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Atom deposition and sputtering at normal incidence simulated by the Frenkel-Kontorova chain
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The impact of a molecule of N atoms with a speed of v0 on the free end of the Frenkel-Kontorova chain
is numerically simulated. Depending on the values of N and v0, different scenarios of the molecule-chain
interaction are observed. Molecules with low speed stick to the chain. At somewhat higher speeds, the molecules
bounce off the chain. Further increase in v0 results in bouncing off a molecule larger than the incident one.
At even higher speed, bouncing of the molecule off the chain takes place simultaneously with the formation
of a supersonic crowdion (antikink) propagating along the chain. A very high collision velocity leads to the
sputtering of atoms from the chain and the formation of single and multiple supersonic crowdions. Interestingly,
the sputtering yield Y as the function of v0 demonstrates a nonmonotonous dependence. This is explained by the
fact that supersonic crowdions can have a discrete set of propagation velocities. When v0 is such that supersonic
crowdions are effectively excited, the latter transfer energy deep into the chain, and the sputtering is minimal.
For some v0 ranges, the formation of supersonic crowdions is suppressed. In these cases, the energy transferred
from the impact of the molecule to the chain is spent mainly on the sputtering of atoms. The results obtained
qualitatively explain the physics of bombardment of a crystal surface by atomic clusters with applications in
physical vapor deposition, ion implantation, ion-beam sputtering, and similar experimental techniques.
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I. INTRODUCTION

Ion beams with different energies can be used for shap-
ing [1–4], testing [5–7], synthesizing [1,8], and modifying
the properties [8–10] of materials, as summarized in the
reviews such as References [1,11–13]. The interaction of
accelerated ions with the crystal surface is quite complex,
especially for high-energy ion beams. For the so-called lin-
ear collision cascades, when a low density of point defects
is generated [12,14], the problem is simplified and can be
solved using classical physical models. Cascades in metals are
close to linear when bombarded by ions with energies below
10 keV [12].

Atomic layer deposition is a thin film deposition process
known for its ability to create layers of controlled thickness
and composition [15].

Sputtering is a process in which atoms or atomic clusters
of a solid material are ejected from its surface by incident ions
or particles [11,12].

Bombardment of the surface with low-energy ions (from
10 eV and above) leads to their deposition [15]. If surface

*dina.abdullina25@gmail.com
†bebikhov.yura@mail.ru
‡maximhk@gmail.com
§alexkudreyko@mail.ru
‖dmitriev.sergey.v@gmail.com

activation is required, then higher-energy ions, up to 5 keV,
can be used for deposition of atomic layers.

Reviews of experimental work on the erosion of Be and
beryllium ceramics by bombardment with hydrogen isotopes
and various ions are reported in Refs. [16,17]. The energy
dependence of the Be-sputtering yield due to bombardment
by Be+ ions in the energy range of 1.5-10 keV at normal
incidence was measured [18]. The yield is maximal at the ion
energy of 1.5 keV, being equal to about 0.3 atoms per ion;
further increase in the energy leads to a monotonous decrease
of the yield. In the work [19] the ion-induced sputtering yields
from monatomic solids at normal incidence are presented for
various ion-target combinations in a range of the incident ion
energy. Self-sputtering is sputtering with ionized atoms, the
same as the target. Typically, the self-sputtering yield reaches
its maximum at ion energies from 1 to 10 keV, with maximum
values from 1 to several atoms per ion. Self-sputtering of
copper is often used for copper deposition [20–22].

It has been experimentally established that the sputtering
efficiency of materials depends relatively weakly on the mass
of incident ions, with the exception of extremely light ions
such as helium and hydrogen isotopes [19]. At a qualitative
level, for not very high ion energies, this fact was explained in
molecular dynamics calculations for Lennard-Jones bcc [23]
and fcc [24] crystals.

Recently, argon cluster ion sources have been developed
for surface analysis and treatment and are now widely used
for surface cleaning and modification [25,26]. There are
still insufficient data in the literature on the comparison of
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sputtering by ions and ionized clusters. Let us note several
works on molecular dynamics modeling of the details of the
process of cluster ion sputtering [27–30]. In particular, in
Ref. [30] simulation of Ar cluster impact on silicon (001)
surface has been conducted for clusters containing from 30 to
3000 atoms, and energy from 5 to 40 eV per atom. The model
for total sputter yield estimation has been offered.

Point defects play a very important role in the structure
relaxation of the materials under irradiation or ion beam treat-
ment [14]. Interstitial atoms, compared to vacancies, have a
higher formation energy but a lower migration energy. Inter-
stitials in the form of crowdions have a very low migration
energy and, therefore, a high migration ability, which makes
their experimental analysis difficult [31]. For this reason,
structure and motion of crowdions are often analyzed using
computer simulation techniques such as molecular dynamics
[32–35], Monte Carlo [36,37], multiscale [38–40], and ab
initio [41,42] modeling.

Crowdions can move along close-packed atomic rows with
subsonic or even supersonic speed. Static or subsonic crow-
dions have been well studied [40,41,43,44]. The supersonic
crowdions (or antikinks) were studied with the help of one-
dimensional Klein-Gordon lattices [45–47], two-dimensional
Morse lattice [48,49], bcc [50], and fcc lattices [42,51,52].

Moving crowdions transfer mass and energy, playing an
important role in the structural transformation of materials
during high-energy impacts. It has been shown that the su-
personic N-crowdions (multiple antikinks) transport energy
more efficiently since they can be excited with a lower en-
ergy and travel longer distance than supersonic 1-crowdions
(single antikinks) [45–48,51,52]. Supersonic 2-crowdions can
be excited by bombarding the crystal surface with molecules
[47,52].

In our recent work [47], the Frenkel-Kontorova chain was
used to study mass transfer by crowdions initiated by the
impact of a molecule on the end of the chain. It was shown
that a molecule needs much less energy to initiate crowdions
in the chain compared to a single atom.

In this work, the same model is used to analyze the modifi-
cation of the crystal surface on molecule impact for different
values of the impact velocity v0 and the number of atoms in
the molecule N . We will focus on the analysis of the number
of deposited or sputtered atoms. It will be shown that the
formation of supersonic single and/or multiple crowdions
plays a very important role in these processes. In particular,
the nonmonotonic nature of the dependence of the sputtering
yield on the molecular impact velocity v0 will be explained.

It is interesting to see what can be understood about the
deposition and sputtering processes within the framework
of the Frenkel-Kontorova model, perhaps the simplest one-
dimensional model of a crystal.

In Sec. II we describe the Frenkel-Kontorova model and
simulation setup. Phonons and subsonic crowdions are ana-
lyzed in Sec. III. Simulation results are presented in Sec. IV
and analyzed in Sec. V. Conclusions are drown in Sec. VI.

II. MODEL AND SIMULATION SETUP

A chain of interacting particles placed in a sinusoidal
on-site potential is called the Frenkel-Kontorova chain [53].

FIG. 1. Scheme of the simulation setup. Molecule of N atoms
moves with the initial velocity v0 and hits the end of the Frenkel-
Kontorova chain placed in sinusoidal on-site potential of depth 2A.
Each atom interacts with the nearest neighbors via the Morse poten-
tial. Atoms in the molecule are numbered with index n = 1, . . . , N
and atoms in the chain with index i = 1, . . . , I . Total number of
atoms in the system is N + I .

Consider a molecule of N atoms moving with the velocity v0

toward the left end of the chain, as shown in Fig. 1. Atoms
in the molecule are numbered with index n = 1, . . . , N and
atoms in the chain with index i = 1, . . . , I . Total number of
atoms in the system is N + I . Hamiltonian of the molecule
and chain system is given by

H =
N∑

n=1

m

2

(
dxn

dt

)2

+
N−1∑
n=1

U (xn+1 − xn) +
N∑

n=1

V (xn)

+
I∑

i=1

m

2

(
dxi

dt

)2

+
I−1∑
i=1

U (xi+1 − xi ) +
I∑

i=1

V (xi )

+U (xi=1 − xN ), (1)

where xn,i(t ) is the coordinate of the n, i-th atom. The terms in
the right-hand side of Eq. (1) give the kinetic energy of atoms
having mass m, the interaction energy of nearest neighbors
via the potential U , and the energy of atoms in the on-site
potential V . The last term describes the interaction of the first
atom of the chain (i = 1) with the N th atom of the molecule
(n = N).

The interatomic bonds are described by the Morse poten-
tial,

U (ξ ) = D[1 + e−2α(ξ−rm ) − 2e−α(ξ−rm )], (2)

where D is the dissociation energy, rm is the equilibrium
interatomic distance, and α defines the bond stiffness. We
take D = 1 and rm = 1, which can be achieved by proper
choice of the units of energy and distance. For the stiffness
of the interatomic bond, we set the typical value α = 4. The
particle mass in our simulations is m = 1, which can always
be achieved by choosing the unit of time.

The on-site potential is taken in the form

V (x) =
{

0, for x � 0,

A[1 − cos(2πx)], for x > 0.
(3)

This potential has an amplitude A and a period equal to 1,
i.e., equal to the equilibrium interatomic distance rm. The
on-site potential is introduced to describe the interaction of
the considered close-packed atomic row of the crystal lattice
with the surrounding atoms. The potential acts only in the
region x > 0, as shown in Fig. 1, since the crystal surface
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is located at x = 0. Before the molecule reaches the end of
the chain, it moves in vacuum without interacting with the
on-site potential. The amplitude of the on-site potential is
A = 2, which was justified in the work [47]. With this choice
of A, the subsonic crowdion width is equal to half a dozen
interatomic distances [see Fig. 2(b) in Sec. III B], which is a
typical crowdion width in metals [41,42].

From the Hamiltonian defined by Eqs. (1)–(3) one can de-
rive the following equations of motion for the atoms originally
belonging to the molecule:

mẍn = 2αD[e−α(xn+1−xn−rm ) − e−2α(xn+1−xn−rm )

− H (xn)2πA sin(2πxn), for n = 1,

mẍn = 2αD[e−α(xn+1−xn−rm ) − e−2α(xn+1−xn−rm )

+ e−2α(xn−xn−1−rm ) − e−α(xn−xn−1−rm )]

− H (xn)2πA sin(2πxn), for n = 2, . . . , N − 1,

mẍn = 2αD[e−α(xi=1−xn−rm ) − e−2α(xi=1−xn−rm )

+ e−2α(xn−xn−1−rm ) − e−α(xn−xn−1−rm )]

− H (xn)2πA sin(2πxn), for n = N, (4)

and similar equations for the atoms of the chain

mẍi = 2αD[e−α(xi+1−xi−rm ) − e−2α(xi+1−xi−rm )

+ e−2α(xi−xN −rm ) − e−α(xi−xN −rm )]

− H (xi )2πA sin(2πxi ), for i = 1,

mẍi = 2αD[e−α(xi+1−xi−rm ) − e−2α(xi+1−xi−rm )

+ e−2α(xi−xi−1−rm ) − e−α(xi−xi−1−rm )]

− H (xi )2πA sin(2πxi ), for i = 2, . . . , I − 1

mẍi = e−2α(xi−xi−1−rm ) − e−α(xi−xi−1−rm )]

− H (xi )2πA sin(2πxi ), for i = I. (5)

In Eqs. (4) and (5) H (η) is the Heaviside function.
Note that the Hamilton Eq. (1) and the equations of motion

(4) and (5) are written in a form that allows one to consider
different atoms for the projectile and target. For this, it is
necessary to use different parameters of the Morse potential
Eq. (2) and different masses for the atoms of the molecule and
the chain.

These equations of motion are integrated numerically using
the Störmer symplectic method of the sixth order [54]. The
time step was smaller for the higher impact velocity v0 and
was chosen to achieve energy conservation with a relative
error of no more than 10−5 during the numerical experiment.

The initial coordinates of atoms are

xn = n − N − 5, for n = 1, . . . , N,

xi = i − 1, for i = 1, . . . , I, (6)

and initial velocities of atoms are

dxn

dt
= v0, for n = 1, . . . , N,

dxi

dt
= 0, for i = 1, . . . , I. (7)

These initial conditions ensure that at t = 0 the molecule prac-
tically does not interact with the chain because the distance
between atoms N and i = 1 is equal to 5, at which the Morse
potential is negligibly small. The molecule moves toward the
chain with the velocity v0.

Initial energy of the molecule is

E0 = Nmv2
0

2
. (8)

We will consider molecules having the maximum num-
ber of atoms N = 4 with the maximum speed v0 = 50. This
means that the maximum projectile energy in our simulations
is E0 = 5000. This energy is enough to break 5000 inter-
atomic bonds, since in our calculations the bond energy is
D = 1. Recall that in metals the evaporation energy is several
eV per atom, and thus the evaporation of 5000 metal atoms
will cost about 10 keV. This means that we are simulating a
linear sputtering regime [12], when a relatively small number
of defects are formed.

The sputtering yield Y , i.e., the average number of atoms
removed from the target per one incident atom, is the most
important characteristic of sputtering. It depends on the tar-
get material, on the species of bombarding atoms, on their
energy and the angle of incidence [55,56]. Within the one-
dimensional model, only normal incidence can be simulated.

Sputtered atoms are those that before the impact of the
molecule belonged to the chain and after the impact have
negative coordinates and negative velocities, moving (together
with the N atoms of the molecule) away from the chain in
vacuum. If the number of atoms with negative coordinates and
negative velocities is equal to L, then the number of sputtered
atoms is equal to L − N and the sputtering yield is defined as

Y = L − N

N
. (9)

III. PHONONS AND CROWDIONS

A standard analysis of the properties of low-amplitude
traveling waves and subsonic kinks is presented below.

A. Small-amplitude waves

Molecule with sufficiently large energy initiates moving
crowdions (antikinks) in the chain. To distinguish between
subsonic and supersonic crowdions we need to know the max-
imal group velocity of the small-amplitude phonon waves.

Linearization of Eq. (5) for the atoms far from the chain
ends reads

müi = 2α2D(ui−1 − 2ui + ui+1) − 4π2Aui, (10)

where ui = xi − i is the displacement of the atom from the
lattice position. The solutions of Eq. (10) in the form of
running phonon waves is un ∼ exp[i(qn − ωqt )], where i is
the imaginary unit, q is the wave number, and ωq is frequency.
Substituting this form of the solution into Eq. (10) the follow-
ing dispersion relation can be obtained:

ω2
q = 4

m
[π2A − α2D(cos q − 1)]. (11)

From Eq. (11) it follows that the chain supports the phonon
waves with frequencies from ωmin = 2π

√
A/m to ωmax =
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√
4π2A/m + 2α2D. Phonon’s group velocity is defined by

vg = dωq

dq
= α2D sin q

m2
√

π2A + α2D(1 + cos q)
. (12)

The group velocity vanishes for q → 0 and q → ±π . For
the considered parameters of the chain this function has a
maximum value of vmax

g = 2.89 at q = 1.33.
We conclude that the antikinks having speed below (above)

2.89 are subsonic (supersonic) antikinks.

B. Subsonic antikink (crowdion)

Kink and antikink in the Frenkel-Kontorova model with
harmonic interatomic potential have the same profile [53],
but this is not the case for the asymmetric Morse potential.
Stiffness of the Morse potential decreases (increases) under
tension (compression) of the bond, while stiffness of the har-
monic bond is strain independent.

For the harmonic interatomic interactions and in the long-
wave approximation, the Frenkel-Kontorova chain can be
approximated by the integrable sine-Gordon equation that
supports kink solution [53]. First, in Eq. (5) for the atoms
far from the chain ends we linearize the Morse interatomic
interactions to obtain

müi = 2α2D(ui−1 − 2ui + ui+1) − 2πA sin(2πui ), (13)

where ui = xi − i is the displacement of the atom from the
lattice position. This equation of motion can be rewritten in
the form

ẅi = 1

h2
(wi−1 − 2wi + wi+1) − g2 sin(wi ), (14)

where

wi = 2πui, h2 = m

2α2D
, g2 = 4π2A

m
. (15)

The sine-Gordon equation is obtained from Eq. (14) in the
continuum limit, h → 0:

wtt − wxx + g2 sin w = 0. (16)

The antikink solution to Eq. (16) reads

w(x, t ) = 2π − 4 arctan

[
exp

(
g

x − x0 − vt√
1 − v2

)]
, (17)

where v defines the antikink velocity and x0 is its initial
position.

In terms of the original variable ui, taking into account that
x = ih, the approximate antikink solution to Eq. (13) has the
form

ui(t ) = 1 − 2

π
arctan

{
exp

[
g

h(i − x0) − vt√
1 − v2

]}
. (18)

From this solution, kink velocity is equal to Vk = v/h. Since
|v| < 1, the kink velocity is within the range

|Vk| <
1

h
. (19)

Taking into account Eq. (15) we find that for parameters used
in our study |Vk| < 5.66. When antikink speed approaches the

FIG. 2. (a) Numerical solution for the static kink, or vacancy
(black symbols and line) compared to the analytical solution Eq. (18)
with i → −i (red line). (b) Numerical solution for the static antikink,
or crowdion (black symbols and line), compared to the analytical
solution Eq. (18) (red line).

maximal value, its width vanishes and the continuum approxi-
mation Eq. (16) cannot be used. We conclude that the antikink
(crowdion) solution Eq. (18) can be used for velocities when
the relativistic effects are small.

The numerically obtained solutions for static kink and an-
tikink of the Frenkel-Kontorova model Eq. (4) are shown in
Figs. 2(a) and 2(b), respectively, as black symbols and lines.
The red lines show the symmetrical solution for kink and
antikink, Eq. (18). It can be seen that the approximate solution
for the antikink is quite good, but it cannot be used for the
kink. Such a different profile of the kink and antikink is due to
the asymmetry of the Morse potential. The solution (18) was
obtained for the equation (13), which considers the linearized
Morse potential. Replacing the Morse potential Eq. (2) with
a square parabola works well for an antikink, which is a
compressed region of the lattice and gives the wrong result
for a kink, which is a stretched region of the lattice. The
Morse potential becomes stiffer in compression and softer
in tension and it actually breaks in the core of a kink. In
materials science, such a sharp kink as in Fig. 2(a), with nearly
broken interatomic bond, is called a vacancy, and an antikink
in Fig. 2(b) is called a crowdion.

IV. SIMULATION RESULTS

A. Molecule-chain collision scenarios

We start presenting the numerical results by showing pos-
sible scenarios for the collision of molecules with the chain,
see Fig. 3. Here coordinates of atoms originally belonging to
the molecule, xn, and of atoms of the chain near the chain end,
xi, are shown as the functions of time. Four columns of this
figure present results for molecules with the number of atoms
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FIG. 3. Atomic coordinates as the functions of time, showing different scenarios of the molecule-chain collisions for a different number of
atoms in the molecule N and for different initial velocities of the molecule v0. Four columns correspond to bombardment by molecules having
from N = 1 to N = 4 atoms. The initial velocity of the molecule v0 is given in each panel and it increases from top to bottom.

from N = 1 to N = 4. The speed of the molecule increases
from the top to the bottom of the figure.

In the first row of Figs. 3(a)–3(a′′′), the collision ve-
locity is low, v0 = 0.1, and the molecules are deposited at

the end of the chain (on the crystal surface). Since the
number of atoms moving away from the chain is L = 0,
in these cases, the sputtering yield according to Eq. (9) is
Y = −1.
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In the second row of Fig. 3, the collision velocity is
v0 = 1.8 in Fig. 3(b) and v0 = 1.0 for Figs. 3(b′)–3(b′′′). In
Figs. 3(b′)–3(b′′′) the molecules are reflected from the chain
almost elastically since the speed of the molecules after the
collision is only slightly smaller than v0. A small part of the
energy E0 is given to excite vibrations in the chain and in
the molecules. Sputtering yield in these cases is zero because
L = N . The picture of collision is different in (b). Here the
incident atom takes one atom from the chain and a biatomic
molecule is reflected. In this case N = 1, L = 2 and Eq. (9)
gives the sputtering yield Y = 1.

In the third row of Figs. 3(c)–3(c′′′), in all cases, the
reflected molecule takes one atom from the chain and, con-
sequently, Y = 1/N , because L = N + 1. Initial velocities of
molecules are [Fig. 3(c)] v0 = 5.6, [Fig. 3(c′) and Fig. 3(c′′)]
v0 = 3.2, and [Fig. 3(c′′′)] v0 = 3.0. The energy of the
molecule is spent to detach one atom from the chain and to
excite vibrations in the chain and in the molecules.

It can be expected that a further increase in the initial
velocity of the molecule will lead to an increase in the sput-
tering yield Y , but this is not the case in the fourth row
of Figs. 3(d)–3(d′′′). Here v0 is greater than in Figs. 3(c)–
3(c′′′) for any N , but the sputtering yield is Y = 0, since the
molecules are reflected from the chain without carrying away
the atoms. This result is explained by the fact that the incident
molecules in Figs. 3(d)–3(d′′′) expend their energy to create
a supersonic crowdion (antikink) that transfers energy deep
into the chain. The energy of vibrations, which remains near
the end of the chain, is not enough to break the interatomic
bonds.

A further increase in the velocity of the molecule v0 leads
to the creation of vacancies, subsonic and supersonic crow-
dions in the chain and an increase in the sputtering yield Y ,
see Figs. 3(e)–3(e′′′). It is noteworthy that the detachment
of atoms from the chain does not occur instantly; atoms are
detached from the chain one after another, and the sputtering
process is extended in time. This is because the transfer of
energy by phonons is rather slow. From Eq. (12) it was found
that the maximum group velocity is vmax

g = 2.89 for q =
1.33 and even less for phonons with the longer and shorter
wavelengths. In Sec. IV C it will be shown that supersonic
crowdions move at much higher speeds and carry large energy
in a localized form, being much more efficient in energy trans-
fer than phonons. In Figs. 3(e)–3(e′′′) supersonic crowdions
were not formed and large-amplitude oscillations of atoms are
visible, which occur due to the impact of molecules. With a
certain probability, the energy of these oscillations is spent on
the sputtering of atoms, and one by one they move away from
the chain. The sputtering process slows down due to the fact
that the energy of the chain is carried away by the sputtered
atoms and also due to the slow transfer of energy deep into the
chain by phonons.

The bottom row of Figs. 3(f)–3(f ′′′) is built for the collision
velocity v0 = 45. It can be seen that supersonic N-crowdions
are formed, which effectively transfer energy deep into the
chain. Atomic vibrations of large amplitude, as in Figs. 3(e)–
3(e′′′), are not visible. No atoms are removed from the chain
(L = 0) and thus Y = −1 in all four cases. Note that in
Figs. 3(a)–3(a′′′), the sputtering yield is also Y = −1, but the
absorption of atoms in Figs. 3(f)–3(f ′′′) is accompanied by

FIG. 4. The sputtering yield as the function of the velocity of the
bombarding molecule for molecules with the number of atoms (a)–
(d) from N = 1 to 4, respectively. The sputtering yield is shown for
t = 20 (black), t = 40 (blue), and t = 60 (red). Sputtering is actually
observed for Y > 0. When Y = 0 the molecule is reflected from the
chain. For Y < 0 a part of the molecule (the whole molecule in the
case of Y = −1) is deposited in the chain.

the formation of supersonic N-crowdions, while in Figs. 3(a)–
3(a′′′) crowdions are not formed.

It can be concluded that the sputtering yield Y has a
nonmonotonic dependence on the initial velocity of the
molecule v0.

B. Sputtering yield

Figure 4 shows how the sputtering yield depends on the
collision velocity for the molecules with N atoms. In Figs. 4(a)
to 4(d) N is equal to 1 to 4, respectively. To obtain the re-
sults shown in Fig. 4, the range of initial molecule velocity
0 < v0 � 50 was scanned with the step of 0.05 and the sput-
tering yield was calculated with the use of Eq. (9) at t = 20
(black lines), t = 40 (blue lines), and t = 60 (red lines). This
presentation helps to see how the sputtering evolves in time.
Note that numerical data was smoothed over 11 neighboring
points using the Savitzky-Golay filter [57].

For small and large values of v0, the sputtering yield does
not change after t > 20 but, as it was seen in Figs. 3(e)–3(e′′′),
there is a window of v0, where the detachment of atoms from
the chain is extended in time.
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The negative value of Y means that a part of the incident
molecule (in the case of Y = −1 the whole molecule) is de-
posited in the chain. Deposition of molecules, i.e., Y = −1,
is observed in several windows of the initial velocity of the
molecule. At low collision velocities, the molecule sticks to
the end of the chain, as in the first row of Fig. 3, and at high
v0, the molecule forms kinks that transfer the mass deep into
the chain, as in the bottom row of Fig. 3.

When Y = 0, the molecule is reflected from the chain. At
small v0 the reflection is nearly elastic, as in Figs. 3(b′)–3(b′′′).
At higher v0 the reflected molecule can initiate propagation of
a supersonic kink in the chain, as in Figs. 3(d)–3(d′′′).

A positive Y means that the molecule is reflected and part
of the chain is sputtered. The maximum of Y shifts toward
higher molecule velocities with an increase in the number of
atoms N in the molecule.

The sputtering yield depends nonmonotonically on the
speed of the molecules, as already mentioned when discussing
various scenarios of collision of molecules with the chain. An
explanation will be given below.

C. Supersonic crowdions

A molecule with a sufficiently high energy in the con-
sidered range of initial velocities v0 excites one or a few
supersonic crowdions (antikinks) in the chain. Subsonic kink-
antikink pairs are also formed, but first we will discuss the
properties of supersonic antikinks. The velocity of supersonic
crowdions, Vk , excited by a molecule with initial velocity v0

is presented in Fig. 5. Figures 5(a) to 5(d) show the results
for molecules with N = 1 up to 4 atoms, respectively. Six
different types of supersonic crowdions were identified and
are denoted by the Greek numerals. Only crowdions of type
VI can have velocities within a certain range, while the other
five types of crowdions propagate at the speed characteristic
of this crowdion type.

Instant profiles of the five types of supersonic crowdions
(from type I to type V) are plotted in Fig. 6. They emerged
due to bombardment by the molecules with the parameters
N = 1, v0 = 25 (black circles); N = 1, v0 = 15 (red squares);
N = 2, v0 = 15 (blue triangles); N = 3, v0 = 20 (purple pen-
tagons); and N = 4, v0 = 25 (green rhombuses). Horizontal
bars indicate the crowdion width. Crowdions I to III are
single antikinks. Among them the widest is the crowdion of
type I; its width is six lattice sites, with propagation veloc-
ity Vk = 5.7 and energy Ek = 18.8. Crowdion II is narrower
(five lattice sites); its propagation velocity is Vk = 8.1 and
energy Ek = 23.2. The narrowest single antikink III (four
lattice sites) propagates at a speed Vk = 13.2 and has energy
Ek = 49.8. Double antikink IV has width of six lattice sites,
propagation velocity Vk = 20.3, and energy Ek = 282. Triple
antikink V has width of eight lattice sites, propagation ve-
locity Vk = 25.6, and energy Ek = 734. Similar supersonic
crowdions have been described by Savin with coworkers in
Refs. [45,46] for the chain with cubic intersite and φ4 on-site
potentials. Their model also supports a finite number of super-
sonic antikink velocities at which they do not emit phonons. A
nonradiating crowdion must have a width equal to an integer
number of lattice steps, and its total amplitude must coincide
with an integer number of on-site potential widths (see Fig. 6).

FIG. 5. Velocities of supersonic crowdions excited in the chain
by the molecules with the velocity v0. In (a) to (d) the number of
atoms in the molecule N is equal to 1 to 4, respectively. Six types of
supersonic crowdions were identified; they are numbered with Greek
numerals (their profiles can be seen in Figs. 6 and 7). The dashed
lines show the linear function Vk = v0.

This explains why there are a finite number of propagation
velocities for supersonic crowdions.

Supersonic crowdions of type VI can move at any speed
within a certain range of speeds (see Fig. 5), which dis-
tinguishes them from supersonic crowdions of other types.
Profiles of the crowdions of type VI are shown in Fig. 7 at
t = 11. The multiple crowdions of type VI are unstable and
relatively quickly split into single crowdions of type VI. The
crowdions shown in Fig. 7 were obtained by bombardment
with the molecules having velocity v0 = 45 and number of
atoms from N = 1 to N = 4, they are designated as VI-1 to
VI-4, respectively. The distance between subkinks increases
with time.

Steady motion of supersonic crowdions of types I to VI
can be seen in Figs. 8–13, respectively. Time evolution of (a)
displacements and (b) energies of four neighboring particles
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FIG. 6. Profiles of the supersonic crowdions. From bottom to
top: 1-crowdion I with Vk = 5.7, 1-crowdion II with Vk = 8.1, 1-
crowdion III with Vk = 13.2, 2-crowdion IV with Vk = 20.3, and
3-crowdion V with Vk = 25.6. The horizontal bars show the width
of the crowdion.

are shown during passing of crowdions. It can be seen that
passing single crowdions shift the particles by one lattice
site [Figs. 8(a), 9(a), 10(a), and 13(a)], while double- and
triple-crowdions shift the particles by two and three lattice
sites, respectively; see Figs. 11(a) and 12(a). The crowdions
propagate radiating energy very slowly, so that the energies of
the particles after passing of the kink are practically zero, see
panels (b) in Figs. 8–13.

An analysis of the dynamics of crowdions helps to under-
stand why the velocity of crowdions of type VI can vary in a
certain range of velocities. Crowdions of type VI have highest
speed and highest energy compared to the crowdions of other
types. In crowdion of type VI only one atom moves at a high
speed, as can be seen in Fig. 13(a). Transmission of energy

FIG. 7. Profiles of supersonic crowdions of type VI at t = 11.
The crowdions are obtained by bombarding with molecules with a
speed of v0 = 45 and the number of atoms from N = 1 to N = 4;
they are designated as VI-1 to VI-4, respectively. All crowdions move
at a speed of Vk ≈ 46. Having just formed, they look like multiple
crowdions, but after a short time they split into single crowdions of
type VI, and the distance between them increases with time.

FIG. 8. Motion of a supersonic single-crowdion of type I
launched with the atom (N = 1) having initial velocity v0 = 15.
The crowdion velocity is Vk = 5.7 and energy Ek = 18.8. As the
functions of time shown are (a) displacements of the four nearest
particles and (b) energies of the same four particles.

between colliding atoms takes place within single well of the
on-site potential. As shown in Refs. [45,46], there exist a finite
number of supersonic antikink velocities at which they do not
emit phonons, and they correspond to bound states of acoustic
solitons whose total amplitude coincides with the width of the
on-site potential. At very high crowdion energies, the on-site
potential does not play a significant role.

Time evolution of the energy of supersonic crowdions is
shown in Fig. 14. Figures 14(a) to 14(c) show the results
for single crowdions of the I, II, and III types, respectively.
Figure 14(d) is for double crowdion IV, Fig. 14(e) for triple
crowdion V, and Fig. 14(f) for single crowdion VI. The crow-
dions are formed as a result of the collision of molecules with
the chain and initially they carry some perturbations. As they
move deeper into the chain, the crowdions take on stationary
profiles, shown in Figs. 6 and 7. In the regime of stationary
motion, the crowdions I to V practically do not radiate energy.
Less stable among them is the triple crowdion of type V, which

FIG. 9. Motion of a supersonic single-crowdion of type II
launched with the atom (N = 1) having initial velocity v0 = 15.
The crowdion velocity is Vk = 8.1 and energy Ek = 23.2. As the
functions of time shown are (a) displacements of the four nearest
particles and (b) energies of the same four particles.
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FIG. 10. Motion of a supersonic single-crowdion of type III
launched with the N = 2 molecule with the initial velocity v0 = 15.
The crowdion velocity is Vk = 13.2 and energy Ek = 49.8. As the
functions of time shown are (a) displacements of the four nearest
particles and (b) energies of the same four particles.

at t = 410 decays into single crowdion of type III and double
crowdion of type IV. But before splitting, it travels a distance
exceeding 104 lattice sites. Supersonic crowdions from I to IV
showed no signs of degradation at time t = 800. Crowdion
VI slowly radiates energy in the form of small-amplitude
phonon waves, as can be seen in Fig. 14(f). The radiation rate
increases with decreasing crowdion velocity.

The plateau values of the energies of supersonic crowdions,
Ek , and the velocities of their steady motion, Vk , are displayed
in Table I.

V. DISCUSSION OF THE RESULTS

The numerical results presented in the Sec. IV are dis-
cussed below.

FIG. 11. Motion of a supersonic double-crowdion of type IV
launched with the N = 3 molecule with the initial velocity v0 = 20.
Crowdion velocity is Vk = 20.3 and energy Ek = 282. As the func-
tions of time shown are (a) displacements of the four nearest particles
and (b) energies of the same four particles.

FIG. 12. Motion of a supersonic triple-crowdion of type V
launched with the N = 4 molecule with the initial velocity v0 = 25.
Crowdion velocity is Vk = 25.6 and energy Ek = 734. As the func-
tions of time shown are (a) displacements of the four nearest particles
and (b) energies of the same four particles.

A. Relation between sputtering yield and generation
of supersonic crowdions

The sputtering yield is high when the energy transferred to
the chain from the bombarding molecule does not penetrate
deep into the chain but remains near the end of the chain
(i.e., at the crystal surface). In this case, many vacancies and
subsonic crowdions are formed near the end of the chain.
The movement of these defects leads to the detachment of
atoms from the end of the chain one by one, as shown in
Figs. 3(e)–3(e′′′).

To illustrate the above, let us dwell on the discussion of the
sputtering yield caused by a molecule of N = 3 atoms shown
in Fig. 4(c). It is interesting to analyze the energy flow in the
system for the molecule initial velocities v0 = 15, 26, and 45.
At v0 = 26 the sputtering yield is high, and in two other cases
the molecule is deposited on the chain and Y = −1.

For the case of N = 3 and v0 = 15, in Fig. 15(a) we plot
displacements of particles and in Fig. 15(b) energies of parti-

FIG. 13. Motion of a supersonic single-crowdion of type VI
launched with the N = 1 molecule with the initial velocity v0 = 45.
Crowdion velocity is Vk = 46.5 and energy Ek = 966 (at t = 10). As
the functions of time shown are (a) displacements of the four nearest
particles and (b) energies of the same four particles.
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FIG. 14. Energy of the supersonic crowdions as the functions
of time. (a) Single crowdion of type I, (b) single crowdion of type
II, (c) single crowdion of type III, (d) double crowdion of type IV,
(e) triple crowdion of type V, and (f) single crowdion of type VI.

cles at t = 5. Propagation of the supersonic double crowdion
of type VI bearing an internal vibrational mode can be seen.
The crowdion radiates energy in the form of small-amplitude
phonons. At t = 5 the crowdion has energy Ek = 324.7. The
energy radiated by the crowdion at t = 5 is Er = 12.8. The
sum of these energies is equal to the initial energy of the
molecule Ek + Er = E0 = 337.5. This means that there is no
energy in the system to break interatomic bonds to sputter
atoms and hence Y = −1.

In Fig. 16, similar results are presented for N = 3 and v0 =
45. The supersonic triple crowdion of type VI-3 is formed,
see also Fig. 3(f ′′). The crowdion at t = 2 has energy Ek =
2984.3. The energy radiated by the crowdion at t = 2 is Er =
53.2. The sum of these energies is equal to the initial energy
of the molecule Ek + Er = E0 = 3037.5. There is no energy
in the system to break interatomic bonds and thus Y = −1.

A qualitatively different picture is observed in the case N =
3 and v0 = 26, see Fig. 17. In this case the sputtering yield is

TABLE I. Speed and energy of the supersonic crowdions in the
regime of stationary motion.

Crowdion type speed, Vk energy, Ek

I, single 5.7 18.8
II, single 8.1 23.2
III, single 13.2 49.8
IV, double 20.3 282
V, triple 25.6 734
VI-1, single 46.5 966

FIG. 15. Distribution of (a) atom displacements and (b) atom
energies over the chain at t = 5 after bombardment with the molecule
of N = 3 atoms with the initial velocity v0 = 15. A supersonic dou-
ble crowdion of type IV is formed. The molecule is deposited on the
chain, sputtering is not observed.

positive, see also Fig. 3(e′′). Two supersonic kinks of type I
and type II are formed with total energy EkI + EkII = 42. The
energy transferred to the system by the molecule is equal to
E0 = 1014. It can be seen that most of this energy remains
near the chain end. A series of subsonic kinks and vacancies
is created, which leads to the sputtering of atoms.

B. Comparison to existing data

The main result of this study is shown in Fig. 4, where
the sputtering yield as the function of the molecule velocity
is plotted for a different number of atoms in the bombarding
molecule. Bombardment with small velocity (v0 up to 1.5
for N = 1 and up to 0.3 for N > 1) results in deposition of
molecules without structural changes in the chain, similarly to
what is observed experimentally [11,15]. In our simulations,
deposition of molecule accompanied by formation of super-
sonic crowdions transferring interstitials deep into the chain

FIG. 16. Distribution of (a) atom displacements and (b) atom
energies over the chain at t = 2 after bombardment with the molecule
of N = 3 atoms with the initial velocity v0 = 45. A supersonic triple
crowdion of type VI-3 is formed. The molecule is deposited on the
chain, sputtering is not observed.
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FIG. 17. Distribution of (a) atom displacements and (b) atom en-
ergies over the chain at t = 30 after bombardment with the molecule
of N = 3 atoms with the initial velocity v0 = 26. Two supersonic
single crowdions of types I and II are formed. The impact of the
molecules caused sputtering.

is observed in the range 5 < v0 < 10 for N = 2, 12.5 < v0 <

17.5 for N = 3, and 17 < v0 < 22 for N = 4.
The regime of sputtering in Fig. 4 is observed in the range

of molecule velocity 11 < v0 < 30 for N = 1, 11 < v0 <

38 for N = 2, 18 < v0 < 43 for N = 3, and 22 < v0 < 45
for N = 4. The sputtering yield is maximal when v0 = 20,
E0 = 200 for N = 1; v0 = 23, E0 = 529 for N = 2, v0 = 28,
E0 = 1176 for N = 3, and v0 = 33, E0 = 2178 for N = 4.
At higher molecular energies, the sputtering yield decreases
monotonically, and eventually the molecules are deposited to
the chain with the formation of supersonic N-crowdions of
type VI. It is also observed in experiments that at very high ion
energies (above 50 keV), the overall sputtering yield decreases
due to deep implantation of ions into the target [5]. In this
regard, the simulation data obtained for the simple Frenkel-
Kontorova model are in fairly good qualitative agreement with
experimental observations.

Recall that the binding energy in the Frenkel-Kontorova
chain under consideration is equal to D = 1, and the heat
of vaporization for metals is about 300 kJ/mol, i.e., about
3 eV per atom. This means that the units of energy used in
our simulations can be converted to eV by multiplying by
a factor of 3. The maximum sputtering yield found for the
Frenkel-Kontorova model lies in the range 200 < E0 < 2000
for various N , which corresponds to the energy range from
600 eV to 6 keV for metals. This agrees with the experimental
data, according to which the maximum sputtering coefficient
is observed for ions with energy between 1 and 10 keV
[18,19].

As shown in Fig. 5, the bombardment of the chain by
molecules with sufficiently high energy leads to the formation
of supersonic crowdions, their stationary profiles are plotted
in Figs. 6 and 7. Crowdions of types I to V can propagate at a
certain speed, and the highest energy crowdions of type VI can
have a speed in a certain range. Previously similar crowdions,
except for type VI, were described in the φ4 chain with the
Toda interparticle potential [45,46]. Isolated values of kink

velocity for which radiationless kink propagation is possible
have been reported for the exceptional discretizations of the
φ4 model [58,59].

In the one-dimensional Frenkel-Kontorova model, atoms
have one degree of freedom and are forced to move only along
the chain. In three-dimensional crystals, atoms in a close-
packed atomic row have lateral degrees of freedom and the
problem of self-focusing atomic collisions becomes important
[60]. Very fast collisions lead to a decrease in the effective
diameter of atoms, and the collisions become defocusing [51].
This means that the very fast supersonic crowdions described
in this work may be unstable in three-dimensional crystals.

In the works [23,24] sputtering yield was calculated using
molecular dynamics and Lennard-Jones potentials for bcc and
fcc crystals with (001) surface. In these cases, close-packed
directions are not parallel to the ion beam, and the forma-
tion of crowdions is difficult. Nevertheless, the results of the
present work, in which bombardment along a close-packed
direction was simulated, are in qualitative agreement with
these works.

VI. CONCLUSIONS

In this work, the impact of molecules with N = 1 up to 4
atoms on the free end of the Frenkel-Kontorova chain intro-
duced in Ref. [47] was simulated. Depending on the collision
velocity v0 various collision scenarios were described, see
Fig. 3. The two main outcomes of the collision are the deposi-
tion of molecules and the sputtering of atoms from the chain.
It was found that sputtering was observed in a window of colli-
sion velocities for any N . Formation of supersonic crowdions
(antikinks) propagating along the chain explains this effect.
At moderate values of v0 supersonic crowdions of types I to
V are formed (see Fig. 5), they can propagate without radiat-
ing phonon waves only at particular speed, specific for each
crowdion type (this fact has been established earlier for the φ4

model in the works [45,46] and for the model considered here
in Ref. [47]). At high impact velocities, supersonic crowdions
of type VI are formed, which can have a speed in a certain
range. When supersonic crowdions carry the impact energy
deep into the chain, the sputtering is minimal and increases
when the energy is transported by slowly moving phonons and
remains near the end of the chain for a relatively long time.

Analysis of the existing experimental and theoretical works
on atomic deposition and sputtering in Sec. V B showed that
the obtained numerical results are in qualitative agreement
with the available data.
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