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We present numerical and experimental results for the generation of aperiodic motion in coupled active
rotators. The numerical analysis is presented for two point particles constrained to move on a unit circle under
the Yukawa-like interaction. Simulations exhibit that the collision among the rotors results in chaotic motion of
the rotating point particles. Furthermore, the numerical model predicts a route to chaotic motion. Subsequently,
we explore the effect of separation between the rotors on their chaotic dynamics. The numerically calculated
fraction of initial conditions which led to chaotic motion shed light on the observed effects. We reproduce a
subset of the numerical observations with two self-propelled ribbons rotating at the air-water interface. A pinned
camphor rotor moves at the interface due to the Marangoni forces generated by surface tension imbalance around
it. The camphor layer present at the common water surface acts as chemical coupling between two ribbons. The
separation distance of ribbons (L) determines the nature of coupled dynamics. Below a critical distance (LT ),
rotors can potentially, by virtue of collisions, exhibit aperiodic oscillations characterized via a mixture of co- and
counterrotating oscillations. These aperiodic dynamics qualitatively matched the chaotic motion observed in the
numerical model.

DOI: 10.1103/PhysRevE.106.024201

I. INTRODUCTION

Exploring the dynamics of coupled nonlinear systems
has been a focus of extensive research. Coupled nonlin-
ear systems show a rich variety of nonlinear phenomena
such as synchronization [1,2], chimera states [3], oscillation
quenching [4,5], phase flips [6], traveling waves [7], etc.
The collective dynamics of the coupled interacting oscilla-
tors have also been of considerable interest in various fields
of science and engineering [8–10]. The resultant behavior
of the coupled systems depends on the nature of coupling
strength and coupling function between the systems. For
example, the coupling between the oscillatory systems ex-
hibiting synchronization can be mechanical in nature like a
common support or spring [11,12], or chemical in nature
as displayed by an oscillating Belousov-Zhabotinsky reac-
tion [13], pentanol drops [14], and electrochemical cells [15].
Even electrical systems can manifest synchronized behavior,
for example, in the brain [16], in power grids [1], and in
electro-chemomechanical systems [17–21]. In the biologi-
cal world, synchrony is exhibited in the flashing of fireflies
and synchronization of circadian rhythms to day and night
cycles [22]. There have also been a plethora of numerical
demonstrations of coupled synchronized oscillations [23,24].

Studies have also shown that the sense of rotation, i.e.,
counterrotation (the opposite direction of rotation) of the
oscillation, influences the resulting dynamics of the cou-
pled oscillators. The counterrotating oscillators can induce
mixed synchronization and amplitude death [25]. Moreover,

in the atmosphere and ocean dynamics, the counterrotating
vortices are ubiquitous [26–28]. Furthermore, in the mag-
netohydrodynamics of plasma flow [29] and Bose-Einstein
condensates [30] the counterrotating vortices are intentionally
created for functional purposes. Counterrotating oscillation
can induce traveling waves, bifurcation delay/preponement,
and extreme events in a network of neurons [7,31]. Biological
mediums such as protoplasm of the Physarum plasmod-
ium also display counterrotating spirals [32]. All the above
cases imply that counterrotating systems are omnipresent.
Hence, their study is a pertinent problem. The corotating
oscillators (same rotation direction) show in-phase synchro-
nization. However, counterrotating oscillators show mixed
synchronization, where a pair of state variables is in-phase
synchronized while another pair of variables is antiphase syn-
chronized. One can engineer a system that exhibits mixed
synchronization [33]. However, the counterrotating oscillators
spontaneously generate mixed synchronization.

Apart from rotation sense, the spatial separation between
the oscillators plays a crucial role in their collective dynamics.
The interaction strength among the oscillators depends on the
Euclidean distance between them. Such systems can be found
in a neurobiological setting of coupled neurons, the spatially
embedded Kuramoto model [34–37], swarm aggregation of
birds and fish [38], atomic interactions, and [39] micro air
vehicles [40]. In real-time experiments, for example, in the
synchronization of pendulums, spatial separation cannot be
avoided. Moreover, a wide range of natural problems inher-
ently have long-range interactions [41–43]. The omnipresence
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of communication through spatial separation justifies the im-
portance of a general and interdisciplinary understanding of
such problems.

Based on the above facts, we study the dynamics of two
coupled self-propelling camphor rotors in the current work.
The choice of camphor rotors serves our motive to com-
prehend the coupled oscillators’ dynamics via the rotational
modes (corotating or counterrotating) and via the distance-
dependent interactions. Using a table-top experimental setup
and numerical tools, we will study the changes in the dynam-
ics of co- and counteroscillating coupled systems when they
are configured to collide with each other.

A camphor rotor (ribbon) is a camphor-infused rectangular
paper strip. This camphor ribbon shows spontaneous motion
at the air-water interface, i.e., translation or rotation. However,
our interest here is to study the rotational dynamics of ribbons.
Therefore, the ribbons are pinned at one of the ends to allow
only rotation. A pinned ribbon touching the water surface
rotates clockwise or anticlockwise. Self-rotation is generated
by Marangoni forces acting on the rotor. This force arises due
to surface tension imbalance induced by an inhomogeneously
distributed camphor layer at the water surface [44]. In the
case of two or more rotors placed at a common water sur-
face, their camphor layers mutually interact with each other,
which leads to chemical coupling between the rotors [45].
Under such spatial interaction, coupled camphor entities tend
to show rich variety of collective dynamics, for instance,
synchronization [46–49], chimera-like states [50], bursting
dynamics [51], entrainment [52], and self-assembly [53].
Moreover, camphor particles have been explored in numerous
experimental [54–57] and numerical [58] settings. A com-
prehensive review and developments related to the camphor
system are provided in Ref. [57,59,60].

Furthermore, in a previous work [47], we simulated the
coupled rotors dynamics via a numerical model, wherein two
point particles interacted via the Yukawa potential. This model
presents a bird’s eye view of the experimental situation, but it
was able to reproduce synchronization [46] and chimera-like
states [50]. In the present study, this model is further explored.
An exhaustive scan of state space and the parameter space
provided a deeper insight into the coupled rotational dynamics
of the simulated system from the nonlinear dynamics point of
view.

The paper is organized as follows. Section II explains the
(A) numerical model, (B) numerical results, and (C) analytical
explanation of numerical results. Furthermore, II(B) is further
divided into two subsections, wherein (1) chaotic collisions
and (2) the route to the chaotic dynamics is discussed. In
Sec. III we present an experimental verification of a subset
of numerical inspections. This section details the (A) experi-
mental setup followed by (B) the experimental results. Last,
in Sec. IV we summarize the findings and discuss possible
applications.

II. NUMERICS

A. Numerical model

We have considered the numerical model by Sharma
et al. [47] involving two point particles (as shown in Fig. 1),

FIG. 1. Theoretical consideration of two point particles with unit
mass, which are moving on a unit circle. O1 and O2 correspond to
the pivots, and hence, L corresponds to the pivot-to-pivot distance
between the ribbons in the experiments. This schematic figure is for
the counterrotating case; however, the Hamiltonian in Eq. (9) remains
the same for the corotating case as well.

each of unit mass, constrained to move on a unit circle. For
the purpose of this work, we will refer to these point parti-
cles as a ribbon interchangeably since they are a numerical
emulation of rotating ribbons in the experiments. It can be
considered that the centers of the unit circles represent the
pivot points for each ribbon in experiments. The pivots are
kept at the origin (0,0) and (L, 0). Therefore, the distance
between the two pivots is L. The angular positions of the
particles with respect to their constraining unit circle can be
defined as θ1(t ) and θ2(t ), respectively. The positions of the
particles with respect to the common origin in the Carte-
sian coordinate system are �r1(t ) = (cos θ1(t ), sin θ1(t )) and
�r2(t ) = (L + cos θ2(t ), sin θ2(t )), respectively. When the two
camphor rotors are placed at a common water surface, a repul-
sive force arises due to the camphor layer on the water surface.
For the point particles simulated in the model, this repulsion
can be represented through a repulsive Yukawa-type potential
( e−Kr

r ) with a range determined by the scaling constant K . At
any time t , for a radial distance r(t ) = |r1(t ) − r2(t )| between
the point particles, the Yukawa potential is VYukawa = e−Kr(t )

r(t ) .
From the potential, the force between the two particles can be
written as e−Kr(t )

r(t )2 [1 + Kr(t )], which determines the particle dy-
namics. The radial component of the Yukawa force is assumed
to be balanced by the pivot constraint force. For finding the
tangential component, we have

�r(t ) = (cos θ1 − cos θ2 − L, sin θ1 − sin θ2), (1)

r2 = 2 + L2 − 2L(cos θ1 − cos θ2) − 2 cos(θ1 − θ2), (2)

∂r

∂θ1
= 1

r
(L sin θ1 + sin(θ1 − θ2), (3)

∂r

∂θ2
= 1

r
(−L sin θ2 + sin(θ2 − θ1). (4)

The Lagrangian of the system is given by

L = T − V = 1
2

(
θ̇1

2 + θ̇2
2) − VY (r). (5)
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The Hamiltonian is given by

H = 1

2

(
θ̇1

2 + θ̇2
2) + e−Kr

r
. (6)

From Eq. (6), the Hamiltonian of the two self-propelled
camphor ribbons depends upon θ̇2

1 and θ̇2
2 . Therefore for

the same energy of the system, both θ̇1 and θ̇2 can be
positive or negative. This results in the possibility of
observing corotating (same sense of rotation) and coun-
terrotating (opposite sense of rotation) camphor ribbons
depending upon their initial states. A detailed calculation
for the equations of motion of the rotator is given in the
Appendix.

For numerical simulations, we use the RK4 method with
a step size 10−3. The dynamical measures are calculated
for 106 iterations after discarding sufficient transients of 107

iterations. The parameter coefficient K is fixed at K = 2
throughout this work. We use the energy, E , and the pivot-
to-pivot separation, L, as the tuneable parameters of the
numerical system.

In the following section, we will discuss the various dy-
namics of two camphor ribbons and the influence of L on the
dynamics.

B. Numerical results

In order to study the coupled behavior of the camphor
ribbons, we consider Eqs. (A6) and (A7) with the fixed value
K = 2. The variation of the spectrum of Lyapunov exponents
(λi ) [61] with the separation (L) between the two pivots is
plotted in Fig. 2(a) for a fixed energy of E = 20 [62]. Here the
sum of all the Lyapunov exponents (LEs) is zero (

∑4
i=1 λi =

0), which confirms the conservation of energy for this system.
For the parameter L < LT where LT ∼ 2.7 (written as LT and
defined in Sec. II B 2) the largest LEs for some of the initial
conditions are positive, while for the remaining initial condi-
tions, it is zero. This indicates that for L < LT both the chaotic
and quasiperiodic motions are coexisting. The Poincaré sec-
tions for chaotic (scattered points) and quasiperiodic (points
on a line) are shown in Figs. 2(b) and 2(c), respectively. The
corresponding time series are shown in Figs. 2(d) and 2(e),
respectively. The conservative nature of the system under
study ensures that different initial conditions follow different
trajectories. Hence, the period of oscillations may vary with
different initial conditions; details are given in Fig. 4 below.
For the region L > LT , we find only quasiperiodic dynamics
wherein the initial conditions determine the shape of the tra-
jectories.

Trajectories in Figs. 2(d) and 2(e) show that one rotor has
a higher frequency than the other. This behavior depends on
the initial condition for a given energy. In other words, there
is a possibility that the first rotor has a lower frequency than
the second rotor or vice versa. This difference in frequency
leads to an asynchronous state between the rotors and leads
to chaotic motion. Moreover, just before the time t ∼ 4000
[Fig. 2(d)], the second rotor shows a significant abrupt change.
This behavior is, in fact, a type of collision, which is discussed
in the following subsection.
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FIG. 2. (a) The variation of spectrum of Lyapunov exponents
(λi ) as a function of separation, L, between the two pivots. The
Poincaré sections (taken at θ1 = 0) for (b) chaotic and (c) quasiperi-
odic motions at L = 1.5 with two different initial conditions (θ1 =
2.4, θ̇1 = 2.7, θ2 = 0, θ̇2 = 5.72) and (θ1 = 1.02, θ̇1 = 2.03, θ2 = 0,
θ̇2 = 6), respectively. The time series of (b) and (c) are shown in
(d) and (e), respectively. The solid (black) and dashed (red) lines
correspond to the first and second rotors, respectively.

1. Chaotic motion: Collision of particles

The chaotic behavior of the rotor system for L < LT is
the outcome of the collisions between them. We make our
point using Fig. 3. A segment of the time series, θ1 (dashed
black line) and θ2 (solid red line), of both the rotors is shown
in Fig. 3(a). The second rotor shows significant changes at
marked times, C1 ,C3, C3, C4, and C5. These points (in
time) correspond to the collisions between the rotors. C1 and
C4 indicate the points where collision changed the oscillators’
direction, whereas C2, C3, and C5 are the points wherein the
direction of rotation did not change. Note that a collision may
also not change the mutual rotational state of the oscillators;
for example, at collision point C5, the rotators remain corotat-
ing before and after the collision.

A proof of changes in velocities of the individual rotors
corresponding to collision points C3 and C4 is shown in
Fig. 3(b). At point C3, both θ̇1 and θ̇2 remain positive after
the collision, meaning no flip in the rotational direction. It
should be noted that before C3, particles are counterrotating,
while after the collision, they exhibit a momentary change
in the rotation direction (also observed experimentally) and
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FIG. 3. The time series of (a) sin(θ1) and sin(θ2) and (b) θ̇1 (left
y axis) and θ̇2 (right y axis) as a function of time of a chaotic motion
with the initial conditions θ1 = 3.31465984, θ̇1 = 4.44012880, θ2 =
0, θ̇2 = −5 at K = 2 and L = 1.5. The collision points are indicated
as C1,C2, . . . ,C5. The velocities of rotors near collision points, C3
and C4, are expanded in (b) where left and right y axes represent
θ̇1 and θ̇2, respectively. The schematic illustration of collisions near
C3 and C4 where counterrotating rotors remain counterrotating and
counterrotating rotors become corotating are shown in (c) and (d),
respectively. The dashed (black) and solid (red) lines correspond to
the first and second rotors, respectively.

subsequently perform corotation. Finally, they maintain coun-
terrotation as schematically illustrated in Fig. 3(c). However,
at point C4, θ̇1 (velocity) remains positive whereas θ̇2 changes
to negative, which implies a flip in the rotation direction of
the second rotor. Therefore, in the vicinity of collision C4
countermoving rotors become comoving; refer to Fig. 3(b).
In Fig. 3(b), the two particles’ angular velocities are denoted
by two different y axes. Hence, there can be changes in the
velocity as well as the rotation direction of the rotors at colli-
sions. The collisions of rotators collisions can be visualized in
the Supplemental Material [63].

As discussed earlier, there are coexisting chaotic and
quasiperiodic motions. No collisions were reported in
quasiperiodic dynamics, even at the same energy E and
separation L. It implies that the collision of rotors evokes
chaotic motion. Moreover, we observed a few collision-like
events beyond L = 2. However, the subset of initial conditions
leading to chaotic motion starts decreasing, as explained in
Sec. II B 2.

2. Route to chaos: Affinity for chaos as
a function of rotator separation

Next, we explore the route to above mentioned chaotic
dynamics. For this, we study the change in dynamics as a
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FIG. 4. (a) The fraction of initial conditions leading to chaotic
motion ( fchaos) for different values of energy as a function of separa-
tion L. The Poincaré section for different trajectories corresponding
to several initial conditions at different separations (b) L = 4, (c) L =
3.5, (d) L = 2.4, and (e) L = 1.5 at fixed energy E = 20. The
generation of Poincaré sections in (b)–(e) is the same as that of
Figs. 2(b) and 2(c).

function of separation parameter L. In Fig. 4(a) we present
the fraction of initial conditions that led to chaotic motion
from 200 randomly chosen initial conditions (θ1 = π , θ̇1 ∈
[−20, 20], θ2 = 0, θ̇2 =

√
2[E − e−Kr

r ] − θ̇2
1 ) for different en-

ergy levels E = 5, 10, and 20. For each E , 200 random initial
conditions (ICs) were selected and simulated for a fixed L,
and then the number of ICs leading to chaos is measured.
Subsequently, the fraction of initial conditions leading to
chaos is calculated, denoted by fchaos. This process is re-
peated for various L values (L = 1 to L = 4). For the curve
“E = Random,” the initial conditions are considered as (θ1 =
π , θ̇1 ∈ [−20, 20], θ2 = 0, θ̇2 ∈ [−20, 20]), i.e., each initial
condition has different and random E . For a separation till
L = 2, which is the total length of both the ribbons, fchaos

remains constant irrespective of the energies. As discussed in
Sec. II B 1 collisions are more probable when the separation
is below L = 2. Note that as L is further increased, fchaos

decreases linearly and vanishes at LT after which we observe
only quasiperiodic motion.

In order to understand the variation of fchaos, we present
the Poincaré section at different values of separation L =
4, 3.5, 2.4, and 1.5, but for fixed energy of E = 20, in
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FIG. 5. The variation of (a) fchaos and (b) the largest Lyapunov
exponent as a function of the energy of the systems at L = 1.5.

Figs. 4(b), 4(c), 4(d), and 4(e), respectively. In each plot,
trajectories of several initial conditions were considered.
At L = 4 motions are quasiperiodic, and the curves are
very smooth. As we decrease L further, the nested tori,
i.e., small closed curves, start appearing. At L = 2.4, both
the chaotic and quasiperiodic motions were observed. How-
ever, we mostly get chaotic motion for L < 2 because of
a very high fchaos and intermittent collisions. These transi-
tions are a consequence of the KAM theorem [64]: as both
the ribbons are far away, so they have weak interaction
(perturbation to each other). However, when separation L is
decreased, the interactions become stronger, and hence, the
original torus decomposes into smaller and smaller tori. As
per the KAM theorem, some of these tori are stable. How-
ever, irregular (chaotic) motion appears within the stable tori.
Following the Poincaré-Birkhoff fixed point theorem, the ra-
tional tori break up and result in the appearance of chaotic
seas [64,65].

Subsequently, we asked how the chaoticity of the system
is affected as a function of energy. Therefore, in Figs. 5(a)
and 5(b), we plot fchaos and the largest Lyapunov exponents
versus E for a fixed separation L = 1.5. Here Fig. 5(a) shows
that fchaos is almost constant, which is also evident in Fig. 4(a).
However, the degree of chaoticity, in terms of the magnitude
of the largest Lyapunov exponent, increases for some ini-
tial conditions. We argue that at higher energies, the ribbons
may be colliding very frequently, thus, resulting in enhanced
chaoticity for these ICs.

FIG. 6. Schematic drawing of the collisions for (a) counterro-
tating and (b) corotating rotors. The dotted red lines represent the
tangential momentum vectors of the rotors at the point of collision,
and when shifted to respective centers of the circles, they are repre-
sented by solid red lines. The vectors r1 and r2 are radial vectors from
the centers of respective circles to the point of collision represented
by a solid black line. The arrows on circles represent the direction
of rotation of each rotor. The rotors remain in counterrotation after
collision in (a) while they change to corotations in (b).

C. Analytical explanation

In this section, we will address collision dynamics an-
alytically. Figure 6 mimics the geometrical possibilities of
the rotors’ directions before and after the collision. The red
arrow in Fig. 6 represents the momentum vector of two rotors
denoted by p1 and p2 (dashed arrows), while r1 and r2 are
the position vectors of the rotors at the point of collision.
The angles θ1 and θ2 are the deviations from the reference
line O1O2 (see Fig. 1). If the momentum vectors of both
the rotors have opposite signs, it means they are exhibiting
counterrotation [Fig. 6(a)], and if the signs are the same, then
they are in corotation [Fig. 6(b)]. After a collision, a counter-
rotation (or corotation) of the two rotators can either remain in
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counterrotation or become corotating. We understand it an-
alytically by analyzing the conservation of momentum and
energy before and after the collision [66].

Based on the conservation of momentum we have

−p1 sin θ1 + p2 sin θ2 = ±p′
1 sin θ ′

1 ± p′
2 sin θ ′

2, (7)

where the prime symbol denotes the variables after the colli-
sion, and we have

p1 cos θ1 + p2 cos θ2 = ±p′
1 cos θ ′

1 ∓ p′
2 cos θ ′

2. (8)

Also, from conservation of energy we have

p2
1

2m
+ p2

2

2m
= p′

1
2

2m
+ p′

2
2

2m
. (9)

Squaring Eqs. (7) and (8), and adding them, we get

p2
1 + p2

2 + 2p1 p2(β ) = p′2
1 + p′

2
2 − 2p′

1 p′
2(β ′),

where β = (cos θ1 cos θ2 − sin θ1 sin θ2) and β ′ =
(cos θ ′

1 cos θ ′
2 − sin θ ′

1 sin θ ′
2). Now from Eq. (9), we have

±2p1 p2 cos(θ1 + θ2) = 2p′
1 p′

2 cos(θ ′
1 + θ ′

2). (10)

This equation helps in understanding the relationship be-
tween the relative momenta of the two rotors before and
after collisions in the context of co- and counterrotation. We
enumerate the various possibilities that arise from Eq. (10)
below.

Case i: When we consider the negative (−) sign, then
Eq. (10) becomes

−2p1 p2 cos(θ1 + θ2) = 2p′
1 p′

2 cos(θ ′
1 + θ ′

2). (11)

This implies that rotors are in counterrotation before the col-
lision (left-hand side of the equation). Since the cos(θi ) will
always remain positive the momenta, p′

1 and p′
2 must have

the same sign. This implies that one of the rotors changes
its direction, and hence, both of the rotors have the same
direction of rotations, i.e., corotation. It is evident in Fig. 3(b)
that at collision point C4, the velocity of the second (red)
rotor changes from positive to negative, resulting in rotation
direction flip.

Case ii: However, if we consider positive (+) sign,

2p1 p2 cos(θ1 + θ2) = 2p′
1 p′

2 cos(θ ′
1 + θ ′

2), (12)

which is possible only when the momenta, p′
1 or p′

2 has op-
posite signs. which implies that rotors remain counterrotating.
This explains the collision point C3 in Fig. 3(b) where the
velocities of rotors do not get changed in direction and both
the ribbons remain in their previous directions of rotations
even after the collision.

Similarly, we can have corotations before collision and
counterrotation after collision, which corresponds to collision
point C1 and corotation before and after collision as in the
case of collision point C5 in Fig. 3(a).

III. EXPERIMENTS

In this section we describe an experimental setup which
was used to realize a subset of the rich dynamics observed
in numerics. Subsequently, the experimentally observed ape-
riodic dynamics of the rotors are presented.

FIG. 7. Schematic of the experimental setup.

A. Experimental setup

The ribbons were prepared by cutting a rectangular piece
of paper of dimensions 2.0 cm × 0.4 cm. Before cutting, their
shape was already printed on an A4 size paper sheet. The tem-
plate was such that the ribbon was black in color with a white
circular region at one end to aid with the motion tracking of
the ribbons. Following this, at room temperature, they were
immersed in a 3.0 M camphor in ethanol solution for 60 s.
The rectangular papers were air dried for 600 s. During this
time, ethanol evaporated, and we were left with a paper ribbon
infused with camphor in its matrix. This camphor-infused
rectangular sheet will be called a camphor rotor or ribbon
throughout this paper.

Subsequently, the ribbons were pivoted at one end using a
thin wire (red wire in Fig. 7) and introduced to the surface of
the water to observe their motion (Fig. 7). The ribbons were
kept at a pivot-to-pivot distance (L = 3.5 cm), which is less
than the span of the ribbons (Lc = 4 cm). At this distance,
rotors will collide with each other if there is a frequency mis-
match between them. Dynamics of the rotors were recorded
with a high-speed GoPro camera set at 120 fps, 720 p. The
experimental videos (see the Supplemental Material [63])
have been analyzed using the OpenCV library in the Python
interface [67]. We track the white circular region at the distal
end of each ribbon using this algorithm. For this work, we
consider the position of the white circular region as a proxy
for the position of the corresponding ribbon.

B. Experimental results

We observe that the aperiodic dynamics of the coupled
rotators can be obtained at optimal pivot-to-pivot distances L.
In Fig. 8 the time evolution of the y positions of the ribbon
is plotted. Labels marked as E1, E2, and E3 represent the
first, second, and third consecutive collisions between the
rotors (see video 1.mp4 [63]). During collision E1, rotors do
not switch their direction and remain corotating. However, in
collision E2, the second rotor flips its direction (indicated by
a transition of dashed red line to solid red line), and hence,
rotors enter into a counterrotation regime. Last, while collid-
ing for the third time (collision E3), the second rotor switches
its direction (indicated by a transition of the solid line to
the dashed line), leading to the corotation of the two rotors.
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FIG. 8. Aperiodic dynamics of the rotators result from the spo-
radic collisions between them. The time series corresponds to the
“y positions” of the rotors, i.e., the white regions present at each
rotator’s tips. The black and red lines correspond to the first and
second rotors. E1, E2, and E3 represent the first, second, and third
consecutive collisions between the rotors. The dashed lines corre-
spond to a corotating pair, while the solid lines correspond to a
counterrotating pair.

Hence, collisions E1→ E2 → E3 result in a transition corota-
tion → counterrotation → corotation dynamics. Note that the
collisions in the experimental results are denoted as E, while
the same is mentioned as C for numerical results in Fig. 3.
Furthermore, it is evident from Fig. 8 that the ribbons exhibit
aperiodic motion due to sporadic reversals in their rotation
directions caused by collisions with the other ribbon [68]. This
interesting phenomenon results from coupling (unsynchro-
nization) between the rotors combined with being placed at
a distance L < LT (physical collisions). We would emphasize
that ribbons may not change their directions of rotation during
each collision. Hence, a corotating (counterrotating) pair can
remain corotating (counterrotating).

IV. SUMMARY

In this work, we numerically observed a rich dynami-
cal behavior for repulsively interacting point particles. When
the distance between the particles is more than the criti-
cal distance LT ∼ 2.7 the dynamics become quasiperiodic,
whereas for a distance below the critical distance L < LT , the
coupled particles exhibited chaotic oscillation (collision) or
coexistence of chaotic collision and quasiperiodic dynamics.
Theoretical understanding of the two pinned self-propelled
camphor ribbons was performed by two point particles with
Yukawa interaction. All the possible dynamics of the rotators
have been shown through numerical analysis. The collision of
ribbons depending on the distance explains the reason for the
quasiperiodic and chaotic motions. We used the conservation
of energy and momentum arguments to shed light on the
collisions of coupled ribbons analytically. Moreover, the coex-
istence of quasiperiodic and chaotic behavior was studied with
Poincaré sections. The fraction of initial conditions leading
to chaotic motion ( fchaos) calculations explained the effect of
energy on the rise of chaotic behavior in coupled oscillators.

Moreover, we performed experiments with two ribbons
rotating on the surface of the water, separated by a distance.
We observed aperiodic motion, which is generated due to

sporadic collisions of coupled camphor ribbons. The camphor
ribbon placed a pivot to pivot distance L apart on the water
surface interacts with each other due to the chemical coupling
via the camphor layer. It needs to emphasized that although
the numerical system explored in this work is conservative
in nature, the experimental system explored in this study is a
dissipative system. Therefore, we can reproduce only a subset
of the dynamical aspects of the numerical observations such
as aperiodic collisions between the two rotors.

The spatial separation is ubiquitous in natural systems. The
present work gives a comprehensible understanding of how
separation plays a role in determining the dynamics of coupled
rotator ribbons. The results elucidate how chaotic dynamics
occur in spatially separated self-propelled camphor rotor sys-
tems. This study can be utilized to understand systems like
swarm aggregation, atomic interactions, micro air vehicles,
etc. We believe that this work is a pertinent contribution in
the field of active matter study from a nonlinear dynamics per-
spective. The rise of chaoticity in coupled rotational dynamics
at the air-water interface will be of significant interest to active
matter and the nonlinear dynamics community.
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APPENDIX: EQUATIONS OF MOTION AND
ENERGY CALCULATION

The radial component of the Yukawa force is assumed
to be balanced by the pivot constraint force. For finding the
tangential component, we have

�r(t ) = (cos θ1 − cos θ2 − L, sin θ1 − sin θ2), (A1)

r2 = cos2 θ1 + cos2 θ2 + L2 − 2L cos θ1 + 2L cos θ2

− 2 cos θ1 cos θ2 + sin2 θ1 + sin2 θ2

− 2 sin θ1 sin θ2, (A2)

r2 = 2 + L2 − 2L(cos θ1 − cos θ2) − 2 cos(θ1 − θ2), (A3)

∂r

∂θ1
= 1

r
(L sin θ1 + sin(θ1 − θ2), (A4)

∂r

∂θ2
= 1

r
(−L sin θ2 + sin(θ2 − θ1). (A5)

The Lagrangian of the system is given by

L = T − V = 1
2

(
θ̇1

2 + θ̇2
2) − VY (r).

Now, for the equation of motion the particle 1,

∂L
∂θ̇1

= θ̇1 so
∂

∂t

(
∂L
∂θ̇1

)
= ¨θ1,

Also,
∂L
∂θ1

= −∂V

∂r

∂r

∂θ1
= Fy.

∂r

∂θ1
.
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Putting this in an Euler-Lagrange framework gives

θ̈1 = e−Kr

r3
(1 + Kr)(sin(θ1 − θ2) + L sin θ1) = (Ft )1. (A6)

Similarly for particle 2, the equation of motion can be ob-
tained as

∂L
∂θ̇2

= θ̇2 so
∂

∂t

(
∂L
∂θ̇2

)
= θ̈2

and
∂L
∂θ2

= −∂V

∂r

∂r

∂θ2
= Fy.

∂r

∂θ2
.

Putting this in an Euler-Lagrange gives

θ̈2 = e−Kr

r3
(1 + Kr)[sin(θ2 − θ1) − L sin θ2] = (Ft )2. (A7)

The Hamiltonian is given by

H =
∑

i

∂L

∂θi
θi − L,

H = (
θ̇1

2 + θ̇2
2) − 1

2

(
θ̇1

2 + θ̇2
2) + e−Kr

r
, (A8)

H = 1

2

(
θ̇1

2 + θ̇2
2) + e−Kr

r
. (A9)

Equation (A9) is used to calculate the Hamiltonian of the two
self-propelled camphor ribbons. As we discussed earlier the
Hamiltonian depends upon θ̇2

1 and θ̇2
2 ; therefore for the given

energy, both θ̇1 and θ̇2 can be positive or negative.
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