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Effect of chaos on information gain in quantum tomography
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Does chaos in the dynamics enable or impede information gain in quantum tomography? We address this
question by considering continuous measurement tomography in which the measurement record is obtained
as a sequence of expectation values of a Hermitian observable evolving under the repeated application of the
Floquet map of the quantum kicked top. For a given dynamics and Hermitian observables, we observe completely
opposite behavior in the tomography of well-localized spin coherent states compared to random states. As the
chaos in the dynamics increases, the reconstruction fidelity of spin coherent states decreases. This contrasts with
the previous results connecting information gain in tomography of random states with the degree of chaos in
the dynamics that drives the system. The rate of information gain and hence the fidelity obtained in tomography
depends not only on the degree of chaos in the dynamics and to what extent it causes the initial observable to
spread in various directions of the operator space, but, more importantly, how well these directions are aligned
with the density matrix to be estimated. Our study also gives an operational interpretation for operator spreading
in terms of fidelity gain in an actual quantum information tomography protocol.
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I. INTRODUCTION

The rapid divergence of neighboring classical trajectories
with time, often described as exponential sensitivity to initial
conditions, is the hallmark of deterministic chaos in clas-
sical mechanics. However, this kind of divergence between
two possible initial states cannot occur quantum mechani-
cally because of the necessity of preserving the inner product
due to the linearity of Schrödinger’s equation. One of the
primary goals in the field of quantum chaos is to search
for the signatures of chaos in quantum systems and their
consequences in quantum information processing, statistical
mechanics, foundational areas such as quantum-to-classical
transition, and the rate of decoherence under chaotic dynam-
ics. Various signatures of chaos have been discovered. Starting
from the behavior of the spectral statistics of the generating
Hamiltonian [1] to dynamical signatures of chaos such as the
hypersensitivity of system dynamics to perturbation [2,3] and
the dynamical generation of quantum correlations, such as
quantum entanglement [4–10], and quantum discord [11,12].
Recently, out-of-time ordered correlators have also been used
to probe quantum chaos [13–20]. The signatures of chaos are
not only explored in the semiclassical limit, but also in the
deep quantum regime [19,21,22]. In this work, we investigate
the role of chaos in the rate of information gain in tomography,
which has been shown to be a quantum signature of chaos in
[23]. We aim to give a complete picture elucidating the role of
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dynamics and prior information about the state relative to the
measured operators and the role of noise in tomography.

Tomography of quantum states is essential for quantum
information processing tasks such as quantum computation,
quantum cryptography, quantum simulations, and quantum
control. The estimation of quantum states is a highly non-
trivial problem because of fundamental restrictions posed by
Heisenberg’s uncertainty principle and no-cloning theorem
[24]. Different protocols have carried out tomography in many
systems [25,26]. State reconstruction uses the statistics of
measurement records on an ensemble of identical systems in
order to make the best estimate of the actual state ρ0. An infor-
mationally complete set of measurement records is required
for high-fidelity tomography. Inverting these records, in prin-
ciple, should give an estimate of the state. The traditional way
has been using projective measurements to extract the infor-
mation. However, such protocols are resource intensive since
strong measurements destroy the state. To get good fidelity
reconstruction, one would then require infinitely many copies
of the system. Weak measurement alternatives have been ex-
plored in the literature [27–35]. Weak measurements help in
reducing the number of copies of the system required for the
process since they cause minimal disturbance to the system.
However, the amount of information gained per measurement
is bound to be low in this type of measurement [36]. In this
article, we are interested in continuous weak measurement
tomography [31–35]. A time series of operators is generated
by a single parameter unitary [34,37] or the Floquet map of
the quantum kicked top [23] in the Heisenberg picture and a
measurement record is obtained.

The central focus of our work is the following question:
How is reconstructing quantum states related to the nature
of dynamics employed in the tomography process? At first,
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the connection between chaos and state reconstruction seems
distant. Chaos is about the inability to predict the long-term
behavior of a dynamical system, while tomography involves
information acquisition. However, surprisingly, the flip side
of this uncertainty and unpredictability of chaotic dynamics
is information. If everything is known about a trajectory, for
example, a periodic orbit, we gain no new information. Classi-
cally, as one tracks a chaotic trajectory, one gains information
at a rate proportional to the magnitude of chaos in the system.
This rate is more formally described as the Kolmogorov-Sinai
(KS) entropy and is equal to the sum of positive Lyapunov
exponents of the system [38]. One might ask what this infor-
mation is about. The answer is initial conditions. One obtains
information on increasingly finer scales about the system’s
initial conditions. In quantum mechanics, this is precisely
the goal of tomography. As one follows the archive of the
measurement record in a tomography experiment, one gains
information about the initial random quantum state. An in-
triguing question in the quantum case is whether or not the
rate of information gain is related to the degree of chaos in the
dynamics. There seems to be a fascinating and provocative
connection between tomography and chaos, as demonstrated
in [23]. While [23] considered quantum tomography for ran-
dom states, we find that state reconstruction for localized wave
packets remarkably shows opposite behavior. We show that
the rate of information gain is a function of dynamics and the
initial state as well as the relationship between time evolved
operators and the initial state.

The remainder of this article is organized as follows. In
the next section, we provide background information on the
concepts and tools we use in this work. Section III gives an
overview of continuous weak measurement tomography. In
Sec. IV, the heart of the manuscript, we explore the rela-
tionship between tomography and dynamics for localized spin
coherent states and contrast them with that for random states.
Finally, we conclude by discussing our findings in the last
section.

II. BACKGROUND

A. Quantum kicked top

A quantum kicked top is a time-dependent periodic system
governed by the Hamiltonian [1,33,39]

H = h̄αJx + h̄
λ

2 jτ
J2

z

∑
n

δ(t − nτ ). (1)

Here, Jx, Jy, and Jz are the components of the angular momen-
tum operator J. The first term in the Hamiltonian H describes
a linear precession of J around the x direction by an angle
α. Each kick is a nonlinear rotation about the z direction in a
periodic time interval of τ , as given in the second term of the
Hamiltonian. The strength of this nonlinear rotation is λ and
is also the chaoticity parameter. The delta kick allows us to
express the Floquet map as a sequence of operations given by

Uτ = exp

(
−i

λ

2 jτ
J2

z

)
exp(−iαJx ). (2)

Thus, the time evolution unitary for time t = nτ , n =
0, 1, 2, . . . , is U (nτ ) = U n

τ . The Heisenberg evolution of an
operator generates a sequence of operators, On = U †nOU n.

The classical behavior of this map can be seen by express-
ing the Heisenberg equations of motion for the angular mo-
mentum operators Jx, Jy, and Jz and then taking the limit j →
∞. The resulting equations describe the motion of an angular
momentum vector on the surface of a sphere. The dynamics
can be realized as a linear precession by an angle α about the x
axis, followed by a nonlinear precession about the z axis. The
absence of enough constants of motion in the system leads to
chaotic dynamics. For our current work, we fix α = π/2 and
choose λ as the chaoticity parameter. The classical dynamics
changes from highly regular to fully chaotic as we vary λ

from 0 to 7.

B. Spin coherent states

To address the problem, we will explore the reconstruc-
tion of random states and coherent states, which are on two
extremes as far as localization in phase space is concerned.
Being the closest analog of classical minimum uncertainty
wave packets, coherent states [40] are particular quantum
states of a quantum harmonic oscillator that despite the
quantum mechanical uncertainty in position and momen-
tum, follow classical-like dynamics. Similarly, spin coherent
states are minimum uncertainty wave packets that satisfy the
Heisenberg uncertainty principle for angular momentum op-
erators. Spin coherent states are highly localized and serve as
the closest analog for points in a classical phase space. The
spin coherent states point in a particular direction to the extent
allowed by the angular momentum commutation relation. For
a given point (θ, φ) in the classical phase space, the spin
coherent state is defined as [41,42]

|θ, φ〉 = (1 + |μ|2)− jeμJ−| j, j〉 ≡ |μ〉, (3)

where μ = eiφ tan θ
2 ; 0 � θ � π , 0 � φ � 2π , and the spin

lowering operator J− = Jx − iJy. The spin coherent state | j, j〉
is one of the eigenbases of J2 and Jz from the set {| j, m〉}, m =
− j,− j + 1, . . . , j. Other directed angular momentum states
can be generated by rotating the state | j, j〉 as

|θ, φ〉 = exp[iθ (Jxsin φ − Jycos φ)]| j, j〉. (4)

The uncertainty in J for the state |θ, φ〉 is

(〈J2〉 − 〈J〉2)/ j2 = 1/ j. (5)

Thus, the uncertainty goes to zero as the j value becomes very
large, and the spin coherent states are highly localized at the
point (θ, φ) in the phase space.

C. Husimi entropy

The Husimi Q function of a density matrix ρ is a
quasiprobability distribution in phase space. The Husimi Q
function is defined as [43]

Qρ (θ, φ) = 〈θ, φ|ρ|θ, φ〉. (6)

A notion of entropy can be associated with any density matrix
through the Husimi Q function, called the Husimi entropy
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(also known as Wehrl entropy) [44],

Sρ = −2 j + 1

4π

∫



d
 Qρ ln[Qρ], (7)

where 
 = {θ, φ}, 0 � θ � π, 0 � φ � 2π . To treat both
observables and density operators on equal footing, we de-
termine the Husimi entropy for an operator after doing some
regularization as follows. We construct a positive operator
from an observable by retaining its eigenvectors and taking
the modulus of its eigenvalues. To normalize this operator, we
divide by its trace. Now we can calculate the Husimi entropy
and analyze the localization of the operator in the phase space.
For regularized Hermitian observables, the Husimi function is
the expectation value with respect to spin coherent state |θ, φ〉.
Thus, for a regularized operator O, the Husimi function is

QO(θ, φ) = 〈θ, φ|O|θ, φ〉, (8)

and the Husimi entropy is given by

SO = −2 j + 1

4π

∫



d
 QOln[QO]. (9)

III. CONTINUOUS MEASUREMENT TOMOGRAPHY

We are given an ensemble of N identical systems, ρ⊗N
0 ,

and they undergo separable time evolution by a unitary U (t ).
A probe is coupled to the ensemble of states that will generate
the measurement record by performing weak continuous mea-
surement of the observable O. We use the Heisenberg picture,
and the operator that is measured at time t is

O(t ) = U †(t )OU (t ). (10)

The positive operator valued measurement (POVM) elements
for measurement outcomes X (t ) at time t are [23,31]

EX (t ) = 1√
2πσ 2

exp

{
− 1

2σ 2
[X (t ) − O(t )]2

}
. (11)

The standard deviation σ in the POVM elements is due
to the shot noise of the probe. When the randomness of
the measurement outcomes is dominated by the quantum
noise in the probe rather than the measurement uncertainty,
i.e., the projection noise, quantum backaction is negligible and
the state remains approximately separable. Thus the measure-
ment records can be approximated to be

M(t ) = X (t )/N = Tr[O(t )ρ0] + W (t ), (12)

where W (t ) is a Gaussian white noise with spread σ/N .
The density matrix of any arbitrary state having Hilbert
space dimension d can be expressed in the orthonormal ba-
sis of d2 − 1 traceless and Hermitian operators {Eα}, and
the state lies on the generalized Bloch sphere parametrized
by the Bloch vector r. Thus the density matrix can be
represented as

ρ0 = I/d + �d2−1
α=1 rαEα, (13)

where

�d2−1
α=1 r2

α = 1 − 1/d.

We consider the measurement records at discrete times,

Mn = M(tn) = N
∑

α

rαTr [OnEα] + Wn, (14)

where On = U †nOU n. Thus, in the negligible backaction
limit, the probability distribution associated with measure-
ment history M for a given state vector r is [31,32]

p(M|r) ∝ exp

{
− N2

2σ 2

∑
i

[
Mi −

∑
α

Õiαrα

]2}

∝ exp

{
− N2

2σ 2

∑
α,β

(r − rML)α C−1
αβ (r − rML)β

}
,

(15)

where Õnα = Tr [OnEα] and C−1 = ÕT Õ is the inverse of
the covariance matrix. Given the measurement record and the
knowledge of the dynamics, one can invert this measurement
record to get an estimate of the parameters characterizing
the unknown quantum state in Eq. (13). The least-squares
fit of the Gaussian distribution in the parameter space is the
maximum-likelihood (ML) estimation of the Bloch vector,
rML = CÕTM. The measurement record is informationally
complete if the covariance matrix is full rank. If the covari-
ance matrix is not full rank, the inverse of the covariance
matrix is replaced by the Moore-Penrose pseudo inverse [45],
inverting over the subspace where the covariance matrix has
support. The eigenvalues of the C−1 determine the relative
signal-to-noise ratio with which different observables have
been measured. The estimated Bloch vector rML may not rep-
resent a physical density matrix with non-negative eigenvalues
because of the noise that is present (having a finite signal-to-
noise ratio). Therefore we impose the constraint of positive
semidefiniteness [46] on the reconstructed density matrix and
obtain the physical state closest to the maximum-likelihood
estimate.

To do this, we employ a convex optimization [47] proce-
dure where the final estimate of the Bloch vector r̄ is obtained
by minimizing the argument

||rML − r̄||2 = (rML − r̄)T C−1(rML − r̄) (16)

subject to the constraint

I/d + �d2−1
α=1 r̄αEα � 0.

The positivity constraint plays a crucial role in compressed
sensing tomography as well. Any optimization heuristic with
positivity constraint is effectively a compressed sensing pro-
tocol, provided that the measurements are within the special
class associated with compressed sensing [48].

In this article, we use the periodic application of a Flo-
quet map Uτ for simplicity, and the unitary at the nth time
step is U (nτ ) = U n

τ . The measurement record generated by
such periodic evolution is not informationally complete and it
leaves out a subspace of dimension � d − 2, out of (d2 − 1)-
dimensional operator space. We employ a well-studied kicked
top model [1,33,39] described by the Floquet map Uτ =
e−iλJ2

z /2Je−iαJx as the unitary.
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FIG. 1. Columnwise comparison showing the contrasting behavior of reconstruction fidelity for the spin coherent state and random states.
(a),(b) Fidelity as a function of time for different chaoticity parameters. (c),(d) Fidelity as a function of chaoticity at different time steps of
the tomography process. The fidelity of the spin coherent state with θ = 2.04 and φ = 2.42 (a random choice from the phase space) decreases
with the increase in the values of the chaoticity parameter λ, whereas the average fidelity of the random states increases with increase in λ.

IV. QUANTUM CHAOS AND TOMOGRAPHY:
SPIN COHERENT STATES VS RANDOM STATES

In this section, we come to the central question that we ask:
What is the effect of the degree of chaos on the tomography of
states? For our analysis, we study the dynamics of a quantum
kicked top for angular momentum j = 20 for spin coherent
states and j = 10 for random states. For the tomography,
we consider the initial observable as O = Jy, and the subse-
quent observables whose expectation values we measure are
acquired by evolving under the Floquet map of the quantum
kicked top. The fidelity of the reconstructed state ρ̄ is deter-
mined relative to the actual state |ψ0〉, F = 〈ψ0|ρ̄|ψ0〉, as a
function of time.

We discover interesting, contrasting, and counterintuitive
effects of chaos in the tomography fidelities depending on
whether the states involved are random states spread across
the phase space or localized coherent states. Figures 1(a) and
1(b) show the reconstruction fidelities as a function of time for
coherent states and random states, respectively, with different

degrees of chaos. A common observation in both cases is that
as time increases, the fidelity rises. This is because of more
measurements and information gain with time. However, with
chaoticity, the coherent and random states show opposite be-
havior. It is evident from Fig. 1(a) that for spin coherent states,
the fidelity decreases with the increase in the level of chaos,
which is in contrast to the nature of random states [23], as
shown in Fig. 1(b). This is made clearer in Figs. 1(c) and 1(d),
where we plot fidelity against chaoticity at different instances
of time. We set out to investigate this distinctive behavior with
respect to chaoticity.

First, we ask the following question: What constitutes
information gain in tomography? More precisely, what con-
stitutes the rate of information gain in tomography? It is
important to make this crucial distinction between informa-
tion gain and its acquisition rate for the following reason.
In the limit of vanishing shot noise in Eq. (12) and assum-
ing an informationally complete measurement record, we can
reconstruct the quantum state with unit fidelity irrespective

024209-4



EFFECT OF CHAOS ON INFORMATION GAIN IN … PHYSICAL REVIEW E 106, 024209 (2022)

0 50 100 150
Time

1

1.05

1.1

1.15

1.2
F

is
h

er
 in

fo
rm

at
io

n
=0.5
=2.5
=3
=7

J=10

FIG. 2. The Fisher information of the parameter estimation in
tomography as a function of time for different degrees of chaos.

of the dynamics involved. This is because we are able to
determine the components of the (d2 − 1)-dimensional gen-
eralized Bloch vector completely from such a noiseless and
informationally complete measurement record. This can be
seen, for example, in the case of quantum tomography for
a single qubit on the usual Bloch vector on the 2-sphere.
Here we need three expectation values in the direction of the
Pauli matrices to determine the components of this vector and
completely specify the state.

However, even in the case of vanishing shot noise (that
gives us the maximal signal-to-noise ratio), the order in which
we measure various operators matters as far as the rate of
information gain is concerned. For example, let us consider
the density matrix as a vector and express it as Eq. (13); we
ask the following question: What is the order in which one
should measure various Eα’s to get the most rapid information
gain about the unknown state? It is easy to see that the order
of {Eα}, which corresponds to the Bloch vector components
{rα}, in the descending order of magnitude gives the maxi-
mum rate of information gain. Figure 3 shows the effect of
the ordering of {Eα} on the fidelity and information gain in
tomography.

The above discussion helps us qualitatively understand
why spin coherent states do worse in reconstruction as one
increases the chaos in the dynamics. Chaos scrambles and
delocalizes the operators such that the subsequent operators
generated in the Heisenberg picture have less support over the
density matrix, which hinders rapid information gain. The ob-
tained fidelities are a function of the dynamics and the degree
to which the generated operators yield information about the
Bloch vector components. However, we need to elucidate this
intuition with a more concrete analysis.

The probability distribution of observing a measurement
record M given an initial state ρ0, the dynamics L (that
involves application of unitaries), and the measurement pro-
cess M (the choice of operators O to be measured) is
p(M|ρ0,L,M). Thus the probability of reconstructing the
state ρ0 is

p(ρ0|M,L,M) = A p(M|ρ0,L,M) p(ρ0|L,M) p(L,M).

(17)
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FIG. 3. Information gain (Bloch values) with ordered Bloch
vector components (i.e., that corresponds to the Bloch vector com-
ponents, rα = Tr [ρ0Eα], in descending and ascending order of
magnitude), and fidelity in the limit of vanishing shot noise. The
Bloch value at time k refers to the quantity r2

i + r2
j + · · · + r2

k , where
{ri, r j, . . . , rk} is the ordered set of Bloch vector components as
described above

Here, A is a normalization constant and p(ρ0|L,M) is the
posterior probability distribution conditioned upon the knowl-
edge of the dynamics and the measurement operators. In
the limit of zero noise and given measurement observables
{Eα}, this conditional probability is constantly updated and
eventually becomes a product of Dirac δ functions, each of
them specifying a particular Bloch vector component, once we
obtain an informationally complete measurement record. The
term p(L,M) in the above expression is the prior information
about the choice of dynamics and measurement operators and
can be absorbed in the constant. Equation (17) is illuminating
as it separates the probability of estimation into a product of
two terms (up to a constant). The first term p(M|ρ0,L,M),
which is identical to Eq. (15), contains the errors due to
shot noise and quantifies the signal-to-noise ratio in various
directions in the operator space independent of the state to
be estimated. Therefore, this term estimates the information
gained, given a density matrix, in different directions in the
operator space. The second term quantifies how likely this
particular density matrix is to be the actual unknown initial
state. This gives a constant factor for random states as there is
no correlation between the measurement observables and the
initial state that is chosen randomly.

However, for spin coherent state tomography, the term
p(ρ0|L,M) becomes crucial, as we see in the discussion
below. Let us look at a measure of information gain that
is oblivious to the choice of initial state and reordering of
measurement operators. We can quantify the correlation be-
tween system dynamics and information gain in quantum
tomography by calculating the Fisher information associated
with the measurement process. For the case of random states,
this measure perfectly characterizes the effect of chaos on
tomography [23,37]. Quantum tomography is equivalent to
“parameter estimation,” i.e., estimation of the Bloch vector
components that define the density matrix ρ0. The Fisher in-
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formation quantifies how well our estimator can predict these
parameters from the data, regardless of the state.

The Hilbert-Schmidt distance between the true and esti-
mated state in quantum tomography, averaged over many runs
of the estimator, DHS = 〈Tr [(ρ0 − ρ̄ )2]〉 [49], can be shown
to be equal to the total uncertainty in the Bloch vector com-
ponents, DHS = ∑

α〈(�rα )2〉. The Cramer-Rao inequality,
〈(�rα )2〉 � [F−1]αα , relates these uncertainties to the Fisher
information matrix F associated with the conditional probabil-
ity distribution, given by Eq. (15), and thus DHS � Tr [F−1].
Since our probability distribution is a multivariate Gaussian
regardless of the state, in the limit of negligible backaction, we
saturate this bound. In that case, the Fisher information matrix
equals the inverse of the covariance matrix, F = C−1, in units
of N2/σ 2, where C−1 = ÕT Õ and Õnα = Tr [OnEα] [23].
Thus, a metric for the total information gained in tomography
is the inverse of this uncertainty,

J = 1

Tr [C]
, (18)

which measures the total Fisher information.
In Fig. 2, we plot J as a function of time, generated by

repeated application of the kicked top dynamics described
above. We see a close correlation between the level of chaos
and the information gain in tomography for random states.

Since the inverse covariance matrix is never full rank in this
protocol, we regularize C−1 by adding to it a small fraction of
the identity matrix (see, e.g., [50]). For pure states, the average
Hilbert-Schmidt distance DHS = 1/J = 1 − 〈Tr ρ̄2〉 − 2〈F〉
[49]. A correlation between chaos in the dynamics and the
information gain as seen in the average fidelity [Fig. 1(b)]
implies that the Fisher information shows the behavior.

Based on how much the dynamics generates Fisher infor-
mation, the above analysis explains the reconstruction fidelity
and its correlation with chaos for random states. However,
the fact that Fisher information cannot capture all aspects
of the problem can be easily seen by calculating it for the
case discussed in Fig. 3. Since the Fisher information is in-
dependent of the order in which Eα’s are measured, it gives
no information about the reconstruction procedure as shown
in Fig. 4. Therefore, we need to relook at Eq. (15) and the
prior information captured by the second term of Eq. (17),
p(ρ0|L,M).

As we have discussed, p(ρ0|L,M) is the Bayesian esti-
mate of the density matrix parameters at a particular time
in the estimation process based on the information that is
obtained. This is independent of the shot noise and depends on
the nature of the measured observables and the dynamics that
are employed to generate these operators (choice of unitary).
Thus, by combining Eq. (15) and Eq. (17), we get

p(ρ0|M,L,M) ∝ exp

{
− N2

2σ 2

∑
i

[
Mi −

∑
α

Oiαrα

]2}
p(ρ0|L,M)

∝ exp

{
− N2

2σ 2

∑
α,β

(r − rML)α C−1
αβ (r − rML)β

}
p(ρ0|L,M). (19)

In the limit of zero shot noise, the errors due to the first term are zero and we may purely focus on the conditional probability
distribution, p(ρ0|L,M). In terms of the observables in continuous measurement tomography, one can express p(ρ0|L,M) =
p(r|O1,O2, . . . ,On ), giving the conditional probability of the density matrix parameters r until the time step n. For example,
consider that the measurement operator at the first k time steps is the ordered set {E1, E2,...,Ek}, giving precise information about
the Bloch vector components {r1, r2,..., rk}. The conditional probability distribution at time k is

p(r|E1, E2, . . . , Ek ) = δ(r1 − Tr [E1ρ0]) δ(r2 − Tr [E2ρ0]) · · · δ(rk − Tr [Ekρ0])

× δ

(
d2−1∑

α 	=1,2,...,k

r2
α = 1 − 1/d − r2

1 − r2
2 · · · − r2

k

)
. (20)

Each noiseless measurement above gives us complete information in one of the orthogonal directions. For example, at the
first time step,

p(r|E1) = δ(r1 − Tr [E1ρ0]) δ

(
d2−1∑
α 	=1

r2
α = 1 − 1/d − r2

1

)
. (21)

Hence, once r1 is determined, the rest of the d2 − 2 Bloch
vector components are constrained to lie on a surface given by
the equation

∑d2−1
α 	=1 r2

α = 1 − 1/d − r2
1 . The state estimation

procedure under incomplete information shall pick a state
consistent with r1 as determined by the first measurement and
the remaining Bloch vector components from a point on this
surface. Therefore, qualitatively speaking, the average fidelity

of the estimated state is correlated with the area of this surface.
This area depends on the magnitude of r1 that appears in the
scaling factor mentioned above. Hence the order of measuring
operators {Eα} that corresponds to the Bloch vector compo-
nents {rα} in the descending order of magnitude gives the
maximum rate of information gain as shown in Fig. 3. After k
time steps, the error is proportional to the area of the surface
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FIG. 4. State-operator alignment and Fisher information (the in-
set figure) for ordered {Eα} as a function of time. The solid line
indicates the behavior for the operators in descending order and the
dotted line is for ascending order (i.e., that corresponds to the Bloch
vector components, rα = Tr [ρ0Eα], in the descending and ascending
order of magnitude).

consistent with the equation 1 − 1/d − r2
i − r2

j − · · · − r2
k .

This area, quantifying the average error, shrinks with each
measurement. The shrinkage rate of this error area for spin
coherent states is more when the dynamics is regular. On the
other hand, for random states, the chaotic dynamics reveals
more information about the initial condition, as discussed
above [23].

To see it another way, consider the fidelity between the
actual and reconstructed state. The fidelity F = 〈ψ0|ρ̄|ψ0〉,
combined with Eq. (13) for expressing both ρ0 and ρ̄, is

F = 1/d + �d2−1
α=1 r̄αrα. (22)

As one makes measurements E1, E2,..., Ek and gets in-
formation about the corresponding Bloch vector components
(with absolute certainty in the case of zero noise, for exam-
ple), one can express the fidelity as

F = 1/d + �k
i=1 r2

i + �d2−1
α 	=1,2,...,k r̄αrα. (23)

The term 1/d + �k
i=1 r2

i puts a lower bound on the fidelity
obtained after k measurements and, therefore, the rate of infor-
mation gain in tomography is intimately tied with the extent of
alignment between the measurement operators and the density
matrix.

The foregoing discussion helps us to understand how the
ordering of operators facilitates the fidelity gain. Specifically,
the overlap of the operators with the density matrix can be
captured with the help of an “alignment matrix,”

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

r1Õ11 r2Õ12 .. .. rd2−1Õ1d2−1

r1Õ21 r2Õ22 .. .. rd2−1Õ2d2−1

.. .. .. .. ..

.. .. .. .. ..

r1Õn1 r2Õn2 .. .. rd2−1Õnd2−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (24)

where S̃nα = rαÕnα = rαTr [OnEα] and On = U †nOU n. We
quantify the extent of alignment of the time evolved operators
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FIG. 5. State-operator alignment as a function of time for differ-
ent degrees of chaos.

with the state at a given time as Tr [T ], where T = S̃T S̃ .
State-operator alignment, as shown in Fig. 4, explains the
correlation between the information gain and the ordering of
operators {Eα}, while Fisher information is oblivious to that.
Figure 5 illustrates how the alignment of the operators with
respect to the density matrix decreases with an increase in the
degree of chaos, in agreement with the reconstruction rate of
coherent states [Fig. 1(a)].

To understand the connection between state-operator align-
ment and the nature of the dynamics, one can look at the
localization of operators in the over-complete basis of spin
coherent states. We notice that at a given time, the opera-
tor becomes more delocalized as the chaos increases. This
delocalization is captured by the Husimi entropy defined in
Eq. (9). The operator spreads more in the phase space as
the chaoticity increases, which is apparent from Fig. 6. The
Husimi entropy increases and saturates at a higher value for
a high value of chaoticity. A spin coherent state is localized
in phase space and with the increase in chaos, the overlap
of the state and the time evolved operator gets distributed
in the phase space. As the operator dynamics becomes more
chaotic, more spin coherent states make up the operator and
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FIG. 6. Husimi entropy of the operators evolved from the initial
observable O = Jy as a function of time.
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the amount of information one gains about a particular state
of interest is low. Thus, the reconstruction of localized spin
coherent states becomes difficult as the chaos in the dynamics
shoots up. This behavior is also true for phase-space averaged
reconstruction fidelity of spin coherent states.

In contrast, the operator delocalization in phase space is
positively correlated with the fidelity gain for random states.
In this case, the most optimal measurement is the one that
evenly measures all possible directions in the operator space
and hence explains the positive correlation of information gain
with the degree of operator spread in phase space. Interpreting
this way, tomography and information gain give us an opera-
tional interpretation of operator spreading and scrambling of
information, which is being vigorously pursued through the
study of out-of-time-ordered correlators and tripartite mutual
information [10,13–20]. This is in close resemblance with the
classical Kolmogorov-Sinai (KS) entropy which relates the in-
creasingly fine-grained knowledge about the initial conditions
as one monitors a chaotic trajectory [51,52].

V. DISCUSSION

In this work, we have given a complete picture of the role of
chaos in information gain in order to perform tomography via
weak continuous measurements. Remarkably, the reconstruc-
tion rate of spin coherent states decreases with the increase in
chaos, in contrast to the behavior of random quantum states.
The fact is that the spin coherent states are localized in the
phase space as a Gaussian wave packet with a minimal spread,
unlike the random states, which are spread all over the phase
space. The Fisher information serves as a suitable quantifier
of information gain for random states where we consider only
the dynamics. However, Fisher information does not reveal
the behavior of decrease in the reconstruction rate of spin
coherent states with an increase in chaos. Thus, we include
the prior knowledge and define a measure called state-operator
alignment, which explains the decline in the fidelity rate as the
dynamics becomes chaotic. Furthermore, we show that the or-
dering of operators also plays a role in the reconstruction rate.
The angular momentum operators and the spin coherent states
get delocalized in the phase space as we evolve them with
chaotic dynamics. We see that the degree of delocalization
of the operators increases with chaos. Hence, the information
gain in the measurement decreases, making the reconstruction
of spin coherent states more difficult.

Quantum tomography and quantum control are two sides of
the same coin. Generating an informationally complete record
requires sufficient nonintegrability in the dynamics. This is
the very same resource that drives a fiducial state to a target

state. Therefore, an interesting consequence of our work is the
quantum control of well-localized states, such as the coherent
states, using regular quantum dynamics. For example, one
can accomplish quantum control by taking Gaussian states to
Gaussian states with pure rotations. One would need chaotic
quantum maps to take initial coherent states to target states
that are random in nature.

Though quantum systems show no sensitivity to initial
conditions, due to the unitarity of evolution, they do show sen-
sitivity to parameters in the Hamiltonian [2]. This leads to an
interesting question for quantum tomography and, more gen-
erally, quantum simulations. Under what conditions are the
system dynamics sensitive to perturbations, and how does this
affect our ability to perform quantum tomography? Can quan-
tum tomography say something about the notion of sensitivity
to perturbations in system dynamics in quantum systems? In
particular, one may ask, how do the effects of perturbations
manifest in the reconstruction algorithm, and how are they
affected by the chaoticity of the system?

Lastly, the connections between information gain, quan-
tum chaos, and the spreading of operators are an exciting
avenue providing an operational interpretation to operator
scrambling, which is more popularly captured by out-of-
time-ordered correlators (OTOCs). The information gain in
tomography quantifies the amount of new information added
as one follows the trajectory of operators generated by the
dynamics in the Heisenberg picture. However, the OTOC
is the quantum analog of the divergence of two trajectories
which is captured by Lyapunov exponents in the classical pic-
ture and operator incompatibility in the quantum counterpart
[13,17,53]. Therefore, a natural direction is to connect the
information gain in tomography to the Lyapunov exponents,
thereby unifying the connections between information gain,
scrambling, and chaos and connecting it to an actual physical
process. We hope our work paves the way for future studies in
this direction.

ACKNOWLEDGMENTS

We are grateful to Arul Lakshminarayan for useful
discussions. This work was supported in part by
Grant No. SRG/2019/001094/PMS from SERB and
MHRD/DST Grants No. SB20210807PHMHRD008128,
No. SB20210854EEMHRD008074, and No.
DST/ICPS/QusT/Theme-3/2019/Q69. V.M. was supported,
in part, by a grant from Mphasis to the Centre for Quantum
Information, Communication, and Computing (CQuICC) and
a New Faculty Seed Grant from IIT Madras.

[1] F. Haake, Quantum Signatures of Chaos (Spring-Verlag, Berlin,
1991).

[2] A. Peres, Stability of quantum motion in chaotic and regular
systems, Phys. Rev. A 30, 1610 (1984).

[3] R. Schack and C. M. Caves, Information-theoretic characteriza-
tion of quantum chaos, Phys. Rev. E 53, 3257 (1996).

[4] P. A. Miller and S. Sarkar, Signatures of chaos in the entan-
glement of two coupled quantum kicked tops, Phys. Rev. E 60,
1542 (1999).

[5] J. N. Bandyopadhyay and A. Lakshminarayan, Testing Statisti-
cal Bounds on Entanglement Using Quantum Chaos, Phys. Rev.
Lett. 89, 060402 (2002).

[6] X. Wang, S. Ghose, B. C. Sanders, and B. Hu, Entanglement as
a signature of quantum chaos, Phys. Rev. E 70, 016217 (2004).

[7] C. M. Trail, V. Madhok, and I. H. Deutsch, Entanglement
and the generation of random states in the quantum chaotic
dynamics of kicked coupled tops, Phys. Rev. E 78, 046211
(2008).

024209-8

https://doi.org/10.1103/PhysRevA.30.1610
https://doi.org/10.1103/PhysRevE.53.3257
https://doi.org/10.1103/PhysRevE.60.1542
https://doi.org/10.1103/PhysRevLett.89.060402
https://doi.org/10.1103/PhysRevE.70.016217
https://doi.org/10.1103/PhysRevE.78.046211


EFFECT OF CHAOS ON INFORMATION GAIN IN … PHYSICAL REVIEW E 106, 024209 (2022)

[8] K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Quan-
tum Dynamical Manifestation of Chaotic Behavior in
the Process of Entanglement, Phys. Rev. Lett. 80, 5524
(1998).

[9] A. Lakshminarayan, Entangling power of quantized chaotic
systems, Phys. Rev. E 64, 036207 (2001).

[10] A. Seshadri, V. Madhok, and A. Lakshminarayan, Tripartite
mutual information, entanglement, and scrambling in permuta-
tion symmetric systems with an application to quantum chaos,
Phys. Rev. E 98, 052205 (2018).

[11] V. Madhok, V. Gupta, D.-A. Trottier, and S. Ghose, Signatures
of chaos in the dynamics of quantum discord, Phys. Rev. E 91,
032906 (2015).

[12] V. Madhok, S. Dogra, and A. Lakshminarayan, Quantum corre-
lations as probes of chaos and ergodicity, Opt. Commun. 420,
189 (2018).

[13] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[14] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Measuring the scrambling of quantum information, Phys. Rev.
A 94, 040302(R) (2016).

[15] K. Hashimoto, K. Murata, and R. Yoshii, Out-of-time-order
correlators in quantum mechanics, J. High Energy Phys. 10
(2017) 138.

[16] I. Kukuljan, S. Grozdanov, and T. Prosen, Weak quantum chaos,
Phys. Rev. B 96, 060301(R) (2017).

[17] B. Swingle, Unscrambling the physics of out-of-time-order cor-
relators, Nat. Phys. 14, 988 (2018).

[18] J. Wang, G. Benenti, G. Casati, and W.-G. Wang, Quantum
chaos and the correspondence principle, Phys. Rev. E 103,
L030201 (2021).

[19] S. Pg, V. Madhok, and A. Lakshminarayan, Out-of-time-
ordered correlators and the loschmidt echo in the quantum
kicked top: How low can we go? J. Phys. D: Appl. Phys. 54,
274004 (2021).

[20] N. D. Varikuti and V. Madhok, Out-of-time ordered correlators
in kicked coupled tops and the role of conserved quantities in
information scrambling, arXiv:2201.05789.

[21] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z.
Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro et al.,
Ergodic dynamics and thermalization in an isolated quantum
system, Nat. Phys. 12, 1037 (2016).

[22] E. M. Fortes, I. García-Mata, R. A. Jalabert, and D. A.
Wisniacki, Signatures of quantum chaos transition in short spin
chains, Europhys. Lett. 130, 60001 (2020).

[23] V. Madhok, C. A. Riofrío, S. Ghose, and I. H. Deutsch, Infor-
mation Gain in Tomography–A Quantum Signature of Chaos,
Phys. Rev. Lett. 112, 014102 (2014).

[24] W. K. Wootters and W. H. Zurek, A single quantum cannot be
cloned, Nature (London) 299, 802 (1982).

[25] M. Paris and J. Rehacek, Quantum State Estimation, Vol. 649
(Springer Science & Business Media, New York, 2004).

[26] G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, Quan-
tum tomography, Adv. Imaging Electron Phys. 128, 205
(2003).

[27] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C.
Bamber, Direct measurement of the quantum wave function,
Nature (London) 474, 188 (2011).

[28] S. Wu, State tomography via weak measurements, Sci. Rep. 3,
1193 (2013).

[29] H. F. Hofmann, Complete characterization of post-selected
quantum statistics using weak measurement tomography, Phys.
Rev. A 81, 012103 (2010).

[30] E. Shojaee, C. S. Jackson, C. A. Riofrío, A. Kalev, and I. H.
Deutsch, Optimal Pure-State Qubit Tomography via Sequential
Weak Measurements, Phys. Rev. Lett. 121, 130404 (2018).

[31] A. Silberfarb, P. S. Jessen, and I. H. Deutsch, Quantum State
Reconstruction via Continuous Measurement, Phys. Rev. Lett.
95, 030402 (2005).

[32] G. A. Smith, A. Silberfarb, I. H. Deutsch, and P. S. Jessen,
Efficient Quantum-State Estimation by Continuous Weak Mea-
surement and Dynamical Control, Phys. Rev. Lett. 97, 180403
(2006).

[33] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S.
Jessen, Quantum signatures of chaos in a kicked top, Nature
(London) 461, 768 (2009).

[34] S. T. Merkel, C. A. Riofrio, S. T. Flammia, and I. H. Deutsch,
Random unitary maps for quantum state reconstruction, Phys.
Rev. A 81, 032126 (2010).

[35] G. A. Smith, S. Chaudhury, A. Silberfarb, I. H. Deutsch, and
P. S. Jessen, Continuous Weak Measurement and Nonlinear
Dynamics in a Cold Spin Ensemble, Phys. Rev. Lett. 93, 163602
(2004).

[36] P. Busch, No information without disturbance: Quantum lim-
itations of measurement, in Quantum Reality, Relativistic
Causality, and Closing the Epistemic Circle: Essays in Honour
of Abner Shimony (Springer, Netherlands, Dordrecht, 2009),
pp. 229–256, doi: 10.1007/978-1-4020-9107-0_13.

[37] S. Pg and V. Madhok, Quantum tomography with random
diagonal unitary maps and statistical bounds on information
generation using random matrix theory, Phys. Rev. A 104,
032404 (2021).

[38] Y. B. Pesin, Characteristic Lyapunov exponents and smooth
ergodic theory, Russ. Math. Surv. 32, 55 (1977).
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