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Analysis of ballistic transport and resonance in the α-Fermi-Pasta-Ulam-Tsingou model
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Ballistic transport and resonance phenomena are elucidated in the one-dimensional α-Fermi-Pasta-Ulam-
Tsingou (FPUT) model using an approach of computing thermal response functions. The existence of periodic
oscillations in spatially sinusoidal temperature profiles seen in previous studies is confirmed. However, the
results obtained using response functions enable a more complete understanding. In particular, it is shown that
resonance involves beats between normal modes which tend to reinforce in a one-dimensional chain. Anharmonic
scattering acts to destroy phase coherence across the statistical ensemble, and with increasing anharmonicity,
transport is driven toward the diffusive regime. These results provide additional insight into anomalous heat
transport in low-dimensional systems. Normal-mode scattering is also explored using time correlation functions.
Interestingly, these calculations, in addition to demonstrating loss of phase coherence across an ensemble of
simulations, appear to show evidence of so-called q-breathers in conditions of strong anharmonicity. Finally,
we describe how the approach outlined here could be developed to include quantum statistics and also also
first-principles estimates of phonon scattering rates to elucidate second sound and ballistic transport in realistic
materials at low temperatures.
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I. INTRODUCTION

Heat transport in materials is quite often well described
by the heat-diffusion equation. However, in one-dimensional
systems, heat conduction is often found to be “anomalous.”
In these cases, the apparent thermal conductivity is found
to depend on system size L and may diverge as κ (L) ∼ Lγ

with 0 < γ < 1 [1–3]. In a somewhat broader context, di-
vergences of this kind were first suggested by Alder and
Wainright [4,5]. Using Kubo expressions to compute thermal
conductivity, divergences are observed as power-law decays in
current-current correlation functions, 〈J (t )J (0)〉 ∼ tγ−1 [1,6].
In one-dimensional chains based on the Fermi-Pasta-Ulam-
Tsingou (FPUT) model, divergent behavior has been reported
with γ = 1

3 [7]. Somewhat more recent results for FPUT
lattices using thermostats and explicit temperature gradients
has suggested a mixture of ballistic and diffusive transport and
divergent thermal conductivity with γ = 2

5 [8]. Experimental
evidence has also demonstrated the breakdown of Fourier’s
law in carbon and boron-nitride nanotubes [9]. Experimen-
tal and computational results for single-layer suspended
graphene [10] indicate divergence in κ ∼ log L. Theoretical
calculations of second sound in suspended graphene have
also been reported [11,12]. Even more recently, second sound
has been reported in experimental studies of graphite [13].
However, while the divergence of κ (L) with system size
is generally understood to be due to a breakdown in the
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assumption of diffusive transport, investigation of anomalous
thermal transport still remains an active area.

The current understanding of anomalous thermal con-
duction clearly implicates the role of ballistic transport. It
might then be proposed that inquiry based on understanding
size-dependent thermal conductivity κ (L) is rather limiting.
Specifically, while measurement of κ (L) in an experiment is
of obvious practical and fundamental importance, the very
fact that κ (L) depends on system size indicates that the heat
diffusion equation itself does not apply. One might reason-
ably question how obtaining the scaling behavior of κ (L)
could lead to more fundamental understanding of anomalous
thermal transport without developing better understanding of
ballistic transport.

In this paper, we take the perspective that computational
and theoretical approaches should be developed to elucidate
transport without making a priori assumptions as to whether
the heat diffusion equation provides a suitable description. In
the context of Kubo theory, this suggests that current-current
correlation functions should be used to elucidate transport
without the assumption that Fourier’s law applies. Instead,
Kubo theory might be used to compute transport in a ballistic
regime or even a regime intermediate between purely ballistic
and diffusive. In addition, we make note that previous studies
focus on steady-state investigations to determine κ (L). By
contrast, experiments and applications are often interested in
time-dependent phenomena, where transport might involve
not only heat diffusion but also heat waves [14] and second
sound [15]. For example, quite recent work has demonstrated
the existence of second sound up to room temperature in
bulk germanium driven by rapidly varying heat inputs from
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a pump-probe laser system [16]. In this experimental work,
heat transport beyond the diffusive regime was demonstrated
by measurement of time-dependent phenomena which could
obviously not be characterized by the heat diffusion equation.

With these considerations in mind, this paper presents ap-
plication of recently developed computational methodology
for computation of thermal response functions [17] to eluci-
date transport phenomena in one-dimensional FPUT chains.
A similar approach based on computing the response to
externally applied perturbations was reported recently for one-
dimensional chains [18]. The advantage of the approach is
that the response functions do not require any assumptions
about whether transport is ballistic or diffusive. Moreover, the
response functions describe the time-dependent response to
heat pulses, and therefore are relevant for elucidating second
sound. In the regime where diffusive transport is relevant,
the thermal response functions begin to approach behavior
closely consistent with the heat diffusion equation [17]. In
this paper, we apply this approach to understanding heat
transport in the α-FPUT model. Recently, time-dependent
ballistic resonance has been observed in α-FPUT models
[19]. In ballistic resonance, oscillations are anharmonically
coupled to “mechanical” vibrations which can grow in time.
By contrast, β-FPUT chains exhibit resonance and oscillatory
transport behavior without coupling to mechanical vibrations,
and hence do not display ballistic resonance [20]. The oscilla-
tory behavior has been modeled using continuum differential
equations [19,21]. In this paper, we use response functions
to provide further insight into ballistic transport and resonant
behavior without directly addressing the coupling to mechani-
cal vibrations inherent to ballistic resonance. We demonstrate
the importance of phase coherence between harmonic nor-
mal modes, with the resonant behavior due to reinforcement
between beat frequencies across the entire normal-mode spec-
trum. This picture provides insight into oscillatory behavior in
FPUT chains reported earlier [19,20]. We show here that res-
onance is primarily due to harmonic wave interference, with
anharmonicity acting primarily to destroy phase coherence.
The results obtained demonstrate that reinforcing beat fre-
quencies is an important factor in observing ballistic transport
that is unique to one-dimensional systems. Hence, the results
here may provide additional theoretical insight into anoma-
lous thermal transport and diverging thermal conductivity in
low-dimensional systems.

II. THEORY AND METHODOLOGY

We consider a linear chain of N particles, with each particle
coupled to its nearest neighbors. Periodic-boundary condi-
tions are applied. The potential energy corresponds to the
α-FPUT model. Specifically the potential energy function
V (x) is given by

V (x) = 1
2 x2 + 1

3αx3, (1)

in which x = rn − rn−1 and rn represents the displacement
from equilibrium. The equation of motion for each particle
is, taking m = 1 for the mass,

r̈n = Fn+1 + Fn−1, (2)

where Fn±1 = −V ′(rn − rn±1). The local heat current at site n
is given by

Jn = 1
2 (Fn−1 − Fn+1)pn, (3)

in which pn = mṙn with m = 1.
Following our previous work [17], the response function

Kmn describes the heat current response due to an external heat
source u(ext)(t ),

Jn(t ) = − 1

2N

∑
m=1,N

Knm(t − t ′)
[
u(ext)

m+1(t ′) − u(ext)
m−1(t ′)

]
. (4)

This expression will also be written in reciprocal space. The
heat current and external source are written in terms of a
discrete Fourier series. Assuming an even number of sites N ,
this leads to the expressions for the local heat current,

Jn(t ) =
N
2 −1∑

q=− N
2

J̃q(t )e
2π inq

N , (5)

and the source term,

u(ext)
m (t ′) =

N
2 −1∑

q=− N
2

ũ(ext)
q (t ′)e

2π imq
N . (6)

In these equations and hereafter, tildes are used to identify
reciprocal space quantities.

The response function itself can be written as a Fourier
series due to the periodic nature of the chain. Hence, we have

Knm(t − t ′) =
N
2 −1∑

q=− N
2

K̃q(t − t ′)e
2π i(n−m)q

N . (7)

Then the response equation is written in reciprocal space,

J̃q(t ) = −i sin

(
2πq

N

)
K̃q(t − t ′)ũ(ext)

q (t ′). (8)

Here we provide a brief review of the derivation of re-
sponse function approach, although more details can be found
in our previous work [17]. Following the assumptions made
by Onsager and Kubo, it should be the case that equilibrium
fluctuations can be related to the dissipation of an external
perturbation. Hence, from Eq. (8), we associate the external
source with a fluctuation in the equilibrium ensemble. Taking
t ′ = 0, we multiply Eq. (8) by iũ−q(0) and take an ensemble
average,

i〈J̃q(t )ũ−q(0)〉 = sin

(
2πq

N

)
K̃q(t )〈ũq(0)ũ−q(0)〉. (9)

The final equation is obtained by using time-reversal symme-
try and differentiating with respect to time. In addition, the
continuity equation in reciprocal space is used,

∂ ũq

∂t
= −i sin

(
2πq

N

)
J̃q. (10)

The final expression then relates the time-correlation func-
tions to the response function,

K̃q(τ ) =
∫ τ

0 〈J̃q(t )J̃−q(0)〉dt

〈ũq(0)ũ−q(0)〉 . (11)

024212-2



ANALYSIS OF BALLISTIC TRANSPORT AND RESONANCE … PHYSICAL REVIEW E 106, 024212 (2022)

The significance of this equation is that fluctuations in the cur-
rent computed within the equilibrium ensemble can be used
to determine the response function K̃q(τ ), which subsequently
can be used to compute the response of a system to heat inputs
due to external sources as long as the system is maintained
in the linear-response regime. In this sense the approach is
comparable to the usual application of Green-Kubo theory to
compute thermal conductivity. However, the approach above
makes no assumptions about the applicability of Fourier’s law,
and hence it is useful for describing both diffusive and ballistic
transport.

Additional insight into the FPUT problem can be obtained
by working in a basis of normal-mode coordinates Qk and Pk

defined by

Qk = 1√
N

N−1∑
n=0

rne− 2π ink
N , (12)

Pk = 1√
N

N−1∑
n=0

pne− 2π ink
N , (13)

with pn = ṙn. Using this representation, the total energy Etot

is given as a summation over the contributions due to each of
the N − 1 normal modes,

Etot =
N
2∑

k=− N
2 +1

Ek =
N
2∑

k=− N
2 +1

(
PkP−k

2
+ 1

2
ω2

k QkQ−k

)
(14)

in which the energy of the anharmonic term in the potential
energy is not included. The dispersion relation for the normal
modes is given by,

ω2
k = 4 sin2

(
πk

N

)
. (15)

It has been shown [22] that the rate of thermalization is
determined by the parameter,

ε = α

√
Etot

N − 1
(16)

in which Etot is the total energy given by Eq. (14). In the cases
of very small chains with N = 16 and N = 32, the timescale
for equilibration scales 1/ε8 [22]. In the following, the initial
states are always taken to satisfy classical equipartition but
with random initial phases for each normal mode. To explore
the effect of anharmonicity on the response functions, we re-
port results for different values of ε. The parameter α = 0.15
is always used. Hence, different values of ε correspond to
different initial amplitudes according to Eq. (16). While the
initial states should always correspond to thermal equilibrium,
an initial run period of 104 steps was computed before any
statistical averaging was implemented.

In addition to heat currents computed exactly according to
Eq. (3), the approximate heat current obtained only from the
harmonic forces is also computed. It can be shown that in this
approximation the heat current is given in terms of the normal-
mode coordinates Qk and Pk as

Jn = − 1

N
i
∑

k

∑
l

sin

(
2πk

N

)
QkP−l e

2π in(k−l )
N . (17)

The Fourier components J̃q of this expression are also deter-
mined. Specifically, we note that J̃+q is defined by

J̃+q = − 1

N2
i
∑

n

∑
k

∑
l

sin

(
2πk

N

)
QkP−l e

2π in(k−l−q)
N . (18)

The summation on sites n yields zero unless k − l − q = 0, or
alternately l = k − q. Then after evaluating the sums on n and
l ,

J̃+q = − 1

N
i
∑

k

sin

(
2πk

N

)
QkP−k+q. (19)

Similarly we can write

J̃−q = 1

N
i
∑

k

sin

(
2πk

N

)
Q−kPk−q. (20)

These expressions will also be used to compute response
functions. As will be shown, this representation is extremely
revealing for establishing the role of different normal modes in
the response. It is also helpful in demonstrating that mode co-
herence and interference effects are responsible for resonance
and ballistic transport.

We next obtain an expression for ũq in the harmonic
approximation in terms of the normal-mode coordinates. As-
suming potential energy is equally shared between connected
particles, the local energy un is defined by

un = 1
2 p2

n + 1
4 (rn − rn−1)2 + 1

4 (rn+1 − rn)2, (21)

in which only the harmonic interactions are included. Then
the Fourier component ũq is given by

ũq = 1

N

∑
n

une− 2π iqn
N . (22)

It is then straightforward to show that

ũq = 1

2N

∑
k

PkP−k+q + 2

N

∑
k

QkQ−k+q cos
(πq

N

)

× sin

(
πk

N

)
sin

[
π (k − q)

N

]
. (23)

For the case q = 0, we obtain

ũq=0 = 1

N

∑
k

[
PkP−k

2
+ 1

2
ω2

k QkQ−k

]
. (24)

Comparison with Eq. (14) shows that ũq=0 = Etot
N is the aver-

age total energy per particle.
Following other authors, we used the SABA2C symplec-

tic integrator first introduced in Ref. [23] with a time step
dt = 0.10 [24]. Tests of the integrator for N = 32 chains
demonstrated thermalization times in very close agreement to
the results from Ref. [22], including validation of the 1

ε8 de-
pendence of the thermalization time. The simulations reported
here use longer chains with N = 512 and N = 16, 384 sites.

Initial conditions corresponded to an equal amount of
energy in each normal mode. Specifically then, the initial
condition for each ensemble member satisfies the expression,

|Pk|2 = ω2
k |Qk|2 = Etot

N − 1
(25)
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FIG. 1. Resonant behavior shown by the equilibrium correlation
function 〈ũ+1(τ )ũ−1(0)〉 for simulations with ε = 0.02 and N = 512.
Ensemble averaging was performed for 1280 independent runs each
with 1.5 × 106 MD steps. Results normalized by the average fluctu-
ation 〈ũ+1(0)ũ−1(0)〉.

for each normal mode k. To randomize the initial conditions,
the phases of each normal mode were selected randomly. Then
the initial conditions for the displacements rn and momenta pn

are given by summations over normal modes k,

rn = 1√
N

∑
k

|Qk| cos

(
2πnk

N
− φk

)
, (26)

pn = 1√
N

∑
k

|Qk|ωk sin

(
2πnk

N
− φk

)

= 1√
N

∑
k

|Pk| sin

(
2πnk

N
− φk

)
, (27)

in which φk is the random phase. In each instance, reported
quantities correspond to ensemble averages with the number
of independent ensemble members indicated. In the case of
response functions, time averaging over each member of the
ensemble is also used. Finally, results for ε above 0.08 are
not reported. It was found that due to the cubic anharmonic-
ity, the FPUT lattice was unstable to occasional collapse for
ε > 0.08. Consequently, it was not possible to observe transi-
tion to diffusive transport. By contrast, it has been previously
demonstrated that simulations of the β-FPUT model [20] can
be extended to stronger anharmonic regimes where ballistic
transport and resonance is not evident. Here, we were not able
to explore this transition.

III. RESULTS

For all of the simulations conditions reported here, oscil-
latory behavior was found in agreement with previous studies
[19,20]. Resonant behavior is most directly shown by plotting
the ensemble-averaged energy fluctuations 〈ũ1(τ )ũ−1(0)〉.
The quantities ũq are defined in terms of the normal mode
coordinates by Eq. (23). In Fig. 1, the energy fluctuations are
plotted for a chain with N = 512 particles and ε = 0.02. The
period of the oscillations corresponds closely to the period
τ1 = π

sin ( π
N ) for the normal mode k = 1. Harmonic behavior

persists to long times even for ε = 0.08 as shown in Fig. 2.

FIG. 2. Resonant behavior shown by the equilibrium correlation
function 〈ũ+1(τ )ũ−1(0)〉 for simulations with ε = 0.08 and N = 512.
Ensemble averaging was performed for 1280 independent runs each
with 1.5 × 106 MD steps. Results normalized by the average fluctu-
ation 〈ũ+1(0)ũ−1(0)〉.

Increased anharmonicity for ε = 0.08 leads to more rapid
decay of the oscillations. This point will be displayed more
convincingly in relation to the response functions.

Ballistic resonant behavior is also exhibited in the response
function K̃q=+1(τ ). In Figs. 3 and 4, the computed response
functions are shown for N = 512 chains using the exact
heat current including anharmonic terms. As with the energy
fluctuations, resonant behavior with period τ ≈ τ1 is demon-
strated. Comparison of results for K̃q=+1(τ ) for different
values of ε demonstrates the primary role of anharmonicity.
Specifically, for smaller values of ε, phase coherence and
wavelike response persists for longer times. As ε is increased,
there is an increased decay rate for the oscillatory behavior.
For ε = 0.08 shown in Fig. 4, the oscillations have decayed
essentially completely by ∼50 periods. By contrast, for ε =
0.05 shown in Fig. 3, oscillatory behavior is still perceptible
after ∼75 periods. This general trend was reported elsewhere

FIG. 3. The response function K̃q=+1(τ ) obtained for ε = 0.05
and a system with N = 512 particles. The response function was
computed from an ensemble of 1280 independent runs, with each
ensemble member comprised of 5 × 106 MD steps. The time τ is
scaled by the longest vibrational period in the system τ1 = π

sin π
N

.
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FIG. 4. The response function K̃q=+1(τ ) obtained for ε = 0.08
and a system with N = 512 particles. The response function was
computed from an ensemble of 1280 independent runs, with each
ensemble member comprised of 5 × 106 MD steps. The time τ is
scaled by the longest vibrational period in the system τ1 = π

sin π
N

.

for simulations of the β-FPUT model [20]. However, in the
results reported here, diffusive behavior is never observed.

Fourier transform of the response function K̃q=+1(τ ) using
the equation

K̃T
q=+1(ω) =

∫ Tmax

0
K̃q=+1(τ )e−iωτ dτ (28)

demonstrates that the primary frequency in the response cor-
responds to the lowest normal-mode frequency ω1 = 2 sin π

N .
However, additional frequencies both faster and slower that
ω1 are apparent. As shown in the Analysis section, these
details can be linked specifically to the normal-mode disper-
sion ω2

k = 4 sin2( πk
N ) and to the finite lifetime for coherent

oscillation due to anharmonicity. Hence, although the re-
sponse is pronounced at frequency ω1, in fact the entire
normal-mode spectrum plays an important role in the response
function. Typical results are shown in Figs. 5 and 6 for the
real and imaginary parts of K̃T

q=+1(ω) for simulations with
ε = 0.08 and N = 512. Very sharp peaks are evident for ω ≈
ω1 and ω ≈ −ω1. These results further demonstrate wavelike

R
e

FIG. 5. Real part of the Fourier transform Re[K̃T
q=+1(ω)] ob-

tained for ε = 0.08 and N = 512. Predominant oscillatory behavior
is shown as peaks at frequencies ω ≈ ω1.

Im

FIG. 6. Imaginary part of the Fourier transform Im[K̃T
q=+1(ω)]

for ε = 0.08 and N = 512. Predominant oscillatory behavior is
shown as peaks at frequencies ω ≈ ω1.

transport and resonant behavior even for the largest value of ε

simulated here.
The validity of the response functions will next be demon-

strated by comparison with calculated heat currents that result
from an explicit perturbation of an equilibrium system. The
demonstration corresponds to a perturbation with q = ±1 in
Eq. (6). In detail, the velocities ṙn(t = 0) are scaled according
to

ṙn(0) → ṙn(0)

√
1 + δ cos

(
2πn

N

)
. (29)

Also we recall here the relationship pn = ṙn. Figure 7 com-
pares the current resulting from the direct excitation with
the prediction obtained using the response function K̃q=+1(τ )
obtained for ε = 0.05. Details for the total number of in-
dependent ensemble members and MD integration steps are
included in the captions. The amplitude of the excitation is

Im

FIG. 7. The imaginary part of the heat current Im[J̃q=+1(τ )] re-
sulting from direct excitation based on Eq. (29) with δ = 0.20 and
ε = 0.05 for a system with N = 512 particles. Comparison is made
to the prediction based on the computed response function K̃q=+1(τ ).
The response function was computed from an ensemble of 3072
independent runs. Response functions were also time-averaged over
5 × 106 MD steps. Direct excitation results were averaged over 6144
simulations with independent initial conditions.
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Im

FIG. 8. The imaginary part of the heat current Im[J̃q=+1(τ )] re-
sulting from direct excitation based on Eq. (29) with δ = 0.20 and
ε = 0.05 for a system with N = 512 particles. Comparison is made
to the prediction based on the computed response function K̃q=+1(τ ).

given by δ = 0.20. The predicted resonant behavior is in very
good agreement, indicating the validity of the response func-
tion. The oscillations persist for very long times. In Fig. 8, the
same calculations are compared only for times 30 � τ

τ1
� 60

to show more clearly the close agreement at even longer times.
Statistical error was found to be most sensitive to the number
of direct excitation calculations, since these are only averaged
over independent initial conditions and are not time-averaged
like response functions. Agreement between direct excitation
and the predictions based on the response functions improved
by increasing the number of direct excitation calculations to
6144 independent simulations, in contrast to an ensemble
of 3072 independent calculations to determine the response
function.

Having established the resonant behavior for N = 512 par-
ticle chains along with a demonstration of the validity of the
response functions, we next present results for much longer
chains with N = 16 384 particles. The only clear difference
for K̃q=+1(τ ) between N = 512 and N = 16 834 chains is in
the primary resonant frequency. In both cases, the resonant
behavior corresponds to oscillations with frequency ω ≈ ω1,
and period τ ≈ τ1. In Fig. 9, K̃q=+1(τ ) is again plotted as a
function of τ

τ1
for N = 16384 and ε = 0.08. Comparison to

the same conditions for the N = 512 chain in Fig. 4 shows
no obvious differences. The only apparent feature which is
distinct is the presence of more statistical noise for the large
chain due to the relatively smaller ensemble for the large
chain. In particular, while the total simulation time in Fig. 9
was increased to 107 steps, the oscillation period is longer by
a factor of 32. Moreover, due to the increased computational
cost, only 512 independent initial conditions were used to gen-
erate the data plotted in Fig. 9. Nevertheless, it is apparent that
as long as times are scaled by the increased period associated
with the longer wavelength in the N = 16 384 chain, at least
in this range the dominant behavior is apparently independent
of chain length. However, there are reasons to posit that this
situation may not persist as chain length is increased which
will be discussed in the next section.

In summary, the predominant feature exhibited by the re-
sponse function K̃q=+1(τ ) is resonant behavior at frequency

FIG. 9. The response function K̃q=+1(τ ) obtained for ε = 0.08
and a system with N = 16 384 particles. The response function was
computed from an ensemble of 512 independent runs, with each
ensemble member comprised of 1 × 107 MD steps. The time τ is
scaled by the longest vibrational period in the system τ1 = π

sin π
N

.

ω ≈ ω1, where ω1 = 2 sin ( π
N ) is the frequency associated

with the longest wavelength mode allowed in the periodic
chain. Increasing chain length N appears to only have the ef-
fect of increasing the observed period for resonant behavior. In
the next section, it will be demonstrated that resonant behavior
is an entirely harmonic phenomenon caused by beats between
different normal modes. The amplitude of the oscillations
in K̃q(τ ) tends to decay with time τ . There are two origins
for this behavior. First, as the next section will demonstrate,
oscillations depend on phase coherence and interference be-
tween normal modes. However, because mode dispersion is
nonlinear in the FPUT model, the beat frequencies differ
across the spectrum. Over time, phase differences accumulate
between the beats resulting in a decrease in the amplitude of
K̃q(τ ). The second reason for the decrease in the oscillatory
behavior exhibited by K̃q(τ ) is phase decoherence caused by
anharmonicity. This effect can be elucidated by simulations
using different values of the parameter ε. It is of interest
specifically to establish how phase decoherence depends on
ε, and moreover whether oscillations can be damped for large
enough values of ε such that diffusive transport becomes
relevant.

IV. ANALYSIS

Analysis of the results is based on correlations determined
from only the harmonic form of the heat current given in
Eqs. (19) and (20). Using the harmonic currents, the current-
current correlation is given by the expression,

〈J̃+q(τ )J̃−q(0)〉 = 1

N2

∑
k

∑
k′

sin

(
2πk

N

)
sin

(
2πk′

N

)

×〈Qk (τ )P−k+q(τ )Q−k′ (0)Pk′−q(0)〉. (30)

Written in this form the origin of the beat phenomenon is
very clear. Specifically, the dominant terms in Eq. (30) cor-
respond to those with k = k′ and hence involve modes k, −k,
−k + q, k − q. As a result, the most important frequencies
involve the difference ωk − ωk±q. When k and k − q are small
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FIG. 10. Partial response function K̃P
q=+1,k (τ ) obtained for ε =

0.08 and a system with N = 512 particles. Results are presented
for k = 2, k = 32, k = 128, and k = 192 as shown in the legend.
The time τ is scaled by the longest vibrational period in the system
τ1 = π

sin π
N

. These results were obtained from an ensemble of 768

independent simulations with 1.5 × 106 MD steps in each. The same
ensemble details apply to Figs. 11–14.

enough to consider the normal-mode dispersion to be linear,
ωk − ωk±q ≈ ωq. Hence, as long as q corresponds to a long-
wavelength fluctuation, many modes contribute to resonant
behavior with frequency ωq. While it may seem natural to
assume that time dependence with frequency ωq involves
primarily the normal mode q, this is shown clearly not to be
the case. In fact, as shown below, many modes contribute to
resonant transport.

To analyze the interference effects and the coherent beat
phenomenon, we examined contributions to Eq. (30) due to
specific sets of normal-mode coordinates which exhibit a sin-
gle beat frequency. We specifically consider contributions to
Eq. (30),

Fq,k (τ ) = 1

N2
sin

(
2πk

N

)
〈[Qk (τ )P−k+q(τ ) + Q−k+qPk (τ )]

×
∑

k′
sin

(
2πk′

N

)
Q−k′ (0)Pk′−q(0)〉. (31)

We define the partial response function,

K̃P
q,k (τ ) =

∫ τ

0 Fq,k (t )dt

〈ũq(0)ũ−q(0)〉 , (32)

which is related to the complete response function in Eq. (11)
by K̃q(τ ) = ∑

k K̃P
q,k (τ ). Calculation of K̃P

q,k (τ ) serves to iso-
late contributions due to discrete parts of the spectrum.

We provide an analysis of K̃P
q,k (τ ) for the N = 512 par-

ticle chain. In Fig. 10, results are shown for a few different
modes k for very short correlations times. Several interesting
features emerge from this analysis. Contributions due to long
wavelength modes exhibit a beat frequency comparable to
ω1. Consequently, many modes contribute coherent resonant
behavior that reinforces constructively. In Fig. 10, this is
apparent for contributions due to k = 2 and k = 32. Hence,
while the response function is dominated by frequency ω1, in
fact many modes contribute to this behavior.

FIG. 11. Partial response function K̃P
q=+1,k (τ ) with k = 2 ob-

tained for ε = 0.015 and a system with N = 512 particles. The time
τ is scaled by the longest vibrational period in the system τ1 = π

sin π
N

.

However, because the normal-mode spectrum exhibits non-
linear dispersion, individual contributions tend to exhibit
resonant frequencies lower than ω1. For example, while dif-
ferences are small for long-wavelength modes, over longer
timescales interference can become destructive. In Fig. 10,
comparison between k = 2 and k = 32 contributions demon-
strate a slight phase shift which accumulates with increasing
correlation time τ . The observed phase shifts track very
closely the expected shifts based on the normal mode spec-
trum ωk = |2 sin( πk

N )|. Hence, for k = 128 and k = 192, the
normal-mode dispersion is strongly nonlinear, and ωk − ωk−q

is substantially smaller than ω1. The beats for these contri-
butions are quickly not in phase with the dominant behavior
at frequency near ω1. This phenomenon in part explains the
contributions to K̃T (ω) for frequencies in the range |ω| < ω1

shown in Figs. 5 and 6.
This analysis makes it clear why the dominant resonant

behavior corresponds to frequency ω1. It also explains the
primary reason for the decrease in K̃q(τ ) for relatively short
timescales. Specifically, individual contributions have beat
frequencies ωk − ωk−q that differ from ω1 and hence even-
tually lead to a loss of phase coherence. This is not an effect
related to scattering of the normal modes, but rather purely
a harmonic wave-interference phenomenon. Hence, at least
for the values of ε used in the simulations reported here,
the dominant behavior can be understood as being related
to nonlinear dispersion rather than to anharmonic scattering
effects.

However, scattering and anharmonicity do play a notable
and important role. This has been already demonstrated by
comparison of the response K̃q(τ ) for different values of ε.
Resonant behavior tends to persist for longer periods of time
for smaller values of ε. This suggests scattering effects con-
tribute to loss of phase coherence, with the effect becoming
more pronounced as ε increases, much as would be expected.

Evaluation of how the partial response function K̃P
q=+1,k (τ )

depends on ε and k over longer simulation times demonstrates
further that anharmonicity plays a role. For long wavelength
modes, coherence is maintained for many oscillation periods,
with ε acting to decrease the timescale for resonant behavior.
This can be seen by comparing K̃P

q=+1,k (τ ) results in Fig. 11
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FIG. 12. Partial response function K̃P
q=+1,k (τ ) with k = 2 ob-

tained for ε = 0.08 and a system with N = 512 particles. The time τ

is scaled by the longest vibrational period in the system τ1 = π

sin π
N

.

and 12 for k = 2. The results in Fig. 11 were computed us-
ing ε = 0.015 and hence very low levels of anharmonicity.
Even after 120 periods τ1, coherence is still quite strong. By
contrast, with ε = 0.08, the same quantity shows a substantial
decay at around 40 periods τ1.

For larger values of k, the characteristic frequencies for the
resonant behavior are sharply decreased as explained earlier.
However, resonance is still clearly important. In Fig. 13 for
k = 192 and ε = 0.015, resonant behavior is obtained beyond
120 periods τ1. The oscillations themselves have a period
substantially longer than τ1. The observed period is in good
agreement with what is expected from the normal-mode dis-
persion. For ε = 0.08, scattering is evidenced by quite rapid
loss of phase coherence. This is demonstrated in Fig. 14.

While resonance is exhibited for all values of ε and N sim-
ulated, analysis of the partial response functions K̃P

q=+1,k (τ )
show strong dependence on chain length N . As chain length
increases, the beat frequencies ωk − ωk−1 decrease and the
corresponding beat period τ = 2π

ωk−ωk−1
increases, becoming

significantly larger than τ1 as the zone edge is approached.
Therefore, phase coherence must be maintained for a much
longer time for longer chains if resonant behavior is to be
observed. We find that for small k, resonant behavior is

FIG. 13. Partial response function K̃P
q=+1,k (τ ) with k = 192 ob-

tained for ε = 0.015 and a system with N = 512 particles. The time
τ is scaled by the longest vibrational period in the system τ1 = π

sin π
N

.

FIG. 14. Partial response function K̃P
q=+1,k (τ ) with k = 192 ob-

tained for ε = 0.08 and a system with N = 512 particles. The time τ

is scaled by the longest vibrational period in the system τ1 = π

sin π
N

.

present for N = 16 384, leading to the very comparable re-
sponse functions for N = 512 and N = 16 384. However,
analysis of the partial response K̃P

q=+1,k (τ ) for larger k values
shows a breakdown in resonant behavior. Therefore, while
resonance is always observed in the response functions, the
beginning of diffusive behavior can be seen for large values
of N and k. In Fig. 15, we show the comparison between
K̃P

q=+1,k (τ ) for N = 512 and N = 16 384 chains. In both cases
2k
N = 3

4 and ε = 0.08 were chosen. For the N = 512 chain,
this corresponds to k = 192 which was already shown in
Fig. 14. What is evident from Fig. 15 is that resonant be-
havior is quite pronounced for N = 512, but for N = 16 384
scattering has destroyed phase coherence. What is important
to remember here is that the beat period is longer for the
N = 16 384 chain by a factor of 32 in comparison to the
N = 512 chain. Therefore, phase coherence between normal

FIG. 15. Dependence of the partial response function K̃P
q=+1,k (τ )

for ε = 0.08 on chain length N . Comparison is made between
N = 512 and N = 16 384. The value of k is given by 2k

N = 3
4 . For

N = 512, this corresponds to k = 192, and hence corresponds to the
results in Fig. 14. For the longer chain with N = 16 384, k = 6144.
The period τ1 for scaling times on the horizontal axis is determined
by the normal mode frequencies for the corresponding chain length
N . For the N = 16 384 results, numerical ensemble averaging used
2000 independent initial conditions with 3 × 106 MD steps each
simulation.
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FIG. 16. The quantity Ck (τ ) normalized by the value at τ = 0
plotted as a function of time for k = 26, ε = 0.04, and N = 512.
The ensemble used included 160 independent initial conditions each
integrating 1.5 × 106 MD steps. These ensemble details apply also
to the data in Figs. 17 and 18.

modes with frequencies ωk and ωk±1 must be maintained
for a much longer time for the N = 16 384 chain to observe
resonant behavior.

The picture above is consistent with the idea of ballistic
transport at short time and length scales, and diffusive trans-
port at longer time and length scales. It is clear that increasing
chain length N will eventually result in partial response func-
tions K̃P

q=+1,k (τ ) exhibiting diffusive behavior for increasingly
small values of k. Eventually, the complete response function
K̃q=+1(τ ) will show behavior more consistent with diffusive
transport. However, for very small k values, we expect that
as long as scattering is not strong enough to scatter at a rate
comparable to ωk

2π
, at least some modes will always contribute

in a manner consistent with ballistic transport. This perspec-
tive is consistent with the observation of anomalous thermal
transport in FPUT chains.

Resonant behavior in the response functions depends on
long lifetimes for the normal modes. Specifically, when a
significant number of ensemble members exhibit incoherence,
the response functions tend to decay to zero. If resonance
is to be observed, then the lifetime of normal modes must
be greater than the period associated with the primary beat
frequencies, which in the cases examined here this time is
2π
ω1

. Hence, understanding scattering and loss of phase coher-
ence is critical for understanding the response functions. It is
well-known that resonant three-wave scattering, which tends
to dominate in three-dimensional solids, does not exist in one-
dimensional FPUT chains [22]. However, resonant four-wave
scattering does exist [25], and in smaller chains thermalization
routes have been demonstrated for six-wave resonant scatter-
ing [22]. Four wave scattering has been proposed to lead to
nonlinear frequency shifts and also Umklapp-type scattering
[22]. To directly explore the scattering of the harmonic nor-
mal modes, we have computed the time-correlation function
Ck (τ ) = 〈Pk (τ )P−k (0)〉. This quantity can be Fourier trans-
formed,

C̃k (ω) =
∫ Tmax

0
Ck (τ )e−iωτ dτ, (33)

FIG. 17. The quantity Ck (τ ) normalized by the value at τ = 0
plotted as a function of time for k = 26, ε = 0.08, and N = 512.

to explore the spectral properties. For harmonic behavior, we
expect sharp peaks at frequencies ω = ωk . However, scatter-
ing effects will lead to frequency shifts and peak broadening.

We have computed Ck (τ ) and its Fourier transform C̃k (ω)
for modes with k = 26 and k = 192 for the N = 512 chain.
The results we have obtained qualitatively show that mode
coherence persists across the spectrum for any value of ε. This
demonstrates that the normal modes themselves are coherent
through many periods. As expected, coherence lifetime de-
pends strongly on the value of ε. In Fig. 16 we show Ck (τ )

Ck (0)
for k = 26 and ε = 0.04. Comparison with the same quan-
tity computed in conditions with ε = 0.08 shown in Fig. 17
demonstrates more rapid loss of coherence across the ensem-
ble. However, what is surprising is that the rate of the loss of
coherence appears to approximately depend linearly on ε. If
we recall that normal-mode amplitudes should vary with ε as
Qk ∼ ε [see Eq. (16) with the assumption that α is fixed], then
one would expect cubic anharmonic scattering rates to scale as
ε2. This result can be demonstrated from Eq. (7) in Ref. [22].
Similarly, as shown in Ref. [22], six-wave scattering, found
to be dominant for short chains, leads to thermalization rates
which scale as ε8. Moreover, four-wave scattering should lead
to thermalization rates which scale as ε4 [22]. We have not

FIG. 18. The quantity Ck (τ ) normalized by the value at τ = 0
plotted as a function of time for k = 192, ε = 0.08, and N = 512.
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FIG. 19. The quantity C̃k (ω) plotted as a function of ω for k =
192, ε = 0.08, and N = 512.

yet found any explanation for the approximately linear depen-
dence on ε demonstrated in our calculations.

For large values of k, we find the interesting result that
phase-coherence itself can be periodic. In Fig. 18, we show
Ck (τ ) for ε = 0.08 and k = 192. As can be seen, the oscil-
lation period τ192 for this short-wavelength mode is much
shorter than τ1. Hence, on the scale shown, the periodicity
cannot be easily discerned. However, over longer times, phase
coherence itself exhibits periodic behavior. The Fourier trans-
form C̃k (ω) of this result is shown in Fig. 19. First we note
that ω192 ≈ 150.6ω1, whereas the largest peak value in the
Fourier transform occurs at ω ≈ 149.5ω1. This suggest some
nonlinear frequency shift possibly of the kind proposed to re-
sult from resonant four-wave scattering [22]. More interesting
is the presence of multiple peaks spaced almost exactly by
the difference 0.625ω1. We have not been able to associate
this frequency with any features of the normal-mode spectra
for N = 512 chains. One possibility is that this is the result
of the presence of so-called q-breathers demonstrated to exist
in FPUT chains [26–28]. The basic idea is that energy in
q-breathers is localized in reciprocal space, and can exhibit
periodic recurrence phenomenon. It is possible that the fre-
quency spacing between different peaks in Fig. 19 might
correspond to the frequency associated with the recurrence
of q-breathers. We have seen this behavior in other normal
modes as well, but the effect is not as dramatic for longer
wavelength modes. However, the observed recurrence behav-
ior may explain the fact that response functions K̃q=+1(τ )
show an initial decrease followed by an increase at later times.
However, another contributing factor is likely that phase shifts
due to nonlinear dispersion accumulate over time, so that after
an initial decrease in K̃q=+1(τ ), coherent behavior might be
realized again at a later time.

V. CONCLUSIONS

The results here demonstrate the validity and usefulness
of applying response functions to heat transport problems.
Rather than starting from an assumption of diffusive or bal-
listic transport, a complete description of transport across
all regimes can be obtained. In the α-FPUT model, ballistic
resonance is found to be the dominant transport mechanism.

Furthermore, an analysis based on the normal-mode coordi-
nates has demonstrated that beat frequencies ωk − ωk−q and
reinforcement across the spectrum is responsible for ballistic
resonance and the resulting wavelike transport. While diffu-
sive transport was not observed in the results presented here,
detailed analysis across the normal-mode spectrum demon-
strates the onset of diffusive behavior especially at higher
frequencies and shorter wavelengths.

Previous reports of ballistic resonance in the α-FPUT
model have centered on the concept of mechanical vibra-
tions which are excited due to local thermal expansion [19].
Subsequent work demonstrated that ballistic resonance does
not occur in the β-FPUT model due to the lack of thermal
expansion with only quartic anharmonicity [20]. In fact, in
the β-FPUT model, local thermal expansion does not occur.
Nevertheless, resonant, wavelike behavior is still observed in
the β-FPUT model. In fact, resonant behavior in the β-FPUT
model was observed even in the case of a purely harmonic
system with β = 0. In both of these articles, continuum-
level differential equations were used to describe the results
[19,20].

It is important to note that the calculations reported
previously [19], which highlighted the role of mechanical
vibrations, used rather different initial conditions in contrast
to the direct excitations simulated here based on Eq. (29). In
particular, while our excitations scaled velocities to generate
an excitation, the referenced work [19] initialized a state with
each particle starting at its equilibrium position but with an
initial velocity. Consequently, in contrast to the excitations
used here, the previous approach started each excited normal
mode exactly in phase. Based on our finding of reinforcing
beat frequencies, this suggests that indeed a “mechanical”
vibration might indeed be generated with growing amplitude
using their approach [19]. The results of this article demon-
strate that resonant behavior occurs without the mechanism of
mechanical vibrations simply due to harmonic effects based
on reinforcing beat frequencies. In particular, the fact that the
response functions, computed in equilibrium, demonstrate this
behavior shows that the coupled thermoviscoelastic response
cited previously [19] is not required to explain resonance.

The results reported here highlight the fact that spatially
nonuniform heat inputs tend to generate phase coherence be-
tween normal modes. This is evident from Eq. (23), which
when applied to the Fourier components of an external source
ũ(ext)

q show there must be phase coherence between modes ±k
and ∓k ± q across the entire spectrum of harmonic normal
modes. The same phase coherence is reflected in the Fourier
components of the heat current J̃q after action of the external
source. This is shown in Eqs. (19) and (20). In fact, we
note that the expressions in Eqs. (19) and (20) are essentially
identical to the local harmonic current first derived by Hardy
[29]. Specifically, the local form of the current operator 
J (
x)
at position vector 
x is given by Hardy in Eqs. (5.10) and (5.11)
as [29]


J (
x) =
∑


k
N
k (
x)h̄ω
k
v
k, (34)

where for clarity and simplicity, while this is written as-
suming a three-dimensional system, the band index s has
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been omitted, and the notation has been altered somewhat to
be consistent with our work. The local distribution operator
N
k (
x) is then given by

N
k (
x) = 1

2V

∑

k′

[a†

ka
k′ei(
k′−
k)·
x + a†


k′a
ke−i(
k′−
k)·
x]

× exp

[
−1

4
|
k − 
k′|2l2

]
, (35)

in which V is the system volume, l is a length scale asso-
ciated with a Gaussian localization function, and a†


k , a
k′ are
phonon creation and annihilation operators. The interpreta-
tion of N
k (
x) as the density of phonons with wave vector

k at point 
x is not entirely straightforward. Rather, if one
takes 
k′ − 
k = ±
q, then the relation between Hardy’s local
current and the Fourier components J̃±q defined by Eqs. (19)
and (20) becomes clear. Then given the time dependence of
operators, it is clear that Hardy’s expression also involves
slow oscillations with frequency ω
k − ω
k′ , a point which was
noted in his paper [29]. Therefore, it is clear that in a local
representation of current, the phase relation between different
modes determines the behavior over short timescales until
scattering processes act to destroy the coherence. This picture
of transport is somewhat different from the standard picture
that requires a nonequilibrium distribution of phonons. Never-
theless, we believe that the picture presented here is consistent
with derivations in Ref. [29] for the local current operator.
This also shows that nonequilibrium states, characterized by
nonuniform energy distributions, can arise due to phase coher-
ence between large numbers of phonon modes, and not only
due to phonon occupations that differ from the equilibrium
Bose-Einstein distribution.

The decay of resonant behavior has two origins. First,
due to nonlinear dispersion, coherence between beats de-
creases with time. This is a purely harmonic effect which
explains previous results in the β-FPUT model when the
anharmonic interaction parameter β = 0 and evolution is en-
tirely harmonic [20] but also other cases when anharmonicity
is included in the FPUT model [19,20]. While this mechanism
does cause decay in the resonant behavior, it is unrelated to an-
harmonic interactions usually studied as a mechanism to attain
classical equipartition [22]. However, this effect does lead the
system toward a uniform energy distribution in real space and
the eventual elimination of local temperature gradients. The
second mechanism for the decay of resonant behavior is due
to anharmonicity. In the results here with α > 0, normal mode
scattering leads to a loss of phase coherence in the ensemble.
This mechanism is also responsible for the thermalization of
a nonequilibrium ensemble.

It is interesting to speculate on how these observations
might be relevant to two- and three-dimensional materials.
In the original paper outlining the methodology of thermal
response functions [17], we demonstrated that ballistic trans-
port was clearly apparent at short length scales and low
temperatures in a three-dimensional lattice with Lennard-
Jones interactions. However, no indication of oscillatory

transport was found. Hence, some signatures of ballistic trans-
port, perhaps more specifically ballistic resonance, may be
harder to observe in three-dimensional systems. We believe
that the fact that three-dimensional materials have a much
more complex normal-mode spectrum, and hence less of a
tendency for reinforcing beat frequencies, is likely respon-
sible for these differences. Specifically, in one-dimensional
systems like the FPUT model, for a very significant part of the
spectrum ωk − ωk−q ≈ ωq can be assumed, and hence beats
tend to reinforce. By contrast, in a three-dimensional lattice,
beat phenomena likely exist, but due to the complex spectrum,
beats should act more incoherently. The same considerations
will apply to two-dimensional materials. As a result, ballistic
resonance effects seen in one-dimensional chains might not be
present or at least as striking in higher-dimensional systems.

We plan to apply the approach developed here to more
realistic materials to test some of these ideas. As men-
tioned previously, there have been recent reports of second
sound in graphite [13] and even bulk germanium [16] which
might present interesting test cases. Finally, we suggest that
computation of response functions might be a complemen-
tary approach to other methods including solution of the
Peierls-Boltzmann equation (PBE). In fact, in a few recent
publications analogous approaches have been developed using
solutions of the PBE [30,31]. For example, the concept of
“thermal susceptibility” developed by Allen and Perebeinos
[31] is identical to what we have called thermal response.
It should be possible to take a first-principles approach to
the computation of scattering rates, as is typically imple-
mented in PBE studies of bulk conductivity [32], but instead
to determine timescales for the loss of phase coherence.
It should be straightforward to extend the approach to the
low-temperature regime where Bose-Einstein statistics should
apply, and thereby develop an approach to understand thermal
response at very low temperatures where ballistic transport,
second sound, and phonon hydrodynamics are particularly
relevant. We note that if these functions could be determined
over a wide range of conditions, then transport across ballistic,
diffusive, and intermediate regimes could be computed. More-
over, while the response functions clearly involve a substantial
amount of data, they actually represent the integrated contri-
butions of the entire spectrum, and thereby might represent
an efficient, compact, and accurate approach toward modeling
thermal transport.
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