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Method for direct analytic solution of the nonlinear Langevin equation using
multiple timescale analysis: Mean-square displacement
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We consider a class of nonlinear Langevin equations with additive, Gaussian white noise. Because of
nonlinearity, the calculation of moments poses a serious problem for any direct solution of the Langevin equation.
Based on multiple timescale analysis we introduce a scheme for directly solving the equations. We first derive
the equations for the fast and slow dynamics, in the spirit of the Blekhman perturbation method in vibrational
mechanics, the fast motion being described by the Brownian motion of a harmonic oscillator whose effect is
subsumed in the slow motion resulting in a parametrically driven nonlinear oscillator. The multiple timescale
perturbation theory is then used to obtain a secular divergence-free analytic solution for the slow nonlinear
dynamics for calculation of the moments. Our analytical results for mean-square displacement are corroborated
with direct numerical simulation of Langevin equations.
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I. INTRODUCTION

Nonlinear Langevin equations constitute a class of stochas-
tic differential equations widely used to describe nonequilib-
rium statistical mechanical systems in the natural sciences
[1–4]. The dissipation and thermal noise in the system are
connected via a fluctuation-dissipation relation. Their appli-
cations cover a wide range, e.g., in the diffusion model of
chemical reactions [5], in calculations of transport coefficients
like the diffusion coefficient of particles in fluids [2,3,6], and
in the calculation of spectra and photon correlation in quantum
optics [7], to name a few. A major difficulty that arises in
dealing with these problems is the nonlinearity in the dynam-
ics. While the linear stochastic equations are solvable with
direct calculation of moments, nonlinearity brings in higher
moments, and in general, the equations for the moments are
hierarchical and they cannot be closed without approximation
[2,4]. In order to circumvent this difficulty one considers
linearization of the dynamics around the steady state within
the weak noise approximation for which the fluctuations in the
system variables in the diffusion coefficients are ignored. Such
a procedure is adopted traditionally in dealing with the quan-
tum optical processes described by c-number equations using
quasiclassical distribution functions [7] and others. Lineariza-
tion of the potential around the saddle and stable steady states
of a double well lies at the heart of the Kramers problem of
barrier crossing dynamics [2,5]. The “harmonic linearization”
technique for a nonlinear potential for a Langevin equation de-
veloped in early 1980s is also worth mentioning [8]. Although
the linear Langevin equations are formally exact, they are
valid for near-equilibrium processes and for calculations of
linear transport laws [2]. For nonlinear transport processes
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and anomalous behavior of the transport coefficients one must
resort to mode-coupling theories [2,9]. In a different context,
the stochastic differential equations of nonlinear Langevin
type with linear and quadratic noise have been solved for
calculation of photoelectron counting probability for ampli-
tude fluctuations in an electromagnetic field [10]. A Langevin
equation with multiplicative nonlinear periodic noise has been
solved exactly in the form of the periodic solution of the Hill
equation [11]. An asymptotic formula for the steady-state dis-
tribution for a non-Gaussian nonlinear Langevin equation has
been derived [12]. Although a variety of physical systems
characterized by multiscale interactions are treated within the
framework nonlinear Langevin equations [13–19], we confine
ourselves here to a class of Langevin equations for which the
potential is nonlinear and the noise is additive, white, and
Gaussian in nature.

A common theoretical ground in the traditional treatment
of the above-mentioned nonlinear processes is the separation
of timescales in which dynamical variables are slow and the
reduced distributions of the slow variables are obtained by
integrating over the fast variables [2]. A perturbation scheme
using this separation to study interacting particles in an open
system was developed within a mean-field approximation to
derive a nonlinear integro-differential Fokker-Planck equa-
tion by Savel’ev et al. [20]. In many treatments the separation
of timescales is too difficult and often leads to complications
due to intermingling timescales. Another difficulty arises in
constructing the Fokker-Planck equation from the nonlinear
Langevin equation as emphasized by Van Kampen [21]. This
is regarding the nonuniqueness of the diffusion term in the as-
sociated Fokker-Planck description [21,22]. A direct approach
to the solution of a nonlinear Langevin equation without any
reference to the equation for the phase space distribution func-
tion is therefore worth exploring.

The object of the present work is to address this issue. We
explore an approach based on explicit separation of timescales
[23–26] in two stages. In the first stage [23,24], we extract
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out the fast motion explicitly after averaging over the noise
in the spirit of Blekhman perturbation theory used in vibra-
tional mechanics. The slow part is purely dynamical governed
by an ordinary nonlinear differential equation of the system
variables, driven by the average dynamics of the fast motion.
In addition, the coefficients of the slow equation of motion
are renormalized by the characteristics of the fast motion.
This equation is amenable to solution order by order using
a multiscale secular divergence-free perturbation theory, e.g.,
the Lindstedt-Poincaré method or dynamical renormalization
group technique [27–29]. An interesting offshoot of the sepa-
ration of timescales is the Brownian dynamics of a harmonic
oscillator, a generic feature of the fast motion that appears
in all the nonlinear cases treated here and admits an exact
solution. We consider three prototypical examples of a non-
linear Langevin equation with Duffing potential, double-well
potential, and periodic potential and calculate the first and sec-
ond moments analytically. Our results are verified with direct
numerical simulation of the nonlinear Langevin equations.

II. THE NONLINEAR LANGEVIN EQUATIONS:
THE ANALYTIC SOLUTION

The outline of the present method is described as follows:
We consider a wide class of nonlinear Langevin equa-
tions with additive, Gaussian, white noise of the following
form:

ẍ + γ ẋ + ω2
0x + ε f (x) = αξ (t ), (2.1)

where f (x) is a nonlinear function of the system coordinates x
and the overdot represents differentiation with respect to time.
ξ (t ) is a Gaussian white noise with zero mean,

〈ξ (t )〉 = 0,

and the second moment, 〈ξ (t )ξ (0)〉 = 2Dδ(t ),
(2.2)

satisfying the fluctuation-dissipation relation with D = γ kBT ,
γ being the linear damping coefficient. kB and T are the Boltz-
mann constant and temperature, respectively. α denotes the
strength of noise. ε is a smallness parameter used to keep track
of the order of the perturbation. ω0 is the linear frequency of
the system.

In the first step, we proceed as in vibrational mechanics
[23,24] to separate out the fast and slow motion as

x = X (t ) + ψ (t ) (2.3)

such that 〈ψ (t )〉 = 0 and 〈ψ2(t )〉 �= 0, where X (t ) refers to
the slow variable with a natural timescale of the system and
ψ (t ) the fast one with a timescale of the noise. More specif-
ically, one can write the condition as τs � ω−1

0 , where τs is
the correlation time of the noise. For Gaussian white noise τs

tends to zero. Substituting Eq. (2.3) in Eq. (2.1) and averaging
over the fast part we obtain

ψ̈ + ω2
0ψ + γ ψ̇ + εN (X, ψ, ψ̇, 〈ψ〉, 〈ψ2〉) = αξ (t ) (2.4)

as a descriptor of the fast motion, and the slow motion is
governed by

Ẍ + γ Ẋ + ω2
oscX = εF (X ) (2.5)

such that Eqs. (2.4) and (2.5) on addition give back Eq. (2.1).
Equation (2.5) contains the frequency ω2

osc and other coeffi-
cients in the nonlinear function F (X ) which are renormalized
by 〈ψ2(t )〉. The terms in N (X, ψ, ψ̇, 〈ψ〉, 〈ψ2〉) are nonlin-
ear contributions. We neglect the terms in N from the fast
motion and obtain the Langevin dynamics for a harmonic
oscillator with frequency ω0 as an effective description of
the fast motion. The solution of this equation when inserted
in the nonlinear equation (2.5) for slow motion results in its
parametric driving by the average fast motion. This yields

Ẍ + γ Ẋ + ω2
oscX = εG(X, t ), (2.6)

where t refers to the explicit time dependence of the driving
terms.

Equation (2.6) is a driven nonlinear dynamical system
which can be solved analytically order by order to avoid secu-
lar divergence due to the nonlinear terms and time-dependent
parametric driving using multiple timescales. This constitutes
the separation of timescales for the second stage [25,26]. We
have employed here Lindstedt-Poincaré perturbation theory
to calculate the first and second moments. One can also im-
plement dynamical renormalization group technique [27–29]
or other methods for solutions. We now illustrate the scheme
with the help of three nonlinear models.

A. Quartic potential

We begin with the dynamics of a generalized quartic oscil-
lator [25,26] in one dimension in the following form:

ẍ + γ ẋ + ω2
0x + εx3 = αξ (t ), (2.7)

where γ is the damping constant, ω0 is the natural frequency,
and ε stands for the nonlinearity factor of the oscillator. α

represents the strength of the noise and ξ (t ) is the Gaussian
white noise, with zero mean and the properties defined in
Eqs. (2.2). For the sake of generality, we consider ε > 0 and
ω2

0 > 0 for monostable oscillation (Duffing oscillator) and
ω2

0 < 0 for bistable (double-well oscillator) oscillation as two
distinct cases in the present section.

Let us split the variable x into a slow (X ) and a fast (ψ) part
as x = X + ψ . Substituting in Eq. (2.7) and averaging over the
fast part, we obtain

Ẍ + ψ̈ + γ Ẋ + γ ψ̇ + ω2
0X + ω2

0ψ + εX 3

+ 3εX 2〈ψ〉 + 3εX 2(ψ − 〈ψ〉) + 3εX 〈ψ2〉
+ 3εX (ψ2 − 〈ψ2〉) + εψ3 = αξ (t ). (2.8)

Separating them, we find the slow dynamics

Ẍ + γ Ẋ + ω2
oscX + εX 3 = 0, (2.9)

where ω2
osc = ω2

0 + 3ε〈ψ2〉; the linear frequency is modified
by the noise and 〈ψ〉 = 0. The fast dynamics is given by

ψ̈ + γ ψ̇ + ω2
0ψ + 3εX 2(ψ − 〈ψ〉)

+ 3εX (ψ2 − 〈ψ2〉) + εψ3 = αξ (t ). (2.10)

The above scheme of separation of the fast and slow
motion is inspired by Blekhman perturbation theory [23,24]
whereby one follows the separation method for the dynamics
guided by slow and fast time periodic motion rather than
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noise. The method has been widely used in the context of
vibrational mechanics, particularly in vibrational resonance
recently [30–45]. The extension of the Blekhman perturbation
theory to the systems governed by stochastic processes is
essentially a new element of the present approach.

To proceed further, we first note that Eq. (2.9) possesses
one steady state Xs = 0 for ω2

osc > 0 and three steady states

Xs = 0,±
√

|ω2
osc|
ε

for ω2
osc < 0. Furthermore, we introduce the

change of variable Y = X − Xs to rewrite Eq. (2.9) as

Ÿ + γ Ẏ + ω2
oscY + εY 3

+ Xs
[
ω2

osc + ε
(
X 2

s − 3XsY + 3Y 2)] = 0 (2.11)

and Eq. (2.10) as

ψ̈ + γ ψ̇ + ω2
0ψ + 3εY 2(ψ − 〈ψ〉) + 3εY (ψ2

− 〈ψ2〉) + εψ3 + Xs[3ε(Xs + 2Y )(ψ − 〈ψ〉)

+ 3ε(ψ2 − 〈ψ2〉)] = αξ (t ). (2.12)

The terms in the square brackets in Eqs. (2.11) and (2.12)
highlight the role of the steady states Xs in the two distinct
cases of oscillations. These are discussed separately in the
following.

1. Monostable (Duffing) oscillator

Since Xs = 0 is the only steady state for ω2
osc > 0, we have

Y = X , and the slow dynamics (2.11) reduces to the following
form:

Ÿ + γ Ẏ + ω2
oscY + εY 3 = 0. (2.13)

Neglecting the nonlinear contributions, we obtain from
Eq. (2.10) the Langevin equation for a harmonic oscillator:

ψ̈ + γ ψ̇ + ω2
0ψ = αξ (t ). (2.14)

This equation plays the key role in the dynamics of fast
timescale in our calculation. In what follows we show that
such a descriptor for fast motion appears also in other cases of
nonlinear potential. The well-known solution for the mean-
square displacement 〈ψ2〉 [46] (see the Appendix) can be
written as follows:

〈ψ2〉 = c + α1e−γ t cos 
′t + α2e−γ t + α3e−γ t sin 
′t,
(2.15)

where

c = α2D

γω2
0

, α1 = − α2γ D

ω2
0

(
γ 2 − 4ω2

0

) ,

α2 = α2D

γω2
0

− α2γ D

ω2
0

(
γ 2 − 4ω2

0

) , α3 = α2D

ω2
0

√(
4ω2

0 − γ 2
) ,

where 
′ =
√(

4ω2
0 − γ 2

)
.

Substituting the expression (2.15) in Eq. (2.13), we obtain the
following form of the slow dynamics:

Ÿ + γ Ẏ + ω2
0Y + 3ε(c + α1e−γ t cos 
′t

+ α2e−γ t + α3e−γ t sin 
′t )Y + εY 3 = 0. (2.16)

We confine ourselves to the underdamped condition γ � ω0

and set γ = ε [25]. Thus, Eq. (2.16) becomes

Ÿ + (
ω2

0 + 3εc
)
Y = −ε(Ẏ + Y 3) − 3ε(α1e−γ t cos 
′t

+ α2e−γ t + α3e−γ t sin 
′t )Y. (2.17)

It is now apparent that effect of the fast motion on the slow
timescale is twofold. First, the linear frequency ω0 gets mod-
ified by a new contribution 3εc. Second, the frequency is
parametrically modulated by the terms containing α1, α2, α3.

Equation (2.17) represents a damped and parametrically
driven nonlinear oscillator, an ideal candidate for the solution
using a perturbation technique. In what follows, we make
use of the Lindstedt-Poincaré perturbation method to avoid
secular divergence arising out of the driving and nonlinear
terms in Eq. (2.17). To proceed, we introduce a separation of
timescales for the second stage which is purely dynamical in
origin. To this end, we first define a new timescale τ = ωt , and
write Eq. (2.17) in terms of the new timescale τ as follows:

ω2Y ′′ + ω2
0Y = −εωY ′ − εY 3 − 3εcY − 3ε[α1e−γ1τ cos 
τ

+ α2e−γ1τ + α3e−γ1τ sin 
τ ]Y, (2.18)

where γ1 = γ /ω, 
 = 
′/ω and Y ′ denotes the differentia-
tion with respect to τ , the new timescale, i.e., Ẏ = ωY ′ and
Ÿ = ω2Y ′′, and so on. Eqation (2.18) is the slow dynamics
averaged over the internal noise of the system. Now let us
expand Y and ω in powers of ε as

Y = Y0 + εY1 + ε2Y2 + · · ·
and ω = ω0 + εω1 + ε2ω2 + · · · .

Substitution into Eq. (2.18) yields

ω2
0(Y ′′

0 + Y0) + ε
[
ω2

0(Y ′′
1 + Y1) + 2ω0ω1Y

′′
0

] + ε2
[
ω2

0(Y ′′
2 + Y2) + 2ω0ω1Y

′′
1 + (

ω2
1 + 2ω0ω2

)
Y ′′

0

]
= −ε(ω0Y

′
0 + Y 3

0 + 3cY0) − ε2
[
(ω1Y

′
0 + ω0Y

′
1 ) + 3Y1

(
Y 2

0 + c
)]

− 3ε[α1e−γ1τ cos 
τ + α2e−γ1τ + α3e−γ1τ sin 
τ ](Y0 + εY1 + ε2Y2 + · · · ). (2.19)

Comparing the coefficients of various powers of ε, on both sides, we write

(Y ′′
0 + Y0) = 0 (2.20)

for the zeroth order of ε. Similarly, for the first order of ε,

ω2
0(Y ′′

1 + Y1) = −2ω0ω1Y
′′

0 − (
ω0Y

′
0 + Y 3

0 + 3cY0
) − 3[α1e−γ1τ cos 
τ + α2e−γ1τ + α3e−γ1τ sin 
τ ]Y0, (2.21)
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and for the second order,

ω2
0(Y ′′

2 + Y2) = − 2ω0ω1Y
′′

1 − (
ω2

1 + 2ω0ω2
)
Y ′′

0 − [
(ω1Y

′
0 + ω0Y

′
1 ) + 3Y1

(
Y 2

0 + c
)]

− 3(α1e−γ1τ cos 
τ + α2e−γ1τ + α3e−γ1τ sin 
τ )Y1. (2.22)

From Eq. (2.20), the zeroth-order solution can be written as

Y0 = A cos τ + B sin τ, (2.23)

where A and B are two arbitrary constants. We set the following initial conditions: x(0) = a, ẋ(0) = b so that at t = 0 or τ = 0,
we have Y = a and Y ′ = b. It follows that at τ = 0, Y0(0) = a, Y ′

0 (0) = b. Also, Yi(0) = 0 and Y ′
i (0) = 0, i �= 0. Thus, we obtain

Y0 = a cos τ + b sin τ.

Substituting in Eq. (2.21) leads to

ω2
0(Y ′′

1 + Y1) =
[

2ω0ω1a − 3a

4
(a2 + b2) − ω0b − 3ca

]
cos τ +

[
2ω0ω1b − 3b

4
(a2 + b2) + ω0a − 3cb

]
sin τ

+ a

4
(3b2 − a2) cos 3τ + b

4
(b2 − 3a2) sin 3τ − 3e−γ1τ

[
α2(a cos τ + b sin τ ) + 1

2
(aα1 − bα3) cos 
1τ

+ 1

2
(aα1 + bα3) cos 
2τ + 1

2
(bα1 + aα3) sin 
1τ + 1

2
(aα3 − bα1) sin 
2τ

]
, (2.24)

where 
1 = 
 + 1 and 
2 = 
 − 1. Being secular terms, the coefficients of cos τ and sin τ in Eq. (2.24) must vanish for
removal of the singularity. Therefore, we must have

(2ω0ω1 − 3c)a − ω0b = 3a

4
(a2 + b2), (2.25)

and (2ω0ω1 − 3c)b + ω0a = 3b

4
(a2 + b2). (2.26)

The solution of Eqs. (2.25) and (2.26) yields the first-order correction to the bare frequency ω0, so that we have

ω1 = 1

2ω0

(
9

16
r4 − ω2

0

)1/2

+ 3c

2ω0
. (2.27)

The frequency corrected up to first order is given by

ω = ω0 + εω1 = ω0 + ε

[
1

2ω0

(
9

16
r4 − ω2

0

)1/2

+ 3c

2ω0

]
, (2.28)

where r2 = a2 + b2. Further, we find the solution Y1 up to the first order:

Y1 = a

32
(a2 − 3b2)(cos τ − cos 3τ ) + b

8
(3a2 − b2)(sin3 τ ) + R2 cos τ + R1 sin τ + 3α2aβ1e−γ1τ (γ1 cos τ − 2 sin τ )

+ 3α2bβ1e−γ1τ (γ1 sin τ + 2 cos τ ) + 3T1β3e−γ1τ (β2 cos 
1τ − 2γ1
1 sin 
1τ ) + 3T3β3e−γ1τ (β2 sin 
1τ

+ 2γ1
1 cos 
1τ ) + 3T2β5e−γ1τ (β4 cos 
2τ − 2γ1
2 sin 
2τ ) + 3T4β5e−γ1τ (β4 sin 
2τ + 2γ1
2 cos 
2τ ), (2.29)

where

T1 = 1

2
(α1a − α3b), T2 = 1

2
(α1a + α3b), T3 = 1

2
(α1b + α3a), T4 = 1

2
(α3a − α1b),

and β1 = 1

γ1(γ 2
1 + 4)

, β2 = (
1 + γ 2

1 − 
2
1

)
, β3 = 1(

β2
2 + 4γ 2

1 
2
1

) , β4 = (
1 + γ 2

1 − 
2
2

)
, β5 = 1(

β2
4 + 4γ 2

1 
2
2

) .

Also,

R1 = 3α2aβ1
(
γ 2

1 + 2
) + 3α2bβ1γ1 + 3T1β3γ1

(
2
2

1 + β2
) + 3T3β3
1

(
2γ 2

1 − β2
)

+ 3T2β5γ1
(
2
2

2 + β4
) + 3T4β5
2

(
2γ 2

1 − β4
)

and R2 = −3α2aβ1γ1 − 6α2bβ1 − 3T1β2β3 − 6T3β3γ1
1 − 3T2β4β5 − 6T4β5γ1
2.

Thus, reverting back to X the solution for the slow dynamics up to first order can be written as

X = Y = Y0 + εY1 = (a cos ωt + b sin ωt ) + ε

[
a

32
(a2 − 3b2)(cos ωt − cos 3ωt ) + b

8
(3a2 − b2)(sin3 ωt )
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+ R2 cos ωt + R1 sin ωt + 3α2aβ1e−γ1ωt (γ1 cos ωt − 2 sin ωt ) + 3α2bβ1e−γ1ωt (γ1 sin ωt + 2 cos ωt )

+ 3T1β3e−γ1ωt (β2 cos 
1ωt − 2γ1
1 sin 
1ωt ) + 3T3β3e−γ1ωt (β2 sin 
1ωt + 2γ1
1 cos 
1ωt )

+ 3T2β5e−γ1ωt (β4 cos 
2ωt − 2γ1
2 sin 
2ωt ) + 3T4β5e−γ1ωt (β4 sin 
2ωt + 2γ1
2 cos 
2ωt )

]
(2.30)

with the frequency ω corrected up to first order as given in Eq. (2.28).
A closer look at the expression for the frequency ω reveals that the correction to frequency (2.27) in the leading order (ε)

arises from a dynamical contribution 1
2ω0

( 9
16 r4 − ω2

0 )1/2 and a stochastic contribution (3c/2ω0). It is important to note that both
corrections to the frequency are of the order of ε. The nonlinearity therefore plays a key role in them. For ε = 0, we return to a
linear system with no correction to the linear frequency. From Eq. (2.30), we find X 2, and hence using Eq. (2.15) and (2.30) we
derive the analytical expression for the mean-square displacement as 〈x2〉 = X 2 + 〈ψ2〉 since x = X + ψ . Having obtained the
moments, we are in a position to calculate the associated distribution function for the stochastic process.

We now digress slightly about the analytical solution [Eq. (2.30)]. The result suggests that in the limit t tending to infinity,
after the initial transients die out, X (t ) keeps varying in time with frequency ω as given by the expression (2.27) depending on
the initial conditions (a, b). The origin of this dependence of the frequency ω on a, b lies in the Lindstedt-Poincaré method,
which has been used to get rid of the divergence due to resonance (as encountered in the traditional perturbation techniques [25])
arising out of parametric driving and nonlinearity and to obtain a periodic solution with the removal of the secular terms. This
forces the correction of the frequency ω1 to depend on the amplitudes a, b. In other words, the dependence of ω on a and b is a
reflection of the amplitude dependence of frequency in a nonlinear system.

2. Bistable (double-well) oscillator

We now return to Eq. (2.11) and note that Xs = 0,±
√

|ω2
osc|
ε

for ω2
osc < 0, and with the change of variable Y = X − Xs, the

slow dynamics [Eq. (2.11)] assumes the form for the nonzero steady state,

Ÿ + γ Ẏ + (
2ω2

0 − 6ε〈ψ2〉)Y + 3εXsY
2 + εY 3 = 0, (2.31)

and the fast motion [Eq. (2.12)] after neglecting the nonlinear contributions reduces to

ψ̈ + γ ψ̇ + 2ω2
0ψ = αξ (t ). (2.32)

Now with the solution of Eq. (2.32) as given by Eq. (2.15) where ω0 must to be replaced by
√

2ω0, we rewrite the slow dynamics
[Eq. (2.31)] as

Ÿ + γ Ẏ + 2ω2
0Y + 3εXsY

2 + εY 3 − 6ε(c + α1e−γ t cos 
′t + α2e−γ t + α3e−γ t sin 
′t )Y = 0. (2.33)

Here ω0 in c, α1, α2, α3 of Eq. (2.33) must be replaced by
√

2ω0. Proceeding exactly as in the earlier case with the multiple
timescale perturbation theory, we obtain the corrected frequency ω as given by Eq. (2.28) (with ω0 replaced by

√
2ω0).

Finally, the solution for the slow dynamics up to the first-order correction takes the form

Y = Y0 + εY1 = (a cos ωt + b sin ωt ) + ε

[
a

32
(a2 − 3b2)(cos ωt − cos 3ωt ) + b

8
(3a2 − b2)(sin3 ωt ) + R2 cos ωt + R1 sin ωt

+ 3Xs

2
(a2 + b2)(cos ωt − 1) + Xsab(2 sin ωt − sin 2ωt ) + Xs

2
(a2 + b2) cos 2ωt

− 6α2aβ1e−γ t (γ1 cos ωt − 2 sin ωt ) − 6α2bβ1e−γ t (γ1 sin ωt + 2 cos ωt ) − 6T1β3e−γ t (γ1 cos ωt − 2 sin ωt )

− 6T3β3e−γ t (β2 sin 
1ωt + 2γ1
1 cos 
1ωt ) − 6T2β5e−γ t (β4 cos 
2ωt

− 2γ1
2 sin 
2ωt ) − 6T4β5e−γ t (β4 sin 
2ωt + 2γ1
2 cos 
2ωt )

]
. (2.34)

Here R1 and R2 are given by

R1 = − 6α2aβ1
(
γ 2

1 + 2
) − 6α2bβ1γ1 − 3T1β3γ1

(
2
2

1 + β2
) − 3T3β3
1

(
2γ 2

1 − β2
)

− 3T2β5γ1
(
2
2

2 + β4
) − 3T4β5
2

(
2γ 2

1 − β4
)

and R2 = 6α2aβ1γ1 + 12α2bβ1 + 3T1β2β3 + 6T3β2γ1
1 + 3T2β4β5 + 6T4β5γ1
2.

Two pertinent points are to be noted. First, the nonzero value
of Xs makes its appearance explicit in the above solution.

Second, ω0 in all the relevant quantities in Eq. (2.34) must be
replaced by

√
2ω0. Having determined Y , X can be obtained
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as X = Xs + Y . The calculation of the mean-square displace-
ment 〈x2〉 is quite straightforward:

〈x2〉 = X 2 + 〈ψ2〉,
where 〈ψ2〉 is given by Eq. (2.15).

For both the monostable and bistable systems 〈x2〉 ap-
proaches an oscillatory solution in the limit t tending to
infinity. The analytical expression for 〈ψ2〉t→∞ is given by

〈ψ2〉t→∞ = α2D

γω2
0

for the monostable case and

〈ψ2〉t→∞ = α2D

4γω2
0

for the bistable case. For X (t )2|t→∞ is given by

X (t )2|t→∞

= (a cos ωt + b sin ωt )2 + 2ε(a cos ωt + b sin ωt )

×
[

a

32
(a2 − 3b2)(cos ωt − cos 3ωt )

+ b

8
(3a2 − b2)(sin3 ωt ) + R2 cos ωt + R1 sin ωt

]

for the monostable oscillator, where R1 and R2 are expressed
below Eq. (2.29). Similarly for the bistable case, we write

X (t )2|t→∞

= [Xs + (a cos ωt + b sin ωt )]2

+ 2ε[Xs + (a cos ωt + b sin ωt )]

×
[

a

32
(a2 − 3b2)(cos ωt − cos 3ωt )

+ b

8
(3a2 − b2)(sin3 ωt ) + R2 cos ωt + R1 sin ωt

+ 3Xs

2
(a2 + b2)(cos ωt − 1)

+ Xsab(2 sin ωt − sin 2ωt ) + Xs

2
(a2 + b2) cos 2ωt

]

with R1 and R2 as defined earlier below Eq. (2.34). It is
interesting to note that in the long-time limit the system, in
general, oscillates in time with frequency ω and its harmonics
generated due to nonlinearity of the potential. When averaged
over a time period the resultant X (t )2|t→∞ in both cases be-
comes proportional to D.

3. Numerical results

The analytically calculated profile for the mean-square
displacement 〈x(t )2〉 against time t is plotted in Fig. 1 for
the parameter values γ = 0.01, ω0 = 1.0, α = 1.0, D = 0.01,
and ε = 0.01 (dotted line). This is compared to the corre-
sponding numerically simulated profile (continuous line) after
taking the average over 105 number of trajectories obtained
by directly solving the Langevin equation (2.7) using the
Box-Muller algorithm [47] [unless otherwise stated we use
the initial condition x(0) = 1, ẋ(0) = 1]. In order to ensure

0

0.5

1

0 500 1000 1500 2000

<
x2

>

t

FIG. 1. The mean-square displacement 〈x2〉 is plotted against
time t for the Duffing oscillator for the following parameter set: ω0 =
1.0, γ = 0.01, α = 1.0, ε = 0.01, and D = 0.01 (analytical, dotted
line; numerical, solid line). For numerical simulation averaging is
done over 105 trajectories. The inset refers to the variation of 〈v2〉
vs time t , calculated numerically to ensure the attainment of thermal
equilibrium (units arbitrary).

the thermal equilibrium, we have plotted 〈v2〉 against time
(ẋ = v) in the inset. The agreement between the analytical
and numerical profiles for the mean-square displacement is
quite satisfactory. The effect of the strength of thermal noise is
examined by varying D as shown in Fig. 2 (D = 0.001) and in
Fig. 3 (D = 0.005). We observe better agreement between the-
ory and numerics as the strength of thermal noise is reduced.
It can be easily checked that the lines represent oscillations
when zoomed appropriately. To examine this aspect in more
detail and to determine the contributions of fast and slow mo-
tion X 2(t )|t→∞ and 〈ψ2〉t→∞, we show in Fig. 4 the variation
of X 2 and 〈ψ2〉 with time after the initial transients die down.
The inset in the figure clearly indicates complex oscillations.
The linear variation of 〈x(t )2〉t→∞ with D is displayed in
Fig. 5. The agreement between the numerics (cross) and the
analytical (line) values is excellent.

In Figs. 6 and 7, we have made a comparison of the analyt-
ical and numerical profiles for the mean-square displacement
〈x2(t )〉 vs time for two different values of the strength of
thermal noise D = 0.01 and D = 0.005, respectively, in the
case of a bistable oscillator (ω2

0 < 0). Except for the initial

0

0.05

0.1

0 500 1000 1500 2000

<
x2

>

t

FIG. 2. Same as in Fig. 1 but for D = 0.001.
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0

0.25

0.5

0 500 1000 1500 2000

<
x2

>

t

FIG. 3. Same as in Fig. 1 but for D = 0.005.

transients for a brief period the agreement appears to be ex-
cellent for the weak noise case. The insets displaying 〈v2〉
vs t plots refer to the ensuring thermal equilibration of the
system.

B. Periodic potential

We now consider the case of a periodic potential V (x) and
start with the following Langevin equation:

ẍ + γ ẋ + aV ′(x) = αξ (t ), (2.35)

where a is a constant.
To be specific, we consider the onsite potential as V (x) =

(1 − cos x). Thus, V ′(x) = sin x. Substituting in Eq. (2.35)
yields

ẍ + γ ẋ + a sin x = αξ (t ). (2.36)

We split the variable x into a slow and a fast part as

x = X + αψ,

where the fast part explicitly contains the noise strength pa-
rameter α. Separating the slow and fast parts, we write the

0

0.5

1

1.5

2

600 700 800 900 1000 1100 1200
t

Numerical <x2>
Theoretical X2

Theoretical <ψ2>
Theoretical <x2>

FIG. 4. The variation of X 2, 〈ψ2〉 along with 〈x(t )2〉 (numeri-
cal) and 〈x(t )2〉 (theoretical) against time is plotted after the initial
transients die down for the parameter set ω0 = 1.0, γ = 0.01, α =
1.0, ε = 0.01, a = b = 5.0, and D = 0.01, corresponding to the
Duffing oscillator. The inset in the figure refers to the variation of
X 2 vs t over a short period of time to show the complex oscillations
(units arbitrary).

 0

 0.5

 1

 0  0.002  0.004  0.006  0.008  0.01

<
x2

>

D

FIG. 5. The variation of 〈x(t )2〉|t→∞ as a function of D is plot-
ted for ω0 = 1.0, γ = 0.01, α = 1.0, ε = 0.01 and for t = 1800
corresponding to the Duffing oscillator for numerical (cross) and
analytical (line) values.

slow dynamics as

Ẍ + γ Ẋ + a

[
1 − α2

2
〈ψ2〉

]
sin X = 0, (2.37)

and the fast part takes the form

ψ̈ + γ ψ̇ + (aα cos X )ψ = ξ (t ). (2.38)

For the given potential, the steady states are X = 0, nπ . Thus
the fast dynamics around the steady state is given by the linear
Langevin equation for harmonic oscillator,

ψ̈ + γ ψ̇ + ω2
0ψ = ξ (t ), (2.39)

where ω2
0 = aα. Equation (2.39) describes the fast motion as

in the earlier two cases. The solution for the above equation is
discussed in the previous section. Having used the standard
result for 〈ψ2〉, the analytical solution for X in Eq. (2.37) can
be worked out following Refs. [48–50]. We make use of the
solution given by Salas [48] to calculate X 2 analytically and

60

80

100

120

0 50 100 150 200 250

<
x2

>

t

FIG. 6. The mean-square displacement 〈x2〉 is plotted against
time t for the bistable oscillator for the following parameter set: ω0 =
1.0, γ = 0.5, α = 1.0, ε = 0.01, and D = 0.01 (analytical, dotted
line; numerical, solid line). For numerical simulation averaging is
done over 105 trajectories. The inset in the figure refers to the varia-
tion of 〈v2〉 vs time t , calculated numerically to ensure the attainment
of thermal equilibrium (units arbitrary).
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FIG. 7. Same as in Fig. 6 but for D = 0.005.

then present it in the inset of Fig. 8. The variation of 〈x2(t )〉 vs
time t for the numerics (continuous line) and the analytical
(dotted line) results for the parameter set a = 1, γ = 0.01,
D = 0.001 with the initial conditions x(0) = 0, ẋ(0) = 0.25
for the periodic potential are shown in Fig. 8. The agreement
is found to be quite satisfactory. It can be noted also that as
t → ∞, X (and hence X 2) goes to zero [48] while 〈ψ (t )2〉
settles down over a constant proportional to D. 〈x(t )2〉t→∞
therefore varies linearly with D. Unlike the previous two
cases, the approximate solution of Eq. (2.37) used here [48] is
nonperturbative. α here is the parameter for strength of noise
used to separate out the contributions of fast and slow motion.
Since in the long-time limit X → 0, 〈x(t )2〉t→∞ varies linearly
with D as in the earlier cases.

We now demonstrate an immediate application of the treat-
ment for calculation of mobility under a constant external
field. In the presence of a constant field F , the effective slow
dynamics assumes the following form:

Ẍ + γ Ẋ + d sin X = F, (2.40)

0.04

0.05

0.06

0.07

800 1200 1600 2000

<
x2

>

t

FIG. 8. The mean-square displacement 〈x2〉 plotted against time
t for the periodic potential for the parameter set a = 1, γ = 0.01,
D = 0.001 with the initial conditions x(0) = 0, ẋ(0) = 0.25 (analyt-
ical, dotted line; numerical, solid line). For the numerical simulation
averaging is done over 105 trajectories. The inset displays the varia-
tion of X 2 vs t calculated analytically using the solution given in [48]
(units arbitrary).

where d = a[1 − α2

2 〈ψ2〉]. Following Risken [51], the low-
friction limit of the drift velocity and the critical force can
be calculated. For this we consider 〈ψ2〉 in the limit t → ∞,
so that 〈ψ2〉 = D

γω2
0
(= D

γ aα
) and we have d = a[1 − αD

2γ a ]. The
effective barrier height of the periodic potential therefore gets
modified by the weak thermal noise. In the very weak friction
and noise, we introduce [51] energy E as almost stationary
so that E = P2/2 − d cos X , where P = Ẋ . As a first approx-
imation with respect to friction, we can write P = P(X, E ) =√

2(Ē + d cos X ), where E = Ē is constant and

dE

dt
= γ (F0 − P)P, (2.41)

where Ẋ = P, F0 = F/γ , and Eq. (2.40) is used. The mobility
can be calculated as [51,52]

μ = 〈P〉
F

= 1

FT

∫ π

−π

dX = 2π

FT
. (2.42)

Here T can be expressed as

T =
∫ T

0
dT =

∫ π

−π

(dX/P)

=
∫ π

−π

dX√
2(Ē + d cos X )

= 2π
dP̄(Ē )

dĒ
, (2.43)

where P̄(Ē ) = ∫ π

−π
dX√

2(Ē+d cos X )
. Making use of the definition

for mobility μ, we write

γμ =
[
∂P̄(Ē )

∂Ē
F0

]−1

. (2.44)

The average velocity P̄(Ē ) in the stationary state Ē is deter-
mined by balancing the energy gain due to field and the energy
loss due to dissipation over one period. From Eq. (2.41) with
∂E
∂t = 0, we obtain

γ (F0 − P)P = 0. (2.45)

Integrating over one time period it can be shown from
Eq. (2.45) that

F0 = 1

2π

∫ π

−π

(PdX ) = P̄(Ē ). (2.46)

For a given F0, we estimate Ē , which may be used to calculate
γμ from Eq. (2.44). Equation (2.46) admits solutions only for
F0 � P̄(d ) = 4

√
d

π
. Since d depends on the noise and temper-

ature, the critical force gets lowered for higher temperature.
This weak noise assistance of the transport is supported by
earlier observations [51].

A closer examination of the present scheme reveals that
nonlinearity plays a crucial role in the solution of the non-
linear Langevin equation. First, the interplay of nonlinearity
and noise is reflected in the renormalization of linear fre-
quency of the slow dynamics. Second, the linear frequency is
also modified due to nonlinear contributions of the potential
even in the absence of stochasticity. This is apparent from
the expression for frequency correction term in Eq. (2.27).
The slow dynamics characteristically evolves in a nonlinear
potential field where the coefficients of the linear term takes
care of these two modifications. In addition, the system is
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driven parametrically by the average contribution of the fast
motion. This is evident in Eqs. (2.17) and (2.33). We also note
in passing that the present scheme makes no explicit refer-
ence to the equation for the probability distribution function,
e.g., the Liouville or Fokker-Planck equation. The distribution
functions can be obtained directly from knowledge of the
moments.

III. CONCLUSION

In this paper we have proposed an analytical approach to
the solution of a nonlinear Langevin equation. The scheme is
based on a multiple timescale method whereby the separation
of timescales is carried out in two stages explicitly. An inter-
esting offshoot of the present treatment is the generic form of
the description of fast motion, a Brownian harmonic oscillator.
The effect of fast motion is subsumed into the slow motion
in two ways. The first one is through the renormalization of
the coefficients of the potential of the nonlinear equation for
slow variables, and the second one is through parametric
driving terms. The scheme relies on Blekhman perturbation
theory applied widely in vibrational mechanics to derive the
nonlinear equation for slow motion of a system driven by
a rapidly varying time-periodic field. We have demonstrated
how this theory can be extended to treat stochastic differen-
tial equations. Because of parametric driving, the nonlinear
equation for slow motion leads to secular divergence, which is
avoided by applying the Linstedt-Poincaré perturbation tech-
nique. The resulting moments are calculated as a combination
of the average of fast and slow variables. Our analytical results
for mean-square displacement with time are corroborated by
direct numerical simulations of the nonlinear Langevin equa-
tions in three distinct cases of nonlinear potential.

Before closing, we would like to make the following perti-
nent points: First, as already mentioned, the present scheme
of multiple timescales is applied in two stages. In the first
stage this separation is exact. Rather than integrating over the
fast and irrelevant variables, we derive an explicit dynamics
for the fast motion which is essentially nonlinear in nature.
The linear contribution as a first approximation constitutes the
Brownian dynamics of a harmonic oscillator. The dynamics
of the slow variables, on the other hand, comes under the
purview of nonlinear dynamics. Second, in the traditional
treatment of a nonlinear Langevin equation, one must resort
to a hybrid approach, i.e., the equation for a phase space
probability distribution function, and the Liouville equation is
used simultaneously with the the stochastic equation. The
present scheme regards the Langevin equation as sufficient
and makes no reference to the Liouville equation for cal-
culation of moments and the distribution functions. Third,
the present approach, to the best of our knowledge, is the
first extension of Blekhman perturbation theory extensively
employed to treat the deterministic problems in vibrational
mechanics and in allied problems in vibrational resonance
involving fast periodic motion to the domain of stochasticity.
In this paper we have confined ourselves to additive, Gaussian
white thermal noise processes and believe that this method can
be applied to multiplicative, non-Gaussian, and nonthermal
noise processes as well in the future.
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APPENDIX: CALCULATION OF 〈ψ2(t )〉
To calculate 〈ψ2〉, we begin with the Langevin equation, as

described in Eq. (2.14), with α = 1:

ψ̈ + γ ψ̇ + ω2
0ψ = ξ (t ), (A1)

where ξ (t ) is the delta-correlated Gaussian white noise, as
defined earlier. Taking the ensemble average of Eq. (A1), we
obtain

d2〈ψ〉
dt2

+ γ
d〈ψ〉

dt
+ ω2

0〈ψ〉 = 0, (A2)

where we have used 〈ξ (t )ψ (t )〉 = 0. To derive an equation for
〈ψ2〉 we first multiply ψ on both sides of Eq. (A1). After some
rearrangement and ensemble averaging, we obtain

d2〈ψ2〉
dt2

+ γ
d〈ψ2〉

dt
+ 2ω2

0〈ψ2〉 = 2〈ψ̇2〉. (A3)

From Eq. (A2), we set up the following dynamics after a little
algebra:

d2〈ψ〉2

dt2
+ γ

d〈ψ〉2

dt
+ 2ω2

0〈ψ〉2 = 2〈ψ̇〉2. (A4)

Subtraction of Eq. (A4) from Eq. (A3) yields an equation for
the variance Vψ , where Vψ = 〈ψ2〉 − 〈ψ〉2,

d2Vψ

dt2
+ γ

dVψ

dt
+ 2ω2

0Vψ = 2kBT, (A5)

where we have used Maxwell’s velocity distribution to write
〈ψ̇〉 = 0 and 〈ψ̇2〉 − 〈ψ̇〉2 = kBT . Equation (A5) can be
solved using a standard technique. For the underdamped
case (ω0 
 γ ) as considered here we obtain the solution of
Eq. (A2) as follows:

〈ψ (t )〉 = ψ0e−γ t/2

(
cos


′t
2

+ γ


′ sin

′t
2

)

+ 2ψ̇0


′ e−γ t/2 sin

′t
2

, (A6)

where 
′ =
√

4ω2
0 − γ 2 and ψ0 and ψ̇0 are the initial values

for ψ and ψ̇ , respectively. We set them equal to zero, so that
〈ψ (t )〉 = 0. The solution for Vψ can be written as follows:

Vψ = kBT

ω2
0

{
1 − e−γ t

[
2γ 2


′2 sin2(
′t/2) + γ


′ sin(
′t ) + 1

]}
.

(A7)
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Since 〈ψ (t )〉 = 0, we can write

〈ψ2〉 = kBT

ω2
0

{
1 − e−γ t

[(
1 + γ 2


′2

)

+ γ


′ sin(
′t ) − γ 2


′2 cos(
′t )

]}
. (A8)

Alternatively, Eq. (A8) can be written as

〈ψ2〉 = c + α1e−γ t cos 
′t + α2e−γ t + α3e−γ t sin 
′t,

(A9)

where we have introduced the strength of noise α as a multi-
plicative factor to express c, α1, α2, α3 as follows:

c = α2D

γω2
0

, α1 = − α2γ D

ω2
0

(
γ 2 − 4ω2

0

) ,

α2 = α2D

γω2
0

− α2γ D

ω2
0

(
γ 2 − 4ω2

0

) , α3 = α2D

ω2
0

√(
4ω2

0 − γ 2
) ,

where 
′ =
√(

4ω2
0 − γ 2

)
.

For all our numerical calculations α is set equal to unity. We
emphasize that while 〈ψ (t )〉 depends on the initial conditions
on ψ and ψ̇ , 〈ψ (t )2〉 as given in Eq. (A9) does not depend on
any initial value.
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