, we can know that the
intensity zero points can bring the singularities of F (x), which
could be used to uncover the topology underlying phase shift.
Notably, the intensity zeros for dark soliton with moving
speed usually exist on a complex plane. Then, we introduce
a function F (z), which is obtained by extending the real coor-
dinate variable x of F (x) to complex coordinate space z = x +
iy. The existence of the intensity zero points (|q[n](z̃N )| = 0)
implies that F (z) might have N singularities on the complex
plane (marked as z̃N = xN + iyN , N is an integer). Our calcula-
tions on all dark solitons here indicate that these singularities
are all the first-order ones. Then, based on the Mittag-Leffler
theorem [39], the meromorphic function F (z) can be ex-
pressed in terms of these singularities, that is, F (z) = F (0) +∑

N Res[F (z̃N )]( 1
z−z̃N

+ 1
z̃N

). In particular, there is F (0) +∑
N

Res[F (z̃N )]
z̃N

= 0 for these dark solitons. Therefore, we get

F (z) = ∑
N

Res[F (z̃N )]
z−z̃N

. Res[F (z̃N )] = /(i2π ) is residue, with
 = ±π . Since we focus on the phase character, we define a
real vector potential A on the (x, y) plane [13,38], which can
be written as

A =
∑

N

[(x − xN ) j − (y − yN )i]
2π [(x − xN )2 + (y − yN )2]

, (5)

Here, A takes the form of a topological vector potential [40],
where i and j are the unit vectors in the x and y directions,
respectively. This implies that the effective magnetic field
will be zero everywhere in the whole plane except for those
singularities. Then, we get

B = k
∑

N

δ(r − rN ), (6)

where r = xi + y j, rN = xN i + yN j, and k is a unit vector
perpendicular to the (x, y) plane. Surprisingly, the magnetic
flux of a circle around each pointlike magnetic field on the
(x, y) plane is always ±π , and ± is the direction of the mag-
netic flux. Then the vector field around each singularity can be
regarded as “a vortex carrying quantized magnetic flux.” Since
the topological vector potential is very similar to the ones for
the virtual magnetic monopoles in momentum space of topo-
logical materials [41], and parameter space of Berry phase
theory [42], we term pointlike magnetic fields as the virtual
magnetic monopoles in our result. The phase variations can
be described by the integration of the vector potential A along
the real x axis, that is, �φ = φ(x → +∞) − φ(x → −∞) =∫ +∞
−∞ A(x, y = 0) · idx. Then, we can explore the topological

phases of n-dark solitons by performing above topological
theory on the dark soliton solution q[n] in HE.

Now we characterize the topology of the SVDS. For this

case, we get F (z) = 2κ1(c2−κ2
1 )

2κ2
1 −c2+c2 cosh(2

√
c2−κ2

1 z)
. Then, the vector

potential A is determined by the singularities in the complex
plane,

z̃N : xN = 0, yN = ±y0 + NT (N = 0 ± 1, . . .), (7)

where y0 = arccosh[2(c2−κ2
1 )−1]

2
√

c2−κ2
1

and the period T = π√
c2−κ2

1

.

Then, we describe the topological property of an SVDS in
the regime of type II. For example, we exhibit the topolog-
ical phase of an SVDS with vds = −0.74. The related two
different topological phases have been presented Figs. 2(a1),
2(a2) and 2(b1), 2(b2), respectively. The topological vector
potentials A are shown in the left panel, and the corresponding
phase distributions φ (solid curve) are depicted in the right
panel. Obviously, the topological vector potential in Fig. 2(a1)
is quite distinct from the one in Fig. 2(b1), involving the
position, period, and the direction of the magnetic fluxes.
Consequently, the different topological vector potentials give
rise to the different phase profiles. The phase distribution
of Fig. 2(a1) is shown in Fig. 2(a2), with phase shift about
�φ = −0.19π . For Fig. 2(b1), the resulting phase shift is
about �φ = 0.92π , as shown in Fig. 2(b2). The coordinates
of virtual monopoles and the phase shift value are accurate to
two decimal places in our results.
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FIG. 2. Two different topological phases for an SVDS with the
same velocity vds = −0.74 in HE. Left panel: the topological vec-
tor potential A. The virtual magnetic monopoles with +π (−π )
magnetic fluxes are shown by the red symbols

⊙
(black symbols⊗

). The paired virtual monopoles are located at (0 ± 4.31) for (a1)
and (0 ± 0.12) for (b1) with a period T = π/

√
c2 − κ2

1 along the
imaginary axis y. Right plane: the corresponding phase distribu-
tion. (a1, a2): �φ = −0.19π , κ1 = −(25 + √

1045)/60. (b1, b2):
�φ = 0.92π , κ1 = −(25 − √

1045)/60. The other parameters are
c = 1, a = 0, β = −0.3, γ1 = 0.

The above results indicate that two parallel SVDSs can
be obtained when two SVDSs are in the regions of type II,
where SVDSs with the same velocity have two different phase
shifts, which can physically explain the generation mecha-
nism of previously reported DVDSs and parallel SVDSs in
HE [20,23,24]. Based on the abundant phase characters of
the SVDS demonstrated above, we can expect that the phase
properties of DVDS will be more attractive in HE.

III. THE PHASE CHARACTERS OF A DOUBLE-VALLEY
DARK SOLITON

A general DVDS solution in compact form is given by

q[2] = c
�2e−η1−η2 + eη1+η2 + 2 cosh(η1 − η2)

�2e−ξ1−ξ2 + eξ1+ξ2 + 2 cosh(ξ1 − ξ2)
eiθ , (8)

where � = sin[(z1 − z2)/2]/ sin[(z1 + z2)/2], ηi = ξi + izi,

ξi = c sin(zi )(x − v1t + γi ), i = 1, 2. Two free parameters γ1

and γ2 are introduced to adjust the overlap degree between
two valleys of DVDS.

The detailed derivation processes for DVDS have been
presented in Appendix A. To clearly understand the velocity
feature of DVDS, we carefully calculate the velocity ranges
of DVDS by satisfying the constraint conditions Eq. (A7)
and Eq. (A8). The results have been summarized in Table II.
Recently, it was reported that the width-dependent parameters
of solitons significantly affect the velocity ranges of DVDS
in the Manakov model [14]. On the contrary, the velocity

TABLE II. The velocity ranges of a DVDS. The explicit expres-
sions of vds|z1=ze , vds|z1=0, and vds|z1=π have been given in Table I.

β a z1 vds

β > 0
[ − 1

6β
,

8cβ−1
6β

)
[0, arccos(ρ − 1)] [vds|z1=ze , vds|z1=π ](−8cβ−1

6β
,− 1

6β

)
[arccos(ρ + 1), π ] [vds|z1=ze , vds|z1=0]

β < 0
[ − 1

6β
,

8cβ−1
6β

)
[0, arccos(ρ − 1)] [vds|z1=π , vds|z1=ze ](−8cβ−1

6β
,− 1

6β

)
[arccos(ρ + 1), π ] [vds|z1=0, vds|z1=ze ]

ranges of DVDS in HE depend on the high-order nonlin-
earity coefficient and background wave number. Generally,
the intensity profile of DVDS is asymmetric. In particular,
when two free parameters γ1 and γ2 satisfy the relation γ2 =
γ1 + sin(z1 )−sin(z2 )

2c sin(z1 ) sin(z2 ) ln(|�|), the DVDS solution Eq. (8) can give
a DVDS with a symmetric intensity profile, and the symme-
try line is x = v1t − γ1 + ln[ |�|

2c sin(z1 ) ]. For example, we show
these two intensity profiles in Figs. 3(a1) and 3(b1), respec-
tively.

We now focus our analysis on the phase characters of the
DVDSs. Since the two parallel SVDSs that constitute the
DVDS can exist in the region of the type II-A or the type II-B
(as shown in Fig. 1), the phase profiles of DVDSs will include
two types. One is a double-step type when two parallel SVDSs
are in the regime of type II-A, and the other is a U-shaped type
when the two parallel SVDSs are in the regime of type II-B.
Then, we will investigate these two types of phase properties
of DVDS in detail.

Based on the topology of dark solitons, the phase prop-
erties of DVDS will be closely related to the underlying
topological vector potentials. To facilitate analysis, we make
the phase of DVDS remain unchanged at x → −∞, based
on the expression q[2](x → −∞) = e−i(z1+z2 )+inπ (n is an

FIG. 3. Top plane: (a1) amplitude distribution, (a2) virtual
magnetic monopole fields in the complex plane, and (a3) phase
distribution for an asymmetric DVDS (γ2 = −0.1). The singularities
in panel (a2) are located at (−1.98 ± 0.18), (1.07 ± 0.03). Bottom
plane: (b1) amplitude distribution, (b2) virtual magnetic monopole
fields in the complex plane, and (b3) phase distribution for a sym-
metric DVDS (γ2 = −1.02). The singularities in panel (b2) are
located at (−1.31 ± 0.07), (1.34 ± 0.07). The other parameters are
a = 0.742485, c = 1, β = −0.2, z1 = 1.5, z2 = 1.77931, γ1 = −1.
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arbitrary integer). For example, we demonstrate the phase
characteristics of the DVDSs shown in Figs. 3(a1) and 3(b1).
Their topological magnetic fields associated with the vector
potential in (x, y) plane are depicted in Figs. 3(a2)–3(b2).
Without loss of generality, we show the virtual monopoles
within the region y ∈ [1,−1]. As it can be seen, the paired
virtual monopoles in the complex plane are scattered on two
separate lines x = x1 and x = x2. The integral of the vector
potential corresponding to each line will lead to a phase shift
� j at x = x j for j = 1, 2. The sum of two phase shifts gives
the total phase shift of a DVDS.

It is noteworthy that, for the asymmetric DVDS, the mag-
netic flux direction of the virtual monopoles on the two lines
is opposite, which gives rise to the opposite sign of the phase
shift on the line x1 and the one on the line x2, and form a
U-shaped phase profile, as shown in Figs. 3(a2) and 3(a3).
Therefore, this DVDS consists of two SVDSs in the regime
of the type II-B mentioned in Fig. 1. Moreover, the virtual
monopoles on the x = x2 line are quite close to each other,
resulting in a sharp phase shift �2 closer to π . We numeri-
cally obtain the associated phase shifts are �1 = −0.89π and
�2 = 0.97π . Therefore, the total phase shift of the asymmet-
ric DVDS is �φ = �1 + �2 = 0.08π .

On the contrary, for the symmetric DVDS, the magnetic
flux direction of the virtual monopoles on line x = x1 is
the same as that of the ones on line x = x2, as shown in
Fig. 3(b2). Therefore, this DVDS is composed of two SVDSs
in the regime of the type II-A mentioned in Fig. 1. More-
over, two pairs of monopoles are distributed symmetrically
in the (x, y) plane, so the associated two phase steps are
the same, �1 = �2 = −0.96π . Thus, the total phase shift
of the symmetric DVDS is �φ = �1 + �2 = −1.92π . The
phase distribution exhibits an apparent double-step structure,
as shown in Fig. 3(b3), which is similar to that of the DVDS
obtained in Manakov systems [13,14].

The above results have demonstrated that the DVDS with
the same velocity can also have two types of phase profiles,
by changing the intensity profiles adjusted by two free pa-
rameters γ1 and γ2, as shown in Fig. 2. For example, we
give a phase diagram for two types of phase characters by
changing parameters γ1 and γ2, and the other parameters are
identical to the ones in Fig. 3. The results have been pre-
sented in Fig. 4, which is obtained by judging the sign of
the phase gradient flow F [x] numerically. The triangle and
circle symbols correspond to Figs. 3(a3) and 3(b3), respec-
tively. As it can be seen, double-step type phase distribution
exists only in narrow parameter space, among which the solid
black line corresponds to the symmetric DVDS. This means
the symmetric DVDS always possesses the double-step type
phase distribution, while the phase distribution of asymmetric
DVDS can be U-shaped type or double-step type. The critical
states between these two types are related to the density zeros
of the DVDS in real space. This diagram also indicates that
nearly identical intensity profiles of a DVDS with identical
velocity can possess two distinct topological properties in
adjacent areas of the two types. However, the topological
phase and the velocity of the DVDS in the Manakov system
can only be one-to-one correspondence [13,14]. Our results
provide some important complements for understanding the
phase properties of dark solitons.

FIG. 4. A phase diagram for two types of phase profiles for
DVDS. The yellow region represents to the double-step type, and
the purple region stands for the U-shaped type. The black solid line
correspond to the symmetric DVDS. The triangle and circle symbols
correspond to Figs. 3(a3) and 3(b3), respectively. The parameters are
same as Fig. 3 (excepting γ1 and γ2). This picture also describes the
phase properties of DVDS before colliding with SVDS, in which the
square symbol is related to the DVDS (“S2” soliton) shown in Fig. 5.

IV. PHASE VARIATIONS OF DVDS INDUCED
BY THE COLLISION

Previous studies of solitons’ collision were mainly focused
on the interactions between two solitons by analyzing the vari-
ations of their intensity profiles, but the collision properties
between arbitrary n-dark solitons have never been considered
due to some mathematical difficulties [14,23,33,43–51]. How-
ever, solitons’ phase characters during a collision process have
never been considered. In this section, we will investigate the
collision properties containing n1 SVDSs and n2 DVDSs by
analyzing their phase properties, expecting that phase charac-
teristics can help to identify the collision properties through
an alternative way. To get an accurate and direct analysis, the
premise is to get the simple and compact asymptotic expres-
sions (t → ±∞) before and after the collision. To this end, we
for the first time present the systematic and detailed asymp-
totic analyses for n-dark solitons involving n1 SVDSs and
n2 DVDSs (n = n1 + 2n2) in Appendix B, by developing the
asymptotic analysis technique and performing onerous calcu-
lations. The n-dark solitons are ranked by the whole velocities,
supposing v1 � · · · � vk � · · · � vn (k = 1, . . . , n). Their
collisions can be inelastic or elastic under different conditions.
The inelastic collisions make the intensity and phase profiles
change of DVDSs, while there is no change for the SVDS.

For example, without loss of generality, we consider
the collision between one SVDS (n1 = 1) and one DVDS
(n2 = 1) in the following, based on the solution q[3] Eq. (A5)
with assuming v2 = v1 < v3. On account of Eqs. (B2) and
(B3), the asymptotic expressions of SVDS solution qs1 before
and after the collision are given in the following form:

q±
s1

= cL±
s1

[1 − B3 + B3 tanh(Y ±
s1

)]eiθ , (9)

where

L−
s1

= e−2i(z1+z2 ), L+
s1

= 1, K−
1 = ω[3,1]ω[3,2], K+ = 1,

Y ±
s1

= c sin z3(x − v3t + γ3) − ln |K±
1 |, B3 = i sin z3e−iz3 .
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FIG. 5. An inelastic collision between an asymmetric DVDS and an SVDS. Before (after) the collision, the SVDS, the DVDS and two
solitons solution are marked as “S1,” “S2,” and “q[3]” (“S′

1,” “S′
2,” and “q[3]′ ”), respectively. (a) Temporal-spatial intensity distribution. (b1,

b2) Intensity profiles of two solitons before (t = −300) and after (t = 300) collision. The solid black curve, dashed cyan curve, and dashed
green curve is plotted by the solution q[3], the asymptotic expression Eq. (9) of SVDS and Eq. (10) of DVDS, respectively, at the fixed t .
(c1–h1) Virtual magnetic monopole fields and the corresponding phase profiles of q[3], “S1,” and “S2,” respectively. The singularities on the
line x = x1, x = x2, and x = x3 are located at (−8.31 ± 0.13), (−1.57 ± 0.13), and (1.17 ± 0.02), respectively. (c2–h2) Virtual magnetic
monopole fields and the corresponding phase distributions of “q[3]′ ,” “S′

2,” and “S′
1,” respectively. The singularities on the line x = x6, x = x5,

and x = x4 are located at (−4.72 ± 0.20), (−1.28 ± 0.05), and (4.74 ± 0.13), respectively. It is seen that both the phase characteristic and
intensity profile of the DVDS change remarkably after colliding with SVSD. However, nothing has changed on the latter. The parameters are
c = 1, β = −0.2, a = 0.742485, d = 1, z1 = 1.5, z2 = 1.77931, z3 = 1.7, γ1 = −1, γ2 = −0.6, γ3 = −1.

The superscript “±” in the top right-hand corner represents the
asymptotic form of soliton after (t → +∞) and before (t →
−∞) colliding with SVDS. Based on the asymptotic analysis
results Eqs. (B5) and (B6), the asymptotic behaviors of the
DVDS can be described by the solution qs2 , which is given by

q±
s2

= cL±
s2

N±
s2

D±
s2

eiθ , (10)

where

N±
s2

=K±
2 e−η1−η2 + K±

3 eη1−η2 + K±
4 eη2−η1 + eη1+η2 ,

D±
s2

=K±
2 e−ξ1−ξ2 + K±

3 eξ1−ξ2 + K±
4 eξ2−ξ1 + eξ1+ξ2 ,

and

K−
2 = ω2

[1,2], K+
2 = ω2

[1,2]ω
2
[1,3]ω

2
[2,3],

K−
3 = 1, K+

3 = ω2
[2,3], K−

4 = 1, K+
4 = ω2

[1,3],

L−
s1

= 1, L+
s1

= e−2iz3 , ω[ j,i] = sin
[ (z j−zi )

2

]
sin

[ (z j+zi )
2

] .

Above explicit asymptotic expressions provide the most cru-
cial conditions to analyze collision properties exactly and
comprehensively.

A. Inelastic collision

We start with the inelastic interaction between one DVDS
and one SVDS. For example, we show their spatial-temporal
intensity distribution in Fig. 5(a) with v1 = 0 and v3 =
0.0125. Before (after) the collision, two solitons, the SVDS
and DVDS are marked as “q[3]” (“q[3]′”), “S1” (“S′

1”), and “S2”
(“S′

2”), respectively. The black dashed lines in upper and lower
Fig. 5(a) are used to represent the final state (t = 300) and
initial state (t = −300) of two solitons. We will analyze the

intensity profiles and phase distributions of solitons in these
two states. Figures 5(b1) and 5(b2) are the intensity profiles
before and after the collision, in which the black solid curve,
cyan dashed curve, and green dashed curve is plotted based
on the solution q[3], q±

s1
, and q±

s2
, respectively. It is seen that

after the collision, the depths of two valleys of DVDS have
changed dramatically, while the intensity profile of SVDS
remains unchanged. To analyze and understand the interac-
tion process comprehensively and deeply, the investigations of
phase properties of two solitons before and after the collision
are also indispensable. Then, we will conduct the complex
extending on expressions Eqs. (A5), (9), and (10) to analyze
their topological properties, based on the topological vector
potential theory mentioned in Sec. II C.

Before (after) the collision, the phase characteristics of q[3]

(q[3]′ ), “S1” (“S′
1”), and “S2” (“S′

2”) have been presented in
Figs. 5(c1)–5(h1) [Figs. 5(c2)–5(h2)]. In these graphs, the
topological magnetic fields in complex space are depicted
by some pointlike symbols, and solid black curves present
the corresponding phase distributions. Interestingly, the phase
profile of two solitons initially presents a triple-step structure
in one direction, as shown in Fig. 5(d1). Surprisingly, when
two solitons accomplish the collision process, the phase distri-
bution becomes a more complex structure composed of three
phase shifts in different directions, as shown in Fig. 5(d2).
This dramatic change in the phase distribution originates from
the underlying topological potentials. The virtual magnetic
monopoles are scattered on three separate lines at x = x1, x =
x2, and x = x3 before the collision, as exhibited in Fig. 5(c1)
[x = x4, x = x5, and x = x6 after the collision, as exhibited in
Fig. 5(c2)] along the imaginary axis. For simplicity, we show
the paired virtual monopoles on the line x j when the imagi-
nary axis y ∈ [1,−1] in this section. Strikingly, the magnetic
fluxes directions at these three pairs of virtual monopoles are
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the same before the collision, while that of one is reversed
after the collision, compared to Fig. 5(c2) with Fig. 5(c1). This
motivates us to explore what happened in each of the solitons.

We show the virtual monopole fields and the corresponding
phase distributions of the SVDS before and after collision
in Figs. 5(e1)–5(f1) and 5(g2)–5(h2). It is seen that SVDS
maintains a single-step structure. Before the collision, virtual
monopoles are located on the line x = x1, and the associated
phase shift is �1 = −0.92π . Then, they move to the line
x = x4 after the collision. Obviously, there is only a translation
in the x axis for these virtual monopoles. Consequently, the
phase shift is �4 = �1 = −0.92π . Therefore, the intensity
profile and phase feature of SVDS can be held well after
interacting with DVDS.

However, the topological phase of DVDS undergoes a dra-
matic change, comparing Figs. 5(g1)–5(h1) with Figs. 5(e2)–
5(f2). In the initial state, the phase distribution of DVDS
is double-step type since the magnetic fluxes directions at
two pairs of virtual monopoles are identical, as shown in
Figs. 5(g1)–5(h1). The paired virtual monopoles on the line
x = x2 contribute to the phase shift �2 = −0.91π . Interest-
ingly, the virtual monopoles on the line x = x3 tend to merge
in the real axis x, leading to approximately a phase shift �3 =
−π . Due to the coordinate values along the imaginary axis
y being too small to see them separately, we further plot the
insert for them in Fig. 5(g1). Then, we can get the total phase
shift of DVDS before the collision is �2 + �3 = −1.91π .

Then, we analyze the phase characteristic of DVDS af-
ter the collision, as depicted in Figs. 5(e2)–5(f2). Strikingly,
the phase distribution of the DVDS is transformed from the
double-step type to the U-shaped type. The magnetic flux
direction of the paired virtual monopoles on the lines x = x6

and x = x5 are opposite, and these monopoles give rise to
�6 = −0.87π and �5 = 0.96π . Thus, the total phase shift of
DVDS after the collision is �6 + �5 = 0.09π . These suggest
that two parallel SVDSs that make up the DVDS are trans-
formed from the region of the type II-A to the type II-B in
this collision process. This is an all-important signal of the
inelastic collision.

These results imply that the inelastic collision of DVDS
can cause a striking transformation between two types of
phase characters. Such an intriguing phenomenon has never
been observed in previous literature. In our prework Ref. [23],
our understanding of the inelastic collision only depends on
the variations of intensity profiles, while important phase
properties hidden in the change of soliton profiles have been
ignored. Then we would like to know whether such phase
transition always exists for the collision dynamics involving
the DVDS. For this purpose, we intend to establish phase
diagrams for the phase characters of the DVDS before and
after the collision, which can be realized by judging the sign
of the phase gradient flow F (x) of the asymptotic expressions
Eq. (10).

For convenience, we choose the parameters identical to the
ones in Fig. 5 except for parameters γ1 and γ2. Due to v1 < v3,
the asymptotic expressions q−

s2
expressed by Eq. (10) is actu-

ally identical to the DVDS solution Eq. (8). It demonstrates
that the asymptotic behavior of DVDS before the collision
is independent of the SVDS. Meanwhile, owing to the other
related parameters z1, z2, a, c, and β in Figs. 5 and 3 are the

FIG. 6. A phase diagram for the phase properties of DVDS (“S′
2”

soliton) after colliding with SVDS, in which the square symbol
represents the phase characteristic of “S′

2” soliton shown in Fig. 5.
The black line corresponds to the symmetric DVDS. The other pa-
rameters are identical to the ones in Fig. 5.

same. Thus, the phase diagram of phase characters for the
DVDS before the collision is identical to Fig. 4. The square
symbol in Fig. 4 corresponds to the “S2” soliton exhibited
in Fig. 5(a), which admits the double-step type phase dis-
tribution, as shown in Fig. 5(h1). Similarly, we further give
a phase diagram for the DVDS after the collision, with the
aid of the asymptotic expressions q+

s2
expressed by Eq. (10).

The results have been presented in Fig. 6, where the square
symbol corresponds to the “S′

2” soliton depicted in Fig. 5(a),
which admits the U-shaped type phase distribution, as shown
in Fig. 5(f2). The black line is the symmetric DVDS after the
collision, and the relation between γ1 and γ2 is recalculated as

γ2 = γ1 + [sin(z1 )−sin(z2 )] ln(K+
2 )−[sin(z1 )+sin(z2 )][ln(K+

4 )−ln(K+
3 )]

4 sin(z1 ) sin(z2 ) .
By comparing Figs. 4 and 6, we can see that the existing

regions of each type of phase distribution before and after the
collision are obviously changed in the (γ1, γ2) plane. During
a collision process, the phase variations of the DVDS in-
clude four kinds: double-step type to U-shaped type, U-shaped
type to double-step type, U-shaped type to U-shaped type,
and double-step type to double-step type. Remarkably, the
symmetric DVDS always keeps the double-step type phase
distribution. These results reveal the extraordinary phase
properties behind the inelastic collision and further deepen
our understanding of solitons collision in essence. It also
should be mentioned that Figs. 4 and 6 are not the only phase
diagrams. When the other related parameters are varied, the
corresponding phase diagram will also be changed.

B. Elastic collision

The above-detailed analysis has revealed the intriguing
phase transition of DVDS induced by the inelastic collision.
It was reported that the collision of DVDS also could be
elastic [23]. Then, we will investigate the phase properties of
DVDS that undergo elastic interaction. The elastic collision
condition of DVDS has been proved in Appendix C, which
is a sufficient condition Eq. (C3). For example, we show the
elastic interaction between a DVDS and an SVDS in Fig. 7(a).
The meanings of all marks herein are the same as Fig. 5; we
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FIG. 7. An elastic collision between a symmetric DVDS and an SVDS. Before (after) the collision, the SVDS, the DVDS and two solitons
solution are marked as “S1,” “S2,” and “q[3]” (“S′

1,” “S′
2,” and “q[3]′ ”), respectively. (a) Temporal-spatial intensity distribution. (b1, b2) Intensity

profiles before (t = −300) and after (t = 300) collision. The solid black line, cyan dashed line, and green dashed line are obtained by the two
solitons solution Eq. (A5), the asymptotic expression Eq. (9) of SVDS and Eq. (10) of DVDS (n = 3), respectively. (c1–h1) Virtual magnetic
monopole fields and corresponding phase distributions of q[3], “S1,” and “S2,” respectively. The singularities on the line x = x1, x = x2,
and x = x3 are located at (−10.11 ± 0.10), (−0.40 ± 0.11), and (2.03 ± 0.11), respectively. (c2–h2) Virtual magnetic monopole fields and
corresponding phase distributions of q[3]′ , “S′

2,” and “S′
1,” respectively. The singularities on the line x = x4, x = x5, and x = x6 are located at

(3.20 ± 0.10), (−6.06 ± 0.11), and (−8.49 ± 0.11), respectively. As can be seen, both the phase properties and intensity profiles of the SVDS
and the DVDS have remained the same before and after the collision. The parameters are c = 1, β = −0.2, a = 0.7, d = 1, z1 = 1.5, z2 =
1.84496, z3 = 1.66645, γ1 = 1.1, γ2 = 1.06812, γ3 = 1.

will not reiterate them. Based on the expressions q[3], Eqs. (9)
and (10), and performing the complex extending method, the
topological phase of this elastic collision can also be studied
well.

The total phase characteristics of two solitons before and
after the collision have been shown in Figs. 7(c1)–7(d1) and
Figs. 7(c2)–7(d2). It is seen that the magnetic fluxes directions
at three pairs of virtual monopoles on three separate lines
are consistent before and after the collision so that the phase
profiles keep triple-step structures.

The phase feature for the SVDS before and after the
collision has been shown in Figs. 7(e1)–7(f1) and Figs. 7(g2)–
7(h2). The virtual monopoles on the line x1 are initially
located at (−10.11 ± 0.10). Finally, they are moved to the
line x = x4 and are located at (3.20 ± 0.10). Therefore, the
topological property of SVDS has remained the same af-
ter colliding with DVDS, associated phase shift �4 = �1 =
−0.94π .

In this case, the DVDS also admits a similar feature, as
shown in Figs. 7(g1)–7(h1) and Figs. 7(e2)–7(f2). Before the
collision, two pairs of virtual monopoles are scattered on
the lines x = x2 and x = x3, and located at (−0.40 ± 0.11)
and (2.03 ± 0.11). After the collision, they are located at
(−6.06 ± 0.11) and (−8.49 ± 0.11) on the line x = x5 and
x = x6, respectively. Two pairs of virtual monopoles have only
undergone a translation along the real axis. This also reveals
that the associated two parallel SVDSs are in the regime of
type II-A. Moreover, the paired virtual monopoles for the
DVDS are symmetrically distributed on (x, y) panel, which
leads to a symmetric phase profile. We get �2 = �3 = �6 =
�5 = −0.93π numerically, so the total phase shift of DVDS
is equal to −1.86π . Then, we can obtain the total phase shift
of two solitons is �φ = �φ′ = −0.94π − 1.86π = −2.8π .

These results indicate that we can analyze the phase prop-
erties of each soliton to understand and predict the collision
properties, combining the succinct asymptotic expressions
and topological vector potential. In general, the inelastic in-
teractions of solitons bring variations in both the intensity
profiles and topological phase. Similar phenomena can also
be observed in the collision between two DVDSs, and even
multiple collisions involving the DVDSs, based on the n-
dark soliton solution Eq. (A5) and the asymptotic expressions
Eqs. (B2)–(B6) for n-dark solitons including n1 SVDSs and
n2 DVDSs (n = n1 + 2n2).

V. CONCLUSIONS

We demonstrate that the SVDS with the same velocity can
admit two different phase shifts in HE, which can explain
the formation mechanism of the DVDS previously reported
in HE. Meanwhile, the DVDSs have two types of phase
characters. We further uncover the different virtual monopole
fields underlying the different phase shifts. Furthermore, we
discuss the collision properties of DVDSs from a topological
phase standpoint, which has never been reported before. In
particular, an inelastic collision can lead to the conversion
between two types of phase characters of DVDS. The detailed
analyses reveal that the collision properties can be distin-
guished by analyzing the topological phases, not just intensity
profiles. These results provide essential supplements and un-
derstandings of dark solitons’ phase characters and dynamical
properties.
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APPENDIX A: THE DERIVATION OF n-DARK
SOLITONS SOLUTION

The defocusing HE Eq. (1) admits the following Lax pair:

�x = U(λ; q)�, �t = V(λ; q)�, (A1)

where λ is real spectral parameter, and

U(λ; q) =
[

iλ −iq∗
iq −iλ

]
, V(λ; q) =

[
V1,1 V1,2

V2,1 −V1,1

]
,

with

V1,1 = β(−4iλ3 − 2i|q|2λ + qxq∗ − q∗
x q) + iλ2 + i

2
|q|2,

V1,2 = β(4iq∗λ2 + 2q∗
xλ + 2i|q|2q∗ − iq∗

xx ) − iq∗λ − 1

2
q∗

x ,

V2,1 = β(−4iqλ2 + 2qxλ − 2i|q|2q + iqxx ) + iqλ − 1

2
qx.

To obtain the general solutions of Eq. (1), we start with
seed solution q[0] = ceiθ , with θ = ax − bt and b = β(a2 +
6c2)a + 1

2 a2 + c2. Then utilizing the transformation B =
diag(1, e−iθ ) to convert the variable coefficient differential
equation Eq. (A1) into a constant coefficient equation

�̃x = iU1�̃, � = B−1�̃, (A2a)

�̃t = iV1�̃ = i(ε1U1 + ε2)�̃, (A2b)

where

U1 =
[
λ −c
c −λ − a

]
,

ε1 = β(−4λ2 + 2aλ − a2 − 2c2) + λ − 1

2
a,

ε2 = β(−2λ2 + a1λ + 2c2)a + 1

2
aλ + 1

2
c2.

The characteristic equation of U1 is expressed as(
μ + a

2

)2
=

(
λ + a

2

)2
− c2. (A3)

To facilitate the analyses, we introduce the following transfor-
mations to parametrize the algebraic equation Eq. (A3). Then
we have

μ + a

2
= ic sin(z), λ + a

2
= c cos(z), (A4)

with z ∈ (0, π ). In this way, the square root’s multivalue
problem can be neatly solved. Thus, the eigenvalue μ =
− a

2 + i sin(z). Based on Eqs. (A2)–(A4), we obtain the vector
solution of Eq. (A1) at the spectral parameter λ j = − a

2 + κ j ,

with κ j = c cos z j ( j = 1, . . . , n),

� j =
[

eiχ j

ei(θ+χ j )(λ j − μ j )/c

]
,

with χ j = μ jx + (ε1μ j + ε2)t . Then, the n-dark soliton so-
lutions can be derived by applying the n-fold DT [33]. By
conducting complicated simplification, the explicit expres-
sions of the n-dark soliton solution can be given in a compact
form:

q[n] = c
det(M1)

det(M)
eiθ , (A5)

where

M =
(

ei(χ j−χ̄m ) + δ[m, j]

eiz j − e−izm

)
1�m, j�n

,

M1 =
(

ei(χ j+z j−χ̄m+zm ) + δ[m, j]

eiz j − e−izm

)
1�m, j�n

,

χ j = i
√

c2 − κ2
1 (x − v jt ),

δ[m, j] =
{

0, m 	= j

e2
√

c2−κ2
mγm , m = j

, j = 1, 2, . . . , n.

v j = vds j + a is the sum of the soliton velocity and the back-
ground velocity. The background velocity equals the value
of the wave number based on the quantum mechanics theory
[34]. The soliton velocity is given by

vds j =β
[
4κ2

j − 6aκ j + 3a2 + 2c2
] − κ j . (A6)

The detailed calculations show that the velocity ranges of
SVDS have been classified into four cases with the fixing of
the sign of high-order nonlinearity coefficient β. The results
have been summarized in Table I.

With choosing n = 1, Eq. (A5) is the well-known SVDS
solution, which can be simplified as Eq. (2). It is seen that
the soliton velocity vds j is a quadratic function of κ j , which
means that two SVDSs can admit the identical velocity by
choosing two different spectral parameters for q[2], which
cannot be realized in NLSE. This provides the possibility to
construct the two parallel SVDSs mathematically. When the
two valleys of these SVDSs are overlapped, the two parallel
SVDSs become DVDS. In the following, we intend to derive
the DVDS solutions.

The first step and the most critical step in constructing
DVDS solutions is to make the velocities of two SVDSs
equal, namely, vds1 = vds2 for the solution q[2]. To this end,
the following constraint condition should be satisfied:

cos(z2) = − cos(z1) + ρ, (A7)

with ρ = (6aβ + 1)/(4cβ ). Since −1 < cos(z2) < 1, the fol-
lowing conditions must be satisfied when choosing z1 related
to spectral parameter λ1:{

z1 ∈ (0, arccos[ρ − 1]), ρ � 0
z1 ∈ (arccos[ρ + 1], π ), ρ < 0 , (A8)

When all parameters meet the constraint conditions Eqs. (A7)
and (A8), we can obtain two parallel SVDSs.

The second step to forming DVDS is to make two valleys
of two parallel SVDSs overlap. In other words, the distance
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between two valleys cannot be considerable. Otherwise, the
expression q[2] is still the two SVDSs solutions rather than
a DVDS solution. This can be realized by adjusting the two
free parameters γ1 and γ2. Then, we can obtain the DVDS
solution based on the two SVDSs solutions q[2]. The explicit
solution expression of DVDS has been simplified as Eq. (8).
The examples for the intensity profiles of DVDS have been
shown in Fig. 3.

APPENDIX B: ASYMPTOTIC ANALYSIS

We investigate collision behavior of n-dark solitons which
involves n1 SVDSs and n2 DVDSs (n = n1 + 2n2) systemat-
ically by developing the asymptotic analysis technique. The
n-dark solitons are ranked by velocities, supposing v1 � · · · �
vk � · · · � vn (k = 1, . . . , n). Then we will derive the asymp-
totic expressions qsi for the ith soliton (i = 1, . . . , n1 + n2),
which can be an SVDS or a DVDS.

Case 1: When qsi is an SVDS, which is related to the
spectral parameter λk = − a

2 + c cos(zk ). Its propagation di-
rection is controlled by the function x − vkt = const, which is
contained in the exponential terms ei(χ j−χ̄ j ) in the n-dark soli-
ton solution Eq. (A5). Before the collision (t → −∞), there
are ei(χ j−χ̄ j ) → +∞ with 1 � j < k and ei(χ j−χ̄ j ) → 0 with
k < j � n. To get the asymptotic expressions of qsi before
the collision, we need to further eliminate the terms in which
ei(χ j−χ̄ j ) → ∞. To this end, ei(χ j−χ̄ j ) divide the jth rows of
matrices M1 and M ( j = 1, . . . , k − 1) when t → −∞. Then,
the solution Eq. (A5) can be rewritten as

q[n] = c
det(M̂1)

det(M̂)
eiθ , (B1)

where

M̂ = [M̂(1), M̂(2), M̂(3)]ᵀ,

with

M̂(1) =
(

ei(χ j−χi )

eiz j − e−izi

)
1�i�k−1,1� j�n

,

M̂(2) =
(

ei(χ j−χ̄k ) + δ[k, j]

eiz j − e−izk

)
1� j�n

,

M̂ = (
m̂(i, j)

)
k+1�i�n,1� j�n,

m̂(i, j) =
{

δi

eizi −e−izi
, i = j

ei(χ j −χ̄i )

eiz j −e−izi
, i 	= j

.

Here, we define δ[i,i] as δi. Similarly,

M̂1 = [
M̂(1)

1 , M̂(2)
1 , M̂(3)

1

]ᵀ
,

where

M̂(1)
1 =

(
ei(Xj−z j−Xi−zi )

eiz j − e−izi

)
1�i�k−1,1� j�n

,

M̂(2)
1 =

(
ei(Xj−z j−X̄k−zk ) + δ[k, j]

eiz j − e−izi

)
1� j�n

,

M̂(3)
1 = (

m̂(i, j)
1

)
k+1�i�n,1� j�n,

m̂(i, j)
1 =

{
δi

eizi −e−izi
, i = j

ei(Xj −z j −X̄i−zi )

eiz j −e−izi
, i 	= j

.

By direct calculation, we have

det(M̂) =
n∏

i=k+1

δi

eizi − e−izi

[
ei(χk−χ̄k ) det(Fk )

+ δk

eizk − e−izk
det(Fk−1)

]
,

where

Fl =
(

1

eiz j − e−izi

)
l�i, j�l

, l = k − 1, k.

Obviously, Fl is a Cauchy matrix, thus

det(Fl ) =
∏l

j=2

∏ j−1
i=1 (eiz j − eizi )(e−izi − e−iz j )∏l
j=1

∏l
i=1(eizi − e−iz j )

.

Similarly,

det(M̂1) =
n∏

i=k+1

δi

eizi − e−izi

[
ei(χk−χ̄k ) det(Gk )

+ δk

eizk − e−izk
det(Gk−1)

]
,

with det(Gl ) = ∏l
i=1 e−2izi det(Fl ). Thus, when t → −∞ the

asymptotic behavior of SVDS can be derived as

q−
si

= cL−
si

[1 − Bk + Bk tanh(Y −
si

)]eiθ , (B2)

where

Bk = i sin(zk ) e−izk ,

L−
si

=
k−1∏
m=1

e−2izm , K−
1 =

k−1∏
i=1

ω[k,i],

Y −
si

= c sin(zk )(x − vkt + γk ) − ln |K−
1 |.

When t → +∞, we can also derive the asymptotic solution
of SVDS in a similar way,

q+
si

= cL+
si

[1 − Bk + Bk tanh(Y +
si

)]eiθ , (B3)

where

L+
si

=
n∏

m=k+1

e−2izm , K+
1 =

n∏
i=k+1

ω[k,i],

Y +
si

= c sin(zk )(x − vkt + γk ) − ln |K+
1 |,

and ω[k,i] = sin(
zk −zi

2 )

sin(
zk +zi

2 )
.

Case 2: When qsi is a DVDS, which is related to
the spectral parameters λk = − a

2 + c cos(zk ) and λk+1 =
− a

2 + c cos(zk+1). Then we analyze the asymptotic behavior
of DVDS before and after the collision along the prop-
agating direction x − vkt = x − vk+1t = const. Before the
collision (t → −∞), there are ei(χ j−χ̄ j ) → +∞ for j < k,
and ei(χ j−χ̄ j ) → 0 for j > k + 1. Then, ei(χ j−χ̄ j ) divide the
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jth rows of both matrices M1 and M ( j = 1, . . . , k − 1) and
taking the limit t → −∞, then the solution Eq. (A5) can be
rewritten as

q[n] = c
det(M̂1)

det(M̂)
eiθ , (B4)

where

M̂ = [M̂(1), M̂(2), M̂(3)]ᵀ,

with

M̂(1) =
(

ei(χ j−χi )

eiz j − e−izi

)
1�i�k−1,1� j�n

,

M̂(2) =
(

ei(χ j−χ̄i ) + δ[i, j]

eiz j − e−izi

)
k�i�k+1,1� j�n

,

M̂(3) = (m̂(i, j) )k+2�i�n,1� j�n,

m̂(i, j) =
{

δi

eizi −e−izi
, i = j

ei(χ j −χ̄i )

eiz j −e−izi
, i 	= j

.

We can also write M̂1 as

M̂1 = [
M̂(1)

1 , M̂(2)
1 , M̂(3)

1

]ᵀ
,

with

M̂(1)
1 =

(
ei(χ j−z j−χi−zi )

eiz j − e−izi

)
1�i�k−1,1� j�n

,

M̂(2)
1 =

(
ei(χ j−z j−χ̄i−zi ) + δ[i, j]

eiz j − e−izi

)
k�i�k+1,1� j�n

,

M̂(3)
1 = (

m̂(i, j)
1

)
k+2�i�n,1� j�n

,

m̂(i, j)
1 =

{
δi

eizi −e−izi
, i = j

ei(χ j −z j −χ̄i−zi )

eiz j −e−izi
, i 	= j

.

Then the determinant of M̂ and M̂1 can be written as

det(M̂)

=
n∏

i=k+2

δi

eizi − e−izi

[
ei[(χk−χ̄k )+(χk+1−χ̄k+1 )] det(Fk+1)

+ δkei(χk+1−χ̄k+1 )

eizk − e−izk
det(F̂k ) + δk+1ei(χk−χ̄k )

eizk+1 − e−izk+1
det(Fk )

+ δkδk+1

(eizk − e−izk )(eizk+1 − e−izk+1 )
det(Fk−1)

]
,

det(M̂1)

=
n∏

i=k+2

δi

eizi − e−izi

[
ei[(χk−χ̄k )+(χk+1−χ̄k+1 )] det(Gk+1)

+ δkei(χk+1−χ̄k+1 )

eizk − e−izk
det(Ĝk ) + δk+1ei(χk−χ̄k )

eizk+1 − e−izk+1
det(Gk )

+ δkδk+1

(eizk − e−izk )(eizk+1 − e−izk+1 )
det(Gk−1)

]
,

where

det(Fl ) =
∏l

j=2

∏ j−1
i=1 (eiz j − eizi )(e−izi − e−iz j )∏l
j=1

∏l
i=1(eizi − e−iz j )

,

det(F̂k ) =
k−1∏
i=1

(eizk+1 − eizi )(e−izi − e−izk+1 )

(eizk+1 − e−izi )(eizi − e−izk+1 )

× 1

eizk+1 − e−izk+1
det(Fk−1),

det(Gl ) =
l∏

i=1

e−2izi det(Fl ), l = k − 1, k, k + 1,

det(Ĝk ) =
k−1∏
i=1

e−2izi e−2izk+1 det(F̂k ).

Thus, the asymptotic behavior of the DVDS at t → −∞ is
expressed as

q−
si

= c
det(M̂1)

det(M̂)
eiθ = cL−

si

N−
si

D−
si

eiθ . (B5)

By performing the similar procedure as presented above,
along the trajectory x − vkt = x − vk+1t = const at t → +∞,
we get the asymptotic expression of DVDS after the collision
as the following form:

q+
si

= c
det(M̂1)

det(M̂)
eiθ = cL+

si

N+
si

D+
si

eiθ , (B6)

where

N±
si

= K±
2 e−ηk−ηk+1 + K±

3 eηk−ηk+1 + K±
4 eηk+1−ηk

+eηk+ηk+1 ,

D±
si

= K±
2 e−ξk−ξk+1 + K±

3 eξk−ξk+1 + K±
4 eξk+1−ξk

+eξk+ξk+1 ,

and

L−
si

=
k−1∏
m=1

e−2izm , L+
si

=
n∏

m=k+2

e−2izm ,

K−
2 =

k+1∏
j=k

j−1∏
i=1

ω2
[ j,i], K+

2 =
k+1∏
j=k

n∏
i= j+1

ω2
[ j,i],

K−
3 =

k−1∏
i=1

ω2
[k+1,i], K+

3 =
n∏

i=k+2

ω2
[k+1,i],

K−
4 =

k−1∏
i=1

ω2
[k,i], K+

4 =
n∏

i=k+2

ω2
[k,i].

In addition, we let
∏k−1

m=1 f = 1 when k = 1, and
∏n

m=k+1 f =
1 when k = n, where f = ω2 or e−2izm in above related expres-
sions.
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APPENDIX C: THE ELASTIC COLLISION
FOR SVDS AND DVDS

The asymptotic results Eqs. (B2), (B3), (B5), and (B6)
provide the fundamental conditions to analyze their collision
properties directly and exactly. From Eqs. (B2) and (B3), we
can easily get

|q−
si

(x + x1)|2 = |q+
si

(x + x2)|2,
with

x1 = ln |K−
1 |

c sin(zk )
, x2 = ln |K+

1 |
c sin(zk )

.

This demonstrates that SVDS survives its shape after the
collision with a phase shift, similar to the solitons’ collision
reported before. However, DVDS does not admit such prop-
erty in the general case, as shown in Fig. 5. Then we would
like to know whether the collision of DVDS can also be
elastic. We rewrite Eqs. (B5) and (B6) in the following form
to facilitate our analyses:

|q±
si
|2 = c2[1 + ∂xx ln(D±

si
)]. (C1)

When the collision of n-dark solitons is elastic for the DVDS
qsi which is related to the spectral parameters λk and λk+1,
it will only result in a phase shift. Thus, we can assume
|q−

si
(x + c1)|2 = |q+

si
(x)|2, where c1 is a constant. According

to Eq. (C1), we just need to let D−
si

(x + c1) = D+
si

(x). Then,
we have

ln(K+
3 ) = ln(K−

3 ) − c sin(zk+1)c1,

ln(K+
4 ) = ln(K−

4 ) − c sin(zk )c1. (C2)

Based on Eq. (C2), we get

ln(K+
3 ) − ln(K−

3 )

ln(K+
4 ) − ln(K−

4 )
= sin(zk+1)

sin(zk )
. (C3)

Therefore, under this condition, the collisions contained
DVDSs can be elastic. In other words, this is the sufficient
condition, Eq. (C3), of elastic interaction for DVDSs.
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