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Bound-states spectrum of the nonlinear Schrödinger equation with Pöschl-Teller
and square-potential wells
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We obtain the spectrum of bound states for modified Pöschl-Teller and square-potential wells in the nonlinear
Schrödinger equation. For a fixed norm of bound states, the spectrum for both potentials turns out to consist of
a finite number of multinode localized states. Soliton scattering by these two potentials confirmed the existence
of the localized states which form as trapped modes. Critical speed for quantum reflection was calculated using
the energies of the trapped modes.
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I. INTRODUCTION

Considerable efforts have been directed toward under-
standing the scattering and interaction dynamics of solitons
with diverse external potentials [1], for instance, surfaces
[2–4], steps [5,6], potential barriers [7–10], potential wells
[11–14], or impurities [15–20]. Various interesting phenom-
ena occur as a consequence of solitons scattered by potentials.
Quantum reflection is one example that occurs only at low
soliton speeds and demonstrates the wave nature of solitons.
In such a phenomenon, the soliton is reflected from the poten-
tial even in the absence of a classical turning point [11,12]
whereas, if the incident soliton velocity is above a certain
critical value, a sharp transition from complete reflection to
complete transmission takes place. This behavior is under-
stood as a result of the formation of a localized trapped mode
at the center of the potential. The resonant interaction between
the incoming soliton and the bound states of the potential well
yields soliton trapping whereas nonlinear interactions initiate
the process of transmission [12].

Scattering of bright solitons by reflectionless potentials,
such as the Pöschl-Teller (PT) potential, is characterized by
the absence of radiation. The scattering results in either full
transmission, full reflection, or full trapping [18]. A sharp
transition occurs at a specific critical speed, below which
the soliton fully reflects and above which it fully transmits
the potential well [11,12]. At the critical speed, an unsta-
ble trapped mode is formed where the energy and norm of
the incident soliton are equal to those of the trapped mode
at the center of the potential well [21]. The trapped mode
is always formed temporarily during the scattering process
which, for off-resonance scattering, leaves the potential to
join the scattered soliton. An accurate estimate of the critical
speed considering various potential depths has been provided
by Ref. [21]. It has also been shown that, within this setup,
a remarkable high-speed soliton ejection occurs, even for a
stationary initial soliton positioned near the center of the
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potential well [22]. Few attempts have been made to in-
vestigate the nonlinear Schrödinger equation (NLSE) with
potential forms similar to the PT potential [23–25].

Identifying the spectrum of bound states is essential to
determine the characteristics of resonant scattering. The spec-
trum of bound states and their corresponding energies help in
better understanding the various above-mentioned phenom-
ena. Finding the spectrum will also provide a physical basis
underlying the trapping phenomenon. In the present study, we
consider the NLSE in the presence of the PT and square (SQ)
potential wells. Our primary goal is to obtain the spectrum
of these potentials, namely, the profiles and energies of the
bound states. The spectrum of the PT potential well will be
calculated numerically. Motivated by the fact that spectra of
potential wells in general share the same features, we con-
sider the NLSE with SQ potential well. The similarities and
differences between the spectra of the PT and SQ potentials
will be discussed. We then investigate the role of bound states
on resonant scattering.

The PT potential considered here is modified by relaxing
the reflectionless condition that relates the potential depth,
V0, and inverse width α, namely, α = √

V0. Instead, we take,
α = √

V0/ j, where j is a nonzero positive integer. This is
motivated by the observations that for the reflectionless case,
j = 1, only the single-node mode is excited. To be able to
excite the multinode trapped modes, it was necessary to break
the reflectionless condition in such a manner. Remarkably, it
turns out that the number of nodes in the excited trapped mode
is equal to j. Scattering simulation shows that, for j > 1, only
the trapped mode with the maximum number of nodes forms.

We organize the rest of the paper as follows. In the next
section, we calculate numerically the spectrum of the PT
potential. In Sec. III A, we derive the bound states of the SQ
potential. In Sec. III B, we construct the spectrum of bound
states and study its properties. In Sec. III C, we calculate
the critical speed for quantum reflection. In Sec. IV, we in-
vestigate numerically the scattering dynamics of the bright
soliton by the PT and SQ potential wells. Lastly, in Sec. V,
we summarize our findings and conclusions.
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II. BOUND STATES SPECTRUM OF PÖSCHL-TELLER
POTENTIAL WELL

In this section, we calculate numerically the bound states
for the NLSE with the PT potential well. The NLSE in dimen-
sionless form in the presence of an external potential V (x) is
written as

i
∂

∂t
ψ (x, t ) + g1

∂2

∂x2
ψ (x, t ) + g2|ψ (x, t )|2ψ (x, t )

− V (x)ψ (x, t ) = 0, (1)

where ψ (x, t ) is a complex function and g1 > 0 and g2 > 0
are arbitrary real constants representing the strength of dis-
persion and nonlinear terms, respectively. The PT potential
we consider here reads

V (x) = −V0 sech2(αx), (2)

where V0 > 0 is the the depth of the potential well and α =√
V0/ j, being its inverse half width, j is an arbitrary nonzero

positive integer controlling the potential width. Soliton scat-
tering becomes reflectionless with j = 1. The general form of
the stationary state is given by

ψ (x, t ) = φ(x)e−iμt , (3)

where φ(x) is a real function and μ refers to the wave
frequency or, in the case of matter-waves of Bose-Einstein
condensates, the chemical potential. Substituting in Eq. (1)
yields the time-independent NLSE:

μφ(x) + g1
d2

dx2
φ(x) + g2φ

3(x) − V (x)φ(x) = 0. (4)

We are interested in looking for localized symmetric odd
parity solutions defined by φ(−x) = −φ(x). These solutions
contain a node at x = 0, which implies the initial conditions
φin(0) = 0 and d/dxφin(x)|x=0 = δ, where δ is an arbitrary
real constant. Another restriction is that the bound state
has to decay to zero outside the potential well, namely,
lim|x|→∞φ(x) → 0. This symmetry reduces the domain of the
problem to [0,∞], which is sufficient to provide all properties
of modes. There are other solutions with even parity symmetry
defined by φ(−x) = φ(x) which do not form a node at x = 0.
In the present paper, we restrict ourselves to the odd parity
solutions since numerical investigations indicate that scatter-
ing a bright soliton by the PT potential always generates odd
parity bound states [21,22]. Hence, the profile of the trapped
modes we are looking for is composed of even number of
peaks equally separated by an odd number of nodes such that
there is always a node at the center of the potential well.

We start by solving numerically Eq. (4) with the above-
mentioned initial and boundary conditions using essentially a
shooting method with trial values of the soliton frequency μ

and the central slope δ. This results typically in oscillatory
solutions. We then fix the value of the central slope to a
specific value, say δ = 1, and start tuning μ such that oscilla-
tions are pushed out to infinity and a localized nonoscillatory
bound state is obtained. It turns out that this can be achieved
generally with more than one value of μ such that each value
of μ corresponds to an eigenmode of different number of
nodes and different norm. The norm of the resulting state is

calculated using

N =
∫ ∞

−∞
|φ(x)|2dx. (5)

By inspection, we find that the localized mode is always
associated with a significantly lower norm compared with
the oscillatory solutions. Calculating the norm using (5) for
a range of μ values, the critical value is distinguished by a
sharp dip in the curve as shown in Fig. 1 for V0 = 2, where
in the upper row of subfigures, we present three cases with
j = {1, 3, 5}. In the lower row, we plot the corresponding
profiles of the possible bound states. This gives an indication
on the possible bound states for a given j. Our objective is
then to find the possible number of bound states for a fixed
norm, which we set to be N = 4. The value of δ is now
varied and the tuning procedure of μ is repeated for finding
all the possible localized solutions of a certain j such that they
all have the same norm. The filled circles shown in Fig. 2
represent the coordinates of the localized solutions that all
have the norm N = 4 in terms of the soliton frequency μ and
the parameter j. The lines are guides to the eye connecting the
localized solutions that share the same number of nodes. The
figure suggests that for a specific j, the number of possible
bound states equals ( j + 1)/2 for odd j and equals j/2 for
even j. Our numerical investigation of other potential wells
has shown that the main features of their spectra are common.
This motivates the investigation of an integrable case of SQ
potential well in the next section.

III. BOUND STATES SPECTRUM OF SQUARE POTENTIAL
WELL

By inspection, we found that, in general, bound-states
spectra exist for a wide range of potential wells and share
common main features. This observation will be exploited to
understand the main features of the spectrum of the PT poten-
tial well. To that end, we consider in this section the finite SQ
potential well which is an analytically solvable model.

A. Analytic profile of bound states

The finite SQ potential is defined as follows:

(6a)
V (x) =

{
0, |x| > 1/α, (outside)
−V0, |x| < 1/α, (inside) (6b)

where V0 > 0 is the the depth of the potential well and α =√
V0/ j is its inverse half width, and j is an arbitrary nonezero

positive integer. For both regions, inside and outside the po-
tential well, the NLSE is integrable. The solutions we are
seeking are oscillatory inside the potential well and decaying
outside. The exact solution of the NLSE that describes both
cases is the cn Jacobi elliptic function. Inside the potential
well, the solution of the NLSE, (4), is denoted by φin(x) and
outside of the potential well it is φout(x). Each one of these
solutions contains four unknown parameters, as described be-
low. The initial and boundary conditions will be sufficient to
determine all unknown parameters. We solve Eq. (4) for each
region separately, as follows:
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FIG. 1. Norm, as defined by Eq. (5), in terms of the trapped soliton frequency (upper row) and the corresponding profiles of the
possible bound states of each case (lower row). The values of μ and N of the sharp dips are (a) μ = −0.245889, N = 1.8149 for j = 1
with bound state profile in (d), (b) μ = {−0.51431, −1.24285}, N = {5.2209, 7.96884} for j = 3 with bound-state profiles in (e), and
(c) μ = {−0.618207, −0.937341, −1.91964}, N = {6.0509, 8.6734, 18.6971} for j = 5 with bound state profiles in (f). Parameters used:
g1 = 1/2, g2 = 1, δ = 1, V0 = 2.

Inside the potential well: In this region, where V (x) = −V0,
the solution takes the form

φin(x) = c1 cn[b1(x + x01), m1], (7)

where c1, b1, x01, and m1 are real constants to be determined.
Direct substitution in Eq. (4) results in the following two
equations:

m1 = −μ − b2
1g1 + V0

2b2
1g1

, (8)

c1 = p1

√
−μ + b2

1g1 − V0

g2
. (9)

Here, p1 = ±1 and we have used the identities: dn(x, m) =√
1 − m sn2(x, m) and sn(x, m) =

√
1 − cn2(x, m). Without

FIG. 2. Soliton frequency versus the parameter j for localized
solutions that have the norm N = 4. The lines are guides to the
eye. Lines starting from bottom correspond to the one-, three-,
five-, seven-, and nine-node trapped modes, respectively. The single
isolated filled circle corresponds to the eleven-node trapped mode.
Parameters used: g1 = 1/2, g2 = 1, V0 = 2.

loss of generality, we choose here and below to express all
seven unknown parameters in terms of b1.

Outside of the potential well: In this region, V (x) = 0, and
similarly, the solution takes the form

φout(x) = c2 cn[b2(x + x02), m2], (10)

with four new parameters c2, b2, x02, and m2 to be determined.
Substituting in Eq. (4), we obtain

m2 = 1

2
− μ

2b2
2g1

, (11)

c2 = p2

√
−μ + b2

2g1

g2
, (12)

where, p2 = ±1 is independent from the sign of p1.
Initial condition: Here, we apply the initial condition that

will determine the unknown parameter x01. The initial con-
dition associated with a wave solution depends on the parity
of the solution. Since we are restricted to the symmetric odd
parity solutions, the two initial conditions will be φin(0) = 0
and d/dxφin(x)|x=0 is arbitrary. Accordingly, we have

c1cn[b1 x01, m1] = 0. (13)

Solving for x01, we get

x01 = K(m1)

b1
, (14)

where K(m1) is the complete elliptic integral of the first kind.
Boundary conditions: Here, we apply the boundary condi-

tions that will determine two more unknown parameters. The
continuity of the solution and its first derivative at x = 1/α,
are expressed as

φin(1/α) = φout(1/α), (15)

d

dx
φin(x)

∣∣∣
1/α

= d

dx
φout(x)

∣∣∣
1/α

. (16)
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Solving (15) for x02 and (16) for b2, we, respectively, get

x02 = − 1

α
+ p3

b2
cn−1

(
c2

φ0
, m2

)
, (17)

b2 = p2√
g1

[
μ2 + 2μφ2

0g2 + g2
(
2φ2

1g1 + φ4
0g2

)]1/4
, (18)

where we have introduced

φ0 = c1 cn

[
b1

(
1

α
+ x01

)
, m1

]
, (19)

φ1 = −b1c1 dn

[
b1

(
1

α
+ x01

)
, m1

]
sn

[
b1

(
1

α
+ x01

)
, m1

]
,

(20)

and p3 = ±1 is independent from the signs of p1 and p2.
Up to this point, all unknown parameters are determined

in terms of a single arbitrary parameter, namely, b1. It is just
our choice to leave out this parameter as the arbitrary one; it

could have been any other parameter instead. In the following,
we impose the restriction that the solutions have to decay
to zero outside the potential, which is justified by seeking
localized states. This condition will, essentially, determine the
last unknown parameter and the system of eight unknowns
will be fully determined.

Localization condition: Here, an additional condition is
introduced for the solution to decay to a zero background.
This can be achieved by setting m2 = 1, where the outer so-
lution reduces to c2 cn[b2(x + x02), 1] = c2 sech[b2(x + x02)],
which satisfies (4) for

c2 = p2

√
−2μ

g2
, (21)

b2 = p2

√−μ

g1
. (22)

Substituting for b2 from (18) in (11) with m2 = 1, we get the
following transcendental equation for μ:

q(μ) = μ +
√

b4
1g2

1 − V0(V0 + 2μ) + 2V0
( − b2

1g1 + V0 + μ
)

cn2

[
b1

(
1

α
+ x01

)
, m1

]
= 0. (23)

The roots of this equation give the eigenfrequencies of lo-
calized modes. It is also noticed that Eqs. (21) and (22)
restrict μ to be negative. Furthermore, we will show next that
real-valued solution profiles are obtained only for values of
μ between two limits, which we denote by μ1 and μ2. The
limit μ1 is defined by the maximum value of μ for which the
quantity under the square root in Eq. (9) is positive and thus
c1 is real. Setting c1 = 0 in (9) gives

μ1 = b2
1g1 − V0. (24)

This equation defines a threshold value on b1, namely, b1th =√
V0/g1, for which μ1 = 0. For μ � μ2, the quantity x01 given

by (14) diverges or becomes complex. Therefore, the value of
μ2 is easily obtained from Eq. (8) with m1 = 1, which gives

μ2 = −b2
1g1 − V0. (25)

To conclude, only roots of q(μ) located within the interval
(μ2, μ1) lead to solutions with real-valued profiles. In case
b1 � b1th, Eq. (24) shows that μ1 > 0. Since acceptable roots
require μ < 0, then the interval becomes (μ2, 0).

Normalization: The total normalization N is the sum of the
inner and outer norms, Nin and Nout, respectively. Analytically,
it is given by

N (μ) = Nin + Nout = 2
∫ 1/α

0
|φin(x)|2dx + 2

∫ ∞

1/α

|φout(x)|2dx,

= 2c2
1

b1m1α

(
b1(m1 − 1) − α E(m1) + α E

{
am

[
b1

α
+ K(m1), m1

]
, m1

})

+2c2
2

b2

{
1 − tanh

[
b2

(
1

α
+ x02

)]}
. (26)

The second and third lines in the last equation correspond to
Nin and Nout, respectively, E(·) is the elliptic integral of the
second kind and am(·) is the amplitude of the Jacobi elliptic
function. The prefactor 2 in front of the integrals accounts for
the complete domain [−∞,∞].

B. Constructing the spectrum

Since the norm is a conserved quantity, we aim at con-
structing the spectrum of bound states for a fixed norm. Taking
into account Eqs. (8), (9), (14), and (19)–(22), the transcen-

dental Eqs. (23) and (26) will be given in terms of only b1

and μ. To obtain a spectrum with fixed norm, we need to set
a value of N (μ) in (26) and then solve the systems (23) and
(26) for b1 and μ. The resulting roots of (23) will give the
eigenfrequencies of the bound states. However, this procedure
turns out not to be practical since it requires solving two cou-
pled transcendental equations simultaneously. Alternatively,
we follow the following approach. We consider a range of
b1 values, compute the roots of q(μ) for each value of b1,
calculate the associated norm for each root, and then extract
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(a)

(d) (e)

b

c

a

(f)

(b) (c)

FIG. 3. Eigenfrequencies and eigenmodes for three cases of b1. The upper row shows the real roots of Eq. (23) and the lower row presents
the corresponding wave profile, (a) and (d) for (0.6 b1th =) b1 < b1th, with a single root at μ = −1.3695, (b) and (e) for b1 = b1th with a single
root at μ = −3.6025, and (c) and (f) for (1.2 b1th =) b1 > b1th, with three roots at μ = {−0.9075, −2.5135, −4.6585}. Filled (red) circles
indicate roots, dashed (red) vertical lines indicate the positions of μ1 (right) and μ2 (left), and the area of included μ is shaded. Parameters
used: g1 = 1/2, g2 = 1, V0 = 2, j = 3.

from this collection of data the roots which have the same
norm.

In Fig. 3, we clarify the procedure just described for an
example of SQ potential well characterized by V0 = 2 and
j = 3. The left column of the figure corresponds to the case
b1 < b1th. The shaded area is used to identify the range of
acceptable roots limited by μ1 > μ > μ2. The limits μ1 and
μ2 are indicated by two vertical dashed (red) lines. One
eigenfrequency is found at μ = −1.3695, corresponding to
a single-node trapped mode. The case of b1 = b1th is shown
in the middle column of the subfigures. The roots range
of this case is 0 > μ > μ2, where μ1 = 0. Similarly, only
one root at μ = −3.6025 is found. The profile of the cor-
responding single-node trapped mode is different than the
previous one. The last case, shown in the right column of
subfigures, is for b1 > b1th. Here, three roots appear at μ =
{−0.9075,−2.5135,−4.6585} and are labeled by {a, b, c},
respectively. As we mentioned above, the acceptable roots of
this case are in the range 0 > μ > μ2. Interestingly, both a
and b wave frequencies form two distinguishable triple-node
trapped modes. An important difference between them should
be noted. The mode corresponding to root a has constant
maximum amplitude in the oscillatory part. For the mode
corresponding to root b, the peaks at both edges are larger
than those in between. It should also be noted that the three
single-node trapped modes in the three cases are all different
from each other. The desired smooth and continuous match-
ing between the inner and outer solutions is attained with
p1 = p2 = 1. The required sign of p3 is obtained by matching
the slopes of the inner and outer solutions at the edge of the
potential. This can be done by equating φ1 from Eq. (20) to a
similar expression but with subscripts 1 being replaced by 2.

Constructing the spectrum starts, as we described above,
with finding the roots of (23) for a range of b1 values. The
result is shown in Fig. 4. The figure shows three curves which
correspond, starting from the bottom, to single-node trapped

modes and two triple-node trapped modes. No roots exist for
b1 < 1.1632, which is indicated by the vertical dashed (pink)
line. A single value of μ is obtained for a wide range of b1,
varying from 1.1632 to 2.25169, which is indicated by the
region in between the vertical dashed (pink) and solid (green)
lines. Three values of μ are found for b1 > 2.25169. As an
example, we draw a vertical dotted (red) line at b1 = 2.4 that
crosses the three roots shown in Fig. 3(c). Their corresponding
profiles are those shown in Fig. 3(f).

Calculating the norm of modes corresponding to all points
in Fig. 4, the relation between N (μ) and μ of the three curves

FIG. 4. Mode frequency, μ, in terms of b1. The curves from the
bottom of the figure correspond to single-node trapped mode and
two different triple-node trapped modes, respectively. The dashed
(pink) line defines the range b1 � 1.1632 for which no eigenmodes
exist. The solid (green) line at b1 = 2.25169 indicates the starting
value of triple-node trapped mode formation with the presences of
single-node trapped mode. The dotted (red) line at b1 = 2.4 is an
example capturing three modes from the bottom of the figure at μ =
{−0.9075, −2.5135, −4.6585}. Parameters used: g1 = 1/2, g2 = 1,
V0 = 2, j = 3, 0.5 b1th � b1 � 2 b1th.
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FIG. 5. Possible wave frequencies μ in terms of normalization N (μ). The curves from the bottom of (a) correspond to the same curves
in Fig. 4. The dashed (pink) line detects the value of N = 0.06972 at which no μ is detected before. The solid (green) line at N = 6.3916
indicates the minimum value that supports the formation of a triple-node mode with the presence of single-node mode. The (red) dotted line at
N = 12 is an example supporting three modes at μ = {−5.7785, −4.6035, −2.2035} from the bottom of the figure, respectively. A zoom-in
portion of the plot in (a) is shown in (b) where dashed (black) and solid (red) curves correspond to two different triple-node modes. Parameters
used are the same of those in Fig. 4.

can be extracted and is plotted in Fig. 5(a). Interestingly, only
single-node trapped modes are observed to occur with the
norm range N < 6.3916. Larger norm is needed for the for-
mation of higher nodes trapped modes. Two distinguishable
triple-node trapped modes are formed for N > 6.3916. The
dotted (red) line crosses three roots corresponding, starting
from the lowest curve, to a single-node trapped mode, triple-
node trapped mode, and another triple-node trapped mode, all
with the same norm, N ≈ 12. Figure 5(b) shows a zoom of the
point at which the two branches of triple-node trapped modes
appear.

For the sake of comparison, we show in Fig. 6(a) the
single-node trapped mode profiles of the PT and SQ potential
wells using the same set of parameters. The profiles of the
triple-node trapped modes are shown as well in Fig. 6(b).
While there are three trapped modes formed in the SQ poten-
tial spectrum, only two modes are formed in the PT potential
spectrum. Inspection shows that the spectrum of the SQ po-
tential well is always composed by a finite number of bound
states determined by the norm N and the value of j. As N in-
creases, the number of bound states with the same j increases.
However, in the case of the PT potential, only parameter
j determines the number of bound states in the spectrum

regardless of the norm. Increasing the norm in the case of PT
potential will not change the number of possible bound states
in the spectrum. Table I summarizes the norm, N , energy, ET ,
number of nodes, n, critical speed for quantum reflection, vc

(defined in Sec. III C), of bound states for the two spectra.
In Fig. 7(a), we show a schematic diagram of the spectrum
for the PT potential, that is constructed by a single-node and
triple-node trapped modes with trapped mode energies E1 and
E3. Figure 7(b) shows as well the schematic diagram of the
spectrum for the SQ potential that consists of a single-node
trapped mode and two triple-node trapped modes with trapped
mode energies E1, E1

3 , and E2
3 , respectively.

We show in Fig. 8 other cases including the reflectionless
potential with j = 1 and for a case with j = 2. A signif-
icant difference between the two potential wells should be
noted. While the reflectionless PT potential does not support
other than single-node trapped modes [21], the SQ poten-
tial supports in addition to the single-node trapped mode,
multinode trapped modes. In fact, with the SQ potential well
characterized by α = √

V0, multinode trapped modes do form.
The figure shows up to triple-node trapped modes. With the
same maximum value in the b1 range for the case of α =√

V0/2, the triple-node trapped modes are observed to occur

FIG. 6. Profiles of the single-node (a) and triple-node (b) trapped modes of the SQ and PT potential wells. Dashed curves correspond to PT
potential well and solid (blue) and dotted (red) curves correspond to the SQ potential well. Parameters used: g1 = 1/2, g2 = 1, V0 = 2, j = 3.
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FIG. 7. Schematic diagrams of the spectra of bound states for (a) PT potential well, (6), with E1 and E3 corresponding to the trapped
energies of the single- and triple-node trapped modes, respectively, and (b) SQ potential well, (2), with E1, E 1

3 , and E 2
3 corresponding to the

trapped energies of the single-nodes trapped mode and two triple-nodes trapped modes the PT potential well. Parameters used are those of
Fig. 6.

earlier with the case of j = 2 than that of the case j = 1.
Moreover, two branches of quintuple-node trapped modes
start to form.

C. Critical speed for quantum reflection

The derivation of the critical speed for quantum reflection
is based on the conservation law of energy. The critical speed
can be obtained by equating the initial energy of the incoming
soliton to that of the trapped mode at the center of the potential
well. This leads to an analytic formula for the critical speed,
as was shown for the PT potential well [21]. Considering the
same scenario for the SQ potential well, the critical speed
reads

vc =
√

1

12
g2

2N2 + 2

N
ET , (27)

where N is given by (26) and ET is the energy of the trapped
mode given by

ET = Ein + Eout = Nin μ + 2 × g2

2

∫ 1/α

0
|φin(x)|4dx

+ Nout μ + 2 × g2

2

∫ ∞

1/α

|φout(x)|4dx

= N μ +
∫ 1/α

0
|φin(x)|4dx +

∫ ∞

1/α

|φout(x)|4dx, (28)

where Ein and Eout are the energies associated with the so-
lutions of the NLSE, (4), inside, φin(x), and outside, φout(x),
the potential well, respectively. Figure 9 shows the relation
between the trapped mode energy ET and the norm N for

FIG. 8. Possible eigenfrequencies in terms of normalization N (μ) for (a) j = 1 with 0.9 b1th � b1 � 8 b1th and (b) j = 2 with 0.7 b1th �
b1 � 8 b1th. The left curve in (a) corresponds to single-node trapped modes while the right curve is composed of two curves corresponding
to triple-node trapped modes. In (b), the left curve corresponds to single-node modes, the middle curve is composed of two curves both
correspond to two triple-node trapped modes, and the right curve is also composed of two curves both correspond to quintuple-node trapped
modes. Parameters used: g1 = 1/2, g2 = 1, V0 = 2.
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TABLE I. Norm, N , energy, ET , number of nodes, n, critical
speed, vc, of bound states for the SQ and PT potential wells with
parameters corresponding to Fig. 6. The triple-node trapped modes
distinguished by ∗ have almost equal trapped energies.

PT potential

μ n N ET vc

-6.4660 1 12.0465 −37.3273 2.42816
−2.22655 3∗ 12.0270 −12.3972 3.16110

SQ potential

−6.6085 1 12.0469 −42.0890 2.25976
−2.5575 3 12.0362 −11.0984 3.19818
−2.1155 3∗ 12.0271 −9.62501 3.23320

the same case of Fig. 5. Using the same parameters of those
in Fig. 9, in Fig. 10, we plot the dependence of the critical
speed for quantum reflection on the trapped mode energy.
Three curves are shown in the left subfigure that correspond
to the single- and two triple-node trapped modes. Although

FIG. 9. Energy of trapped modes ET in terms of the norm N . The
curves from the bottom of the figure correspond to the same curves
in Fig. 4. Parameters used are the same of those in Fig. 4.

the upper two curves for the two triple-node trapped modes
seem to have the same vc, there is a notable difference which
is verified by taking a zoom in part of the curves, as shown in
the right subfigure. The vertical dashed (pink) line indicates
the minimum norm N ≈ 6 that is required for the quantum
reflection to occur with a triple-node trapped mode. Quantum
reflection by the single-node trapped mode is observed to start
at N ≈ 7.6, as indicated by the solid (green) line.

IV. RESONANT SOLITON SCATTERING

To account for the theoretical analysis we have made in
the previous two sections, in this section we consider the
scattering of the soliton in two setups; in the presence of the
PT potential well and in the presence of the SQ potential well,
separately. As an incident soliton, in the two setups, we use
the exact moving bright soliton solution to the fundamental
NLSE, namely, Eq. (1) with V (x) = 0, given in a normalized
form as [26]

ψ (x, t ) = N
√

g2

8g1
sech

[
g2N (x − x0 − vt )

4g1

]

× e
i

16g1
[(g2

2N2−4v2 )t+8v(x−x0 )], (29)

where x0 and v are the initial position and speed of the
soliton center, and N is its norm given by Eq. (5). The scat-
tering outcome is determined by solving numerically Eq. (1)
using the iterative power series method [27] with ψ (x, 0)
from Eq. (29) as an initial profile. Scattering dynamics of
the soliton described by (29) at t = 0 with the PT potential
V (x) = −65 sech2(

√
65 x/3) and norm N = 4 is presented in

Fig. 11(a), where it shows clearly the formation of a triple-
node trapped mode at the center of the potential well. In
Fig. 11(b), we plot the corresponding profiles of the trapped
mode obtained by direct numerical solution of (1) and the
profile obtained from the scattering simulation at the classical
turning point. The two profiles show an agreement on the
number and location of the nodes. However, since the trapped
mode is not fully occupied due to radiation, as the potential
is not reflectionless, the maxima in the profile obtained by

FIG. 10. Critical soliton speed, vc, in terms of full normalization 2N at which the soliton will be trapped by the potential well (6) forming
the modes discussed in Fig. 5. The triple-node modes start to be trapped as a result of soliton quantum reflection with N ≈ 6, while the
single-node trapped modes with N ≈ 7.6. This is indicated by the solid (green) line. A zoom-in portion of the indistinguishable part in plot
(a) is shown in (b) where the dashed (black) and the solid (red) curves correspond to two different triple-node trapped modes. Parameters used
are the same of those in Fig. 4.
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FIG. 11. Formation of a triple-node trapped node as a result
of the soliton described by (29) at t = 0 scattered by (a) the PT
potential V (x) = −65 sech2(

√
65x/3) and N = 4 and by (c) the SQ

potential (6) with V0 = 2 and N = 1. (b) Profile of the maximally
occupied trapped mode where the dotted (red) curve is the result of
the numerical solution of Eq. (4) and the solid (black) curve is the
maximally occupied trapped mode obtained by the scattering shown
in subfigure (a). (d) Profile of the maximally occupied trapped mode
where the dashed blue and dotted red curves are the result of the
exact solution of Eq. (4) with N = 7 and the solid (black) curve is the
maximally occupied trapped mode obtained by the scattering shown
in (c). Parameters used: g1 = 1/2, g2 = 1, j = 3.

the scattering experiment are less than those of the direct nu-
merical solution. The lower row of the same figure represents
the outcome of the scattering process but with a SQ potential
well characterized by V0 = 2 and j = 3. While the numerical
scattering experiment shows a similar result to that in the PT
potential case, the formed triple-node mode here is accom-
panied with considerable reflected and transmitted portions,
as shown in Fig. 11(c). Similar to the PT case, the profiles
in Fig. 11(d) show agreement between the scattering results
and the direct numerical solution on the number and location
of nodes. However, the discrepancy between the amplitudes
of the profiles is larger due to considerable reflection and
transmission.

We have found that, whether the potential is the PT or the
SQ potential well, the scattering process always excites only
one bound state with j number of nodes.

V. SUMMARY AND CONCLUSIONS

We have revealed the structure of bound-states spectrum
for a modified PT potential well. Bound states were obtained
through direct numerical solution of the NLSE, Eq. (1), using
the potential well (2). Tuning the central profile slope and the
frequency, a localized solution with decaying tail is obtained.
The solutions turn out to be characterized by the number of
nodes, their norm, and their energy. A more efficient alterna-
tive method is to calculate the norm of the numerical solutions
for a range of frequencies where localized solutions will be
identified with sharp dips in the curve, as shown in Fig. 1.

For a fixed norm, it turns out that a finite number of
eigenmodes exists. Each eigenmode is associated with an
eigenfrequency. Interestingly, the positive nonzero integer j,
which is used to define the inverse width of the potential,
α = √

V0/ j, determines the numbers of possible eigenmodes
and their nodes, as follows. For a given j, eigenmodes exist
with an odd integer number of nodes, n, such that 1 � n � j.
The total number of eigenmodes is then ( j + 1)/2 or j/2
for j being odd or even integer, respectively. This gives the
following general structure of the spectrum: it is a finite num-
ber of localized eigenmodes each characterized by its unique
number of nodes and eigenfrequency. Obviously, for j = 1,
which corresponds to the reflectionless potential case, there
is only one eigenmode which has a single node. This is the
well-known trapped mode responsible for quantum reflection
[11,18,21]. It should be noted that the general structure of the
spectrum will not be changed by changing the norm, N ; it will
affect only the amplitude of eigenmodes profiles.

Motivated by the finding that the general structure of the
spectrum of bound states is a common feature for a wide class
of potential wells, we considered the same problem for the
SQ potential well. In this case, the problem is analytically
solvable in terms of the Jacobi elliptic functions. The spectrum
turns out to be, indeed, similar to that of the PT potential
well, but with the difference that the number of eigenmodes
increases with increasing N . In addition, a degeneracy was
found where more than one eigenmode having the same num-
ber of nodes as, for instance, the two three-node eigenmodes
in Fig. 7.

Bound states have an important effect on quantum reflec-
tion and the sharp transition in transport coefficients of soliton
scattering. For both potentials, the critical speed for quantum
reflection was calculated using the eigenenergies of the bound
states, as summarized in Table I.

Exciting bound states can be performed by resonant soliton
scattering with the potential at the critical speed for quantum
reflection. However, there is no agreement though between
the numerical amplitude and the one obtained from scattering
simulation. This is due to the radiation losses and the fact
that in the SQ potential well, there is a considerable amount
of reflected and transmitted intensities, and thus the trapped
mode is not fully populated.

Numerical simulations of soliton scattering by the potential
wells, for a specific norm N and number j, can only excite
the mode with the maximum number of nodes, namely, j.
Therefore, resonant scattering by the trapped modes with a
lower number of nodes, n < j, may not be possible to excite
these modes. As an alternative procedure, we suggest that
exciting such trapped modes may be achieved through the
phase-imprinting method, where the phase extracted from the
corresponding analytical solution is imprinted initially on a
stationary soliton located at the potential well. This is left to
be investigated in future work.
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