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Unified trade-off optimization of quantum harmonic Otto engine and refrigerator
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We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operat-
ing under the conditions of maximum � function, a trade-off objective function which represents a compromise
between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency
modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto
cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto
engine (refrigerator) can be mapped to Feynman’s ratchet and pawl model which is a steady-state classical heat
engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which
is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum
� function.
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I. INTRODUCTION

Since the dawn of the industrial revolution, thermal ma-
chines have provided the practical impetus to the development
of thermodynamics on the experimental and theoretical front.
The discovery of Carnot efficiency, which sets a universal
upper bound on the efficiency of all heat engines working
between two reservoirs, led to the formulation of the sec-
ond law of thermodynamics by Clausius [1]. Heat engines
and refrigerators are the two well-known examples of ther-
mal devices. Heat engines convert thermal energy into useful
mechanical work while the refrigerators use external work
to lower the temperature of the target system [2]. These
machines require at least two heat reservoirs at different tem-
peratures, and their performance is limited by the Carnot
bound. In the case of heat engines, the Carnot efficiency is
given by, ηC = 1 − β2/β1, where βi = 1/(kBTi ), (i = 1, 2) is
the inverse temperature of the two reservoirs (β1 > β2) and
kB is the Boltzmann constant [2,3]. The corresponding bound
on the coefficient of performance (COP) of the refrigerators is
given by, ζC = β2/(β1 − β2). Moreover, the last six decades
have witnessed a great interest in understanding the interplay
between thermodynamics and quantum mechanics. In recent
time, experimental realization of quantum machines has been
demonstrated [4,5]; for a review, see Ref. [6].

However, practical performance of the heat engines
and refrigerators are usually lower than the optimal per-
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formance due to the associated heat leaks and frictional
effects [7–10]. The goal of finite-time thermodynamics is
finding the optimal performance of thermal machines when
these limitations are taken into account as well as de-
vising ways to improve on it [11–14]. One is usually
interested in optimizing the power output of a heat en-
gine and its corresponding efficiency [15–26], whereas, for
a refrigerator, the most desirable figure of merit is cooling
power [14,27–29]. A well-known observation is that the ther-
mal engines operating at maximum power also dissipate a
large amount of power due to entropy production, which
ultimately pollutes the environment [10,30–32]. Therefore,
instead of operating engines (refrigerators) in the maxi-
mum power (cooling power) regime, the real irreversible
thermal machines should operate near the maximum power
point where they yield considerably higher efficiency with
a significant reduction in entropy production. The ecolog-
ical function [33], � function [34], and efficient power
function [35,36] are the most commonly studied trade-off ob-
jective functions which pay equal attention to both efficiency
and power.

Furthermore, the rapid development in the field of quantum
technologies has bring up the question of resource consump-
tion in the thermodynamic landscape (see Ref. [37]). Thus,
quantum thermodynamic devices offer the natural avenue to
address the fundamental limits of energy consumption at the
quantum level. Therefore, while optimizing quantum ther-
mal devices, one should choose an objective function which
pays equal attention to both efficiency and power of the en-
gine, thereby taking care of the environmental and energetic
considerations.
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However, due to its simplicity and amenability to analytical
results, a quantum Otto cycle, whose working substance is
a time-dependent single harmonic oscillator, has become a
standard model to investigate the performance characteris-
tics of thermal devices [22,38–50]. Furthermore, the recent
experimental realization of a nanoscale harmonic Otto heat
engine provides us with better motivation to study its thermo-
dynamic performance in great detail [5]. Although there have
been some studies [40,41,51] investigating the optimal perfor-
mance of harmonic Otto heat engines and refrigerators, many
aspects remained to be explored, such as performance analysis
in the low-temperature regime where both the reservoirs are at
low temperatures. Furthermore, an analytic expression for the
COP of the refrigerator is still missing in the sudden limit of
operation.

This paper explores the optimization of � function for
the Otto cycle, whose working substance is a quantum har-
monic oscillator. In particular, the � function allows a unified
trade-off between useful energy delivered and energy lost for
heat engines and refrigerators [34,44], which makes it an
ideal figure of merit to study optimal performance of both
engines and refrigerators on equal footing. We carry out an
extensive analysis of the two extreme limiting cases of op-
eration of the Otto cycle: adiabatic limit, which corresponds
to quasistatic expansion and compression strokes, and sudden
limit of expansion and compression strokes. In both cases, we
obtain analytic results for the efficiency (COP) at maximum
� function of the heat engine (refrigerator).

The rest of the paper is organized as follows: In Sec. II
we discuss the model of a harmonic Otto cycle coupled to
two thermal reservoirs at different temperatures. Section III
presents analytic expressions for the efficiency at maximum
� function for both adiabatic and nonadiabatic frequency
driving in high- and low-temperature limits. Furthermore, we
show the loop-like behavior of efficiency-work curve of the
engine operation. In Sec. IV, we present the analysis of the
quantum Otto cycle when it is functioning as a refrigerator in
both adiabatic as well as nonadiabatic frequency modulations
in different temperature regimes. We present the conclusions
in Sec. V.

II. QUANTUM OTTO CYCLE

The quantum Otto cycle consists two adiabatic and two
isochoric thermodynamic processes. These four steps occur
in the following order [41,51]: (1) Adiabatic compression
A −→ B: Initially, we assume the system is thermalized at
inverse temperature β1. Then, the system is isolated from the
environment and the frequency of the oscillator is changed
from ω1 to ω2 via an external driving protocol. The average
energy of the system increases the work being done on the sys-
tem. The evolution is unitary, and the von Neumann entropy
of the system remains constant. (2) Hot isochore B −→ C:
During this stage, the harmonic oscillator is in contact with the
hot bath at inverse temperature β2, and frequency (ω2) of the
oscillator is kept fixed at a fixed value. The system exchanges
energy with the hot bath and attains the same temperature
of the hot reservoir In this work, we are assuming that the
working fluid is fully thermalized in the finite time. In general,
the evolution of the system in contact with the heat reservoirs

is modeled by the Lindblad master equation. For the quantum
harmonic Otto cycle, all details are presented in Ref. [40].
Our case can be considered as a special case of general time
evolution given by Lindblad master equation when heat con-
ductivity coefficients become very large, hence allowing for
thermalization in finite-time. (3) Isentropic expansion C −→
D: The system is isolated from the surroundings, and the
frequency of the harmonic oscillator is unitarily brought back
to its initial value ω1. Work is done by the system in this stage.
(4) Cold isochore D −→ A: To bring back the working fluid
(harmonic oscillator) to its initial state, the system is placed
in contact with the cold reservoir at inverse temperature β1

(β1 < β2) at fixed frequency ω1, and is allowed to relax back
to the initial thermal state A.

The average energies 〈H〉 of the oscillator at the four stages
of the cycle are (h̄ = 1) [41,51]

〈H〉A = ω1

2
coth

(
β1ω1

2

)
, (1)

〈H〉B = ω2

2
λcoth

(
β1ω1

2

)
, (2)

〈H〉C = ω2

2
coth

(
β2ω2

2

)
, (3)

〈H〉D = ω1

2
λcoth

(
β2ω2

2

)
, (4)

where λ is the dimensionless adiabaticity parameter of the
dynamics which depends on the nature of the frequency mod-
ulation, see Refs. [52,53] for details. In general, we have
λ � 1, and the general form of λ is given by

λ = 1

2ω1ω2

{
ω2

1

[
ω2

2 X (t )2 + Ẋ (t )2
] + [

ω2
2 Y (t )2 + Ẏ (t )2

]}
,

where X (t ) and Y (t ) are the solutions of the equa-
tion d2X/dt2 + ω2(t )X = 0 satisfying X (0) = 0, Ẋ (0) = 1,
Y (0) = 1, Ẏ (0) = 0 [52,53]. The expressions for mean heat
exchanged during the hot and cold isochores can be evaluated,
respectively, as follows:

Q2 = 〈H〉C − 〈H〉B = ω2

2

[
coth

(
β2ω2

2

)
− λcoth

(
β1ω1

2

)]
,

(5)

Q4 = 〈H〉A − 〈H〉D = ω1

2

[
coth

(
β1ω1

2

)
− λcoth

(
β2ω2

2

)]
.

(6)

We are employing a sign convention in which all the incoming
fluxes (heat and work) are taken to be positive.

III. QUANTUM OTTO HEAT ENGINE

Here, we consider when the quantum Otto cycle whose
working medium is a time-dependent modulated harmonic
oscillator is functioning as a heat engine. Since the working
fluid returns to its initial state after one complete cycle, the
net work done on the system in a cycle is given by the first
law of thermodynamics, W = −(Q2 + Q4). Work is said to be
extracted from the engine when Wext = −W = Q2 + Q4 > 0.
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Accordingly, the efficiency of the engine is given by [17]

η = Wext

Q2
= 1 − ω1

ω2

coth(β1ω1/2) − λcoth(β2ω2/2)

λcoth(β1ω1/2) − coth(β2ω2/2)
. (7)

The optimal performance of the harmonic Otto engine at
maximum work or power has been studied already [41]. In
this work, we optimize the � function, which represents a
compromise between the useful work and the loss of work
in the system [34]. It is defined as [34]

� = 2Wext − ηmaxQ2, (8)

where ηmax � ηC is the maximum possible efficiency achiev-
able to the engine under consideration. The � function is
equivalent to an another trade-off function known as ecolog-
ical function when ηmax = ηC [33,34]. For the harmonic Otto
cycle, ηmax depends on the speed of the adiabatic protocol
which is expressed in terms λ [42]. We will show in a moment
that, in the adiabatic case, ηmax = ηC. However, in the case
of nonadiabatic work strokes, the maximum efficiency of the
engine under consideration is always less than the Carnot
efficiency due to internal friction. Particularly, for the sudden-
switch case, the maximum efficiency of the engine is given by
Eq. (27) [42]. In the following, we first discuss the adiabatic
case and then move on to discuss nonadiabatic scenario.

A. Adiabatic case

Quantum adiabatic processes are much slower than the
typical timescales of the system. In this case, the adiabaticity
parameter λ is equal to unity, i.e., λ = 1. To make things
more transparent, we want to add that evolution at zero rate
is not necessary to avoid entropy production. This can be
achieved by various means, such as using shortcuts to adi-
abaticity techniques [54] or suppressing coherence terms by
employing quantum lubrication [55]. However, such control
schemes have their own cost to maintain the adiabaticity of
the system [56]. In this work, we focus on simple and an-
alytical tractable two extremals of quantum Otto machines
performance.

From the positive work condition, Wext = Q2 + Q4 > 0,
we find ηmax = ηC. Using Eqs. (7) and (8), the expressions
for efficiency and � function take the forms

η = 1 − ω1

ω2
, � = 2Wext − ηCQ2. (9)

1. High-temperature regime

To obtain analytic expression in closed form for the ef-
ficiency at maximum � function, we will first study the
high-temperature regime. In the high-temperature regime, we
set coth(βiωi/2) ≈ 2/(βiωi ) (i = 1, 2). Using Eqs. (5) and (6)
in Eq. (9), the expression for � function is written as

� = (z − τ )(1 + τ − 2z)

β2z
, (10)

where z ≡ ω1/ω2 is the compression ratio of the Otto cy-
cle, and τ = β2/β1. Optimization of Eq. (10) with respect to
compression ratio z yields z∗ = √

τ (1 + τ )/2. Hence, the effi-
ciency at maximum � function, in terms of Carnot efficiency,

is given by

η�
high = 1 −

√
(1 − ηC)(2 − ηC)

2
, (11)

which concurs with the efficiency of the endoreversible and
symmetric low-dissipation models of heat engines [33,57].
The results are not surprising as in the high-temperature
regime (classical regime), the engines are expected to behave
like classical heat engines [27,31,58]. Equation (11) was first
obtained by Angulo-Brown for the optimization of endore-
versible heat engines [33]. The corresponding efficiency for
the optimization of the harmonic Otto engine operating under
the conditions of maximum work output is given by Curzon-
Ahlborn formula, ηW

high = ηCA = 1 − √
1 − ηC [40,41]. See

Eqs. (18) and (22) for the comparison of ηW
high and η�

high. It is
clear that η�

high is always greater than ηW
high, which is expected

outcome [33,34].

2. Low-temperature regime

Here, we discuss the performance of the harmonic Otto
engine in the low-temperature regime which has not been
explored in earlier publications. In Refs. [41,51,59], the op-
timization has been carried out in the regime defined by the
constraints β1ω1 	 1 and β2ω2 
 1, i.e., the hot reservoir
being very hot and the cold reservoir being very cold. In the
following, we discuss adiabatic case only as it is not possi-
ble to obtain analytic results for the nonadiabatic case. We
assume that βiωi 	 1, and set coth(βiωi/2) ≈ 1 + 2e−βiωi .
Using Eqs. (5) and (6) in the expression, Wext = Q2 + Q4, the
extracted work, in the low-temperature limit, can be expressed
as follows:

W low
ext = (ω2 − ω1)

(
e−β2ω2 − e−β1ω1

)
. (12)

Apart from a multiplicative constant, the above expression for
extracted work is similar to the expression for the power out-
put of the Feynman’s ratchet and pawl model, where control
parameters are internal energy states ε1 and ε2 instead of ω1

and ω2 [60–63]. Thus in the low-temperature limit, the har-
monic Otto engine can be mapped to Feynman’s model, which
is a steady-state classical heat engine based on the principle
of Brownian fluctuations [60,61]. Interestingly, it is not the
only case in which a quantum heat engine can be mapped to
Feynman’s ratchet and pawl engine. Recently, a three-level
laser quantum heat engine operating in the low-temperature
regime was also mapped to Feynman’s model [31].

To make the physics of the connection of the quantum
Otto cycle with the Feynman ratchet more transparent, we
note that, in the low-temperature regime, only first two levels
of the working fluid will be occupied. Initially, when system
is in equilibrium with the cold reservoir at inverse temper-
ature β1, the probability of finding the system in the upper
(lower) level can be approximated by e−β1ω1 (1 − e−β1ω1 ) [39].
During the adiabatic compression stroke B → C (see Fig. 1)
when frequency of the harmonic oscillator is varied from
ω1 to ω2, the occupation probabilities of the levels do not
change. During the hot isochore, the working fluid absorbs
heat from the reservoir and the occupation probability of the
upper (lower) level increases (decreases). The net change in
the occupation probability of the upper (lower) level is given
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FIG. 1. Pictorial depiction of Otto cycle. The thermodynamic
cycle consists of four stages: two adiabatic (A → B and C → D)
and two isochoric (B → C and D → A) steps.

by 
pupper = e−β2ω2 − e−β1ω1 (
plower = −
pupper), which is
exactly equal to the net jump frequency of the Feynman’s
ratchet and pawl system. Since the Hamiltonian of the system
does not change during the isochoric steps, multiplication of

pupper with the energy gap ω2 (recall, h̄ = 1) yields the heat
absorbed from the hot reservoir, which has the same form as
that of Feynman’s ratchet and pawl system. Similar argument
also holds for the heat rejected to the cold reservoir at constant
frequency ω1.

Additionally, we can look at Eq. (12) from a fundamental
point of view of the general processes described by its terms.
The frequency ω2 associated with the hot isochore (cf. Fig. 1)
can be envisioned as the energy required for compressing the
spring in the ratchet-pawl system. This energy cost comes
from the hot reservoir at a rate given by the first term in
the second factor in Eq. (12). As a result, the pawl makes a
forward (jumps up) motion at a rate RF = e−β2ω2 . In contrast,
the second term is the rate for backward (jumps down) motion
of the pawl, RB = e−β1ω1 . A finite, nonzero displacement is
associated with the ordered energy provided by a torque L
multiplied by an angular displacement 
θ in the case of the
ratchet-pawl system. In our case, the difference in the working
system (oscillator) excitation energies plays a role as the work
done by the torque in the ratchet-pawl system, i.e., ω2 − ω1,
is equivalent to L
θ . Accordingly, in a time interval of 
t ,
the work done for a ratchet-pawl system can be written as
W = (L
θ )(RF − RB)
t [54] or for harmonic-oscillator Otto
cycle, equivalently as in Eq. (12). Heat intake from the hot
bath can also be expressed similarly. Due to the generic form
of work and heat equations, the efficiency at maximum power
calculation of the harmonic oscillator yields the same results
as the ratchet-pawl system, first derived in Ref. [60], which
is highly nonlinear due to the exponential rates. This nonlin-
earity is reflected in the efficiency expressions [cf. Eqs. (15)
and (17)] and Eq. (12). Nonlinearity plays a fundamental role
in the nature of irreversibility of the ratchet system [64–66],
and hence for the quantum harmonic-oscillator Otto cycle.

In the linear ratchet regime [67], the efficiency of maximum
power expression reduces to that of exoreversible [64,68,69]
finite-time thermodynamics systems, where only internal dis-
sipation can exist while there is no heat dissipated to the cold
bath.

To obtain the analytic expression for the efficiency which
is independent of the parameters of the system and depends on
the ratio of bath temperatures only, the optimization should be
carried out with respect to two variables (ω1 and ω2) simul-
taneously. Treating ω1 and ω2 as the independent variables,
optimization of Eq. (12) with respect to ω1 and ω2 yields the
following optimal solution:

ω∗
1 = (1 − ηC)[ηC − ln (1 − ηC)]

ηCβ2
, (13)

ω∗
2 = ηC − (1 − ηC) ln (1 − ηC)

ηCβ2
. (14)

Using Eqs. (13) and (14) in Eqs. (9) and (12), we obtain the
expressions for the efficiency at maximum � function and
optimal work, respectively;

ηW
low = η2

C

ηC − (1 − ηC) ln (1 − ηC)
, (15)

W low∗
ext = η2

C(1 − ηC)(1−ηC )/ηC

β2e
. (16)

Using these analytic expressions, we discuss the universal
nature of efficiency at maximum work. For near-equilibrium
conditions, expanding (β1 ≈ β2) Eq. (15) in Taylor series, we
have

ηW
low = ηC

2
+ η2

C

8
+ 7η3

C

96
+ O

(
η4

C

)
. (17)

For comparison, we also present the Taylor series expansion
of ηW

high,

ηW
high = ηC

2
+ η2

C

8
+ 6η3

C

96
+ O

(
η4

C

)
. (18)

Notice that ηW
low > ηW

high. The first two terms in both Eqs. (17)
and (18) are ηC/2 and η2

C/8, and third term is model de-
pendent. For heat engines obeying tight-coupling condition
(no heat leaks), universality of first term ηC/2 was proven
by Van den Broeck using the formalism of linear irreversible
thermodynamics [70]. Furthermore, the universality of second
term can be proved by invoking the symmetry of Onsager
coefficients on the nonlinear level [24].

Similarly, for the optimization of the � function, the opti-
mal solution is given by [31]

ω�
1 = [ηC + (2 − ηC)k]

β1ηC
, ω�

2 = [ηC + 2k(1 − ηC)]

β1ηC(1 − ηC)
, (19)

where k = ln[(2 − ηC)/2(1 − ηC)]. We obtain the efficiency
at maximum � function and its optimal � function as follows:

η�
low = ηC + (1 − ηC)k

ηC + 2(1 − ηC)k
ηC, (20)

�∗
low = η2

C[2(1 − ηC)]2(1−ηC )/ηC

β2e(2 − ηC)(2−ηC )/ηC
. (21)
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Similar to the case of work optimization, η�
low is independent

of the parameters of the system (harmonic oscillator) and
depends on ratio of reservoir temperatures (β2/β1) only. Now,
we turn to the universal nature of efficiency. The universal
nature of efficiency is not unique feature of the optimization
of work or power output of the engine, the efficiency at max-
imum � function also shows universal behavior [71]. Taking
near-equilibrium series expansions of Eqs. (11) and (20), we
have

η�
high = 3ηC

4
+ η2

C

32
+ 18η3

C

768
+ O

(
η4

C

)
, (22)

η�
low = 3ηC

4
+ η2

C

32
+ 19η3

C

768
+ O

(
η4

C

)
. (23)

Again, it is self evident from Eqs. (22) and (23) that first two
terms of η�

high and η�
low are same, and the model dependent

differences appear in the third term only. The universality
of the efficiency at maximum � function was first formally
proven by Zhang and coauthors [71] by using the framework
of stochastic thermodynamics. The first two terms 3ηC/4
and η2

C/32 were also obtained for endoreversible [33,72],
low-dissipation [57], minimally nonlinear irreversible [73]
and some other models of classical and quantum heat en-
gines [31,72,74].

B. Sudden switch of frequencies

Next, we discuss the case in which frequency of the os-
cillator is changed suddenly from one value to the other. In
this case, λ = (ω2

1 + ω2
2 )/2ω1ω2 [52]. The efficiency is no

longer given by Eq. (9), and expression for the efficiency, in
the high-temperature limit, reads

ηSS = (z2 − 1)(z2 − τ )

τ + (τ − 2)z2
, (24)

where z ≡ ω1/ω2 is the compression ratio of the Otto cycle,
and τ = β2/β1. Similarly, the expression for the extracted
work is given by

W SS
ext = (1 − z2)(z2 − τ )

2z2β2
. (25)

From the positive work condition WSS > 0 we have

z2 > τ ⇒ z >
√

τ . (26)

The above condition is more restrictive than the positive work
condition for the adiabatic case which implies that z > τ .
Hence, for the given temperatures of the cold and hot reser-
voirs, it is more difficult to extract work for the sudden-switch
case as compared with the adiabatic one.

Here, we are interested in the optimization of the � func-
tion. To find the expression for the � function, first we have
to specify ηmax. Recently, the form of ηmax is evaluated in
Ref. [42] and reads

ηSS
max = [3 − ηC − 2

√
2(1 − ηC)]ηC

(1 + ηC)2 � 1

2
. (27)

Substituting Eq. (27) into Eq. (9), we obtain required expres-
sion for the � function for the nonadiabatic (sudden-switch)

FIG. 2. Efficiency at maximum � function as a function of
Carnot efficiency. For adiabatic case; the red dashed curve represents
the high-temperature limit, Eq. (11), while the solid brown curve
correspond to the low-temperature regime, Eq. (20). The blue dotted
curve corresponds to the sudden-switch case at the high-temperature,
Eq. (29). The inset shows the difference (
) between the efficiency
at maximum � function, η�

SS [Eq. (29)], and efficiency at maximum
work, ηW

SS = (1 − √
1 − ηC)/(2 + √

1 − ηC), as a function of Carnot
efficiency.

case as follows:

�SS =
(1 − z2)

(
2(z2 − τ ) + (τ−1)(τ−2

√
2
√

τ+2)[τ+(τ−2)z2]
(τ−2)2(z2−1)

)
2z2

.

(28)
Then by optimizing the � function, the efficiency at maximum
� function is obtained as

η�
SS = (2 + 2ηC − A)

(
2 − 2η2

C − A
)

2(1 + ηC)2(2 − 2ηC − A)
, (29)

where A = {2(1 − ηC)[2 + ηC + 2ηC
√

2(1 − ηC) + 3η2
C]}1/2.

This efficiency can be considered as the counterpart of
the efficiency at maximum work, ηW

SS = (1 − √
1 − ηC)/(2 +√

1 − ηC), which was obtained for the optimization of the
work output of the quantum harmonic Otto engine undergoing
sudden compression and expansion strokes during the adia-
batic branches [40].

To compare the performance of the engine for the adiabatic
driving and sudden-switch case, we plot Eqs. (11) and (20)
along with the expression for Eq. (29) in Fig. 2 as a function
of Carnot efficiency. In the inset of Fig. 2, we have plotted
the difference between ηW

SS and η�
SS . Although in the sudden-

switch case, the efficiency at maximum � function is larger
than the efficiency at maximum work, the difference is not
substantial. Furthermore, the efficiency at maximum � func-
tion is very low in the sudden-switch regime as compared with
the adiabatic driving. We attribute this to the highly frictional
nature of the sudden-switch regime as explained below. In
the sudden-switch case, the sudden change of the frequency
of the harmonic oscillator induces nonadiabatic transitions
between its energy levels and leaves the system in a highly
nonequilibrium state. In terms of the energy eigenstates of
the instantaneous Hamiltonian, the off-diagonal terms of the
density matrix, known as coherences, are nonzero. Generating
coherences give rise to extra energetic cost when compared
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FIG. 3. Loop shaped work versus efficiency curve, characteristic
of real irreversible heat engines. The parametric plot is generated
using Eqs. (24) and (25) for the fixed value of τ = 0.2. In the
inset, we have plotted the amplified version of efficiency-work curve
to distinguish the maximum work and maximum efficiency points.
Maximum efficiency (black dot) and maximum work (square dot)
points lie very close to each other.

with adiabatic driving, and an additional parasitic internal
energy is stored in the working medium. This extra cost
gets dissipated to the heat reservoirs during the proceeding
isochoric stages of the cycle and is termed as quantum fric-
tion [20,55,75–78]. Therefore, the inner friction is detrimental
for the performance of the engine under consideration.

Now, we present the typical efficiency-work curves in
Fig. 3. Using Eqs. (24) and (25), the parametric plot between
work and efficiency is obtained (see, Fig. 3). The efficiency-
work (η,W ) curve shows the loop-like behavior, characteristic
of realistic irreversible heat engines [8,9,79,80]. As shown in
Fig. 3, the maximum efficiency and maximum work output
points lie extremely close to each other. The optimal operating
regime of the nonadiabatic engine under consideration is situ-
ated on the part of (η,W ) curve, which has a negative slope;
that is, the portion of the (η,W ) curve lying in between max-
imum work and maximum efficiency point. The optimization
of the � function lies in this regime. It is worth mentioning
that the loop shape of the work efficiency curve arises due to
the presence of inner friction in the operation of the engine
which is a purely quantum-mechanical effect, as mentioned
earlier. The loop-like behavior can also be seen in power-
efficiency curve of classical endoreversible heat engines in the
presence of heat leaks in the system [10,81].

However, the loop-shape (η,W ) curves are not exclusive
to the sudden switch strokes heat engine considered here.
They can be obtained for any adiabatic stroke happening in
finite time, thus giving rise to nonadiabatic transitions be-
tween the energy levels of the harmonic oscillator, which
are responsible for the appearance of inner friction. As time
spent on adiabatic branches increases, the maximum work and
maximum efficiency points on the (η,W ) curve will move
further apart. Finally, for the quasistatic process, the (η,W )
curve will become open parabolic in shape, just like the
efficiency-power curve of endoreversible heat engines without
heat leaks [8–10].

IV. QUANTUM OTTO REFRIGERATOR

In this section, we investigate the performance of the
harmonic Otto cycle working as a refrigerator in the adi-
abatic as well as nonadiabatic regime. For the refrigerator,
Q4 > 0, Q2 < 0, and the work invested to transport heat
from the cold reservoir to the hot reservoir is positive,
Win = −(Q2 + Q4) > 0. The coefficient of performance
(COP) of the refrigerator is defined as

ζ = Q4

Win
= − Q4

Q2 + Q4
. (30)

Using Eqs. (5) and (6) in Eq. (30), the COP takes the following
form [51]:

ζ = ω1[coth (β1ω1/2) − λ coth (β1ω1/2)]

(λω2 − ω1) coth
(

β1ω1

2

) − (ω2 − λω1) coth
(

β2ω2

2

) .

(31)
The � function for the refrigerator is given by [34]

� = 2Q4 − ζmaxWin, (32)

where ζmax � ζC is the maximum COP with which our refrig-
erator can operate. From Eq. (32), the � function is different
for adiabatic and nonadiabatic driving refrigerator. Similar to
the heat engine, when ζmax = ζC, the � function is equivalent
to the ecological function [82] defined for refrigerators. We
first discuss the adiabatic case and then proceed to the sudden-
switch case.

A. Adiabatic driving

Let now consider the adiabatic case, λ = 1, the COP in
Eq. (31) takes the following form,

ζad = ω1

ω2 − ω1
= z

1 − z
, (33)

where z = ω1/ω2 is the compression ratio of the Otto cycle.
Similarly, substituting λ = 1 in Eq. (6), the positive cooling
condition, Q4 > 0, implies that β1ω1 < β2ω2, which in turn
implies that ζ < ζC. Hence, for the adiabatic driving, ζmax =
ζC. Therefore, from Eq. (32), we have

� = 2Q4 − ζCWin. (34)

1. High-temperature regime

Again, to evaluate analytic expressions for the COP, we
choose to work in the high-temperature regime. In this regime,
using Eqs. (5), (6) along with Win = −(Q2 + Q4), � function
can be written in terms of temperature ratio (τ ) and z as,

� = (z − τ )[τ − z(2 − τ )]

β2 z(1 − τ )
. (35)

Optimization of � function with respect to z yields the fol-
lowing optimal solution,

z∗ = τ√
2 − τ

. (36)

Substituting Eq. (36) into Eq. (33), we have

ζ�
high = τ√

2 − τ − τ
= ζC√

(1 + ζC)(2 + ζC) − ζC
. (37)
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Equation (37), the COP of harmonic Otto refrigerator op-
erating at high-temperature and adiabatic regime. It is the
same as those of the endoreversible [82] and symmetric low-
dissipation models of heat engines [57]. The corresponding
COP at maximum χ -criterion, which is the product of the
COP and cooling power (Q4) of a refrigerator, is given by the
formula, ζ

χ

high = √
1 + ζC − 1 [51]. Our numerical analysis

(not presented here) show that ζ
χ

high is always lower than ζ�
high.

2. Low-temperature regime

In the low-temperature case, the expressions for Q4 and �

take the forms:

Q4 = ω1(e−β1ω1 − e−β2ω2 ), (38)

� = [(2 + ζC)ω1 − ζCω2](e−β1ω1 − e−β2ω2 ). (39)

Performing the two-parameter optimization of Eq. (39) with
respect to control parameters ω1 and ω2, the optimal solution
is obtained as [83]

ω∗
1 = 1 − (1 + ζC)k

β1
, ω∗

2 = 1 − (2 + ζC)k

β2
, (40)

where k = ln[(1 + ζC)/(2 + ζC)]. Substituting above expres-
sions for ω1 and ω2 into Eq. (33), the expression for the
optimal COP reads

ζ�
low = 1 − (1 + ζC)k

1 − 2(1 + ζC)k
ζC. (41)

Similar to the case of heat engine, COP of the refrigerator
does not depend on the system parameters and depends on
the ratio of the reservoir temperatures τ only. As we have
shown that the adiabatic harmonic Otto cycle operating in
the low-temperature regime can be mapped to Feynman’s
model, the above expression also holds for the optimization of
Feynman’s ratchet and pawl model [84] and a three-level laser
quantum refrigerator [83]. For comparison, Eq. (37) (solid
yellow curve) and Eq. (41) (dotted red curve) are plotted in
Fig. 4. It can be seen that they are practically indistinguishable
for the entire range of the graph. This can be understood by
looking at the Taylor series behavior of ζ�

high and ζ�
low near

equilibrium:

ζ�
high = 2ζC

3
+ 1

18
− 17

216ζC
+ O

(
1

ζ 3
C

)
, (42)

ζ�
low = 2ζC

3
+ 1

18
− 16

216ζC
+ O

(
1

ζ 3
C

)
. (43)

The first two terms of on the right-hand side of the above
equations are the same and the third term is negligible for
any value of ζC > 1, thus explaining the overlap of curves
representing ζ�

high and ζ�
low in Fig. 4.

B. Sudden switch of frequencies

Next, we discuss the case in which frequency of the oscilla-
tor is changed suddenly from the initial frequency to the final
frequency. In this case, λ = (ω2

1 + ω2
2 )/2ω1ω2. The optimal

performance of the harmonic Otto refrigerator operating in the
sudden-switch regime has not been fully explored earlier. In
Ref. [51], the performance of the refrigerator was studied for

FIG. 4. Coefficient of performance (COP) at the maximum �

function versus Carnot COP. The yellow solid line represents the
COP at maximum � function in the high-temperature regime
[Eq. (37)] while the red dotted line corresponds to the COP at
maximum � function in the low-temperature regime [Eq. (41)].
The blue dashed line corresponds to the case of sudden switch at
high-temperature [Eq. (49)].

weak nonadiabatic driving (for adiabaticity parameter λ close
to 1), and the analytic expression for corresponding minimal
driving time was obtained. In the sudden-switch regime, the
cooling power does not exhibit a generic maximum with re-
spect to control parameter z, i.e., the maximum of the cooling
power is obtained for z = 0, which is clearly not a useful
result. Hence, to study the optimal operation of the refrigerator
working under the conditions of maximum � function is a
sensible option. Here, we obtain the analytic expression for
the COP at optimal � function.

For a sudden-switch driving protocol, the expression for
the cooling power and input work are

Q4 = 1

β2

[
τ − 1

2

(
z2 + 1

)]
, Wtotal = (z2 − 1)(z2 − τ )

2β2z2
.

(44)
Furthermore, the COP ζC = Q4/Win takes the form

ζss = z2(2τ − z2 − 1)

(z2 − 1)(z2 − τ )
. (45)

To proceed, we have to specify form of maximum COP. Re-
cently, in Ref. [42], using the positive cooling condition, it was
shown that in the sudden-switch regime, the maximum COP
of the harmonic Otto refrigerator is no longer given by Carnot
COP ζC. The desired form of maximum COP, which is much
tighter than the Carnot bound, is found to be [42]

ζmax = 1 + 3ζC − 2
√

2ζC(1 + ζC). (46)
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Another interesting constraint imposed by the condition
Q4 > 0 on the temperatures of the reservoirs is

τ > 1/2 or ζC > 1. (47)

The above condition has interesting implications on the
performance of the Otto refrigerator operating in the sudden-
switch regime. Equation (47) simply implies that the thermal
machine under consideration cannot work as a refrigerator
unless the temperature of the cold reservoir is greater than
T2/2.

Using Eqs. (44) and (46) in Eq. (32), the desired form of �

function can be evaluated and optimized to yield the following
optimal solution

z∗ = ζC[1 + 3ζC − 2
√

2ζC(1 + ζC)]

(1 + ζC)[3(1 + ζC) − 2
√

2ζC(1 + ζC)]
. (48)

Substituting Eq. (48) into Eq. (45), we find the expression for
the COP at maximum � function as follows:

ζ�
ss = A[1 − ζC + A(1 + ζC)]

(A − 1)[ζC − A(1 + ζC)]
, (49)

where A = {ζC[1 + 3ζC − 2
√

2ζC(1 + ζC)]/(1 + ζC)[3(1 +
ζC) − 2

√
2ζC(1 + ζC)]}1/2. We have plotted Eq. (49)

as a function of ζC in Fig. 4 (dashed blue curve). As
expected, COP for the sudden-switch case is much smaller
than the corresponding COPs obtained for the adiabatic
case.

C. Cooling power at maximum � function

In all the cases discussed above, cooling power is max-
imum at z = 0, which is not a useful result. To look more
into the behavior of cooling power, here, we will discuss the
behavior of the cooling power at maximum � function. First,
for the case of the adiabatic driving in the high-temperature
limit, substituting the optimal solution z∗ = τ/

√
2 − τ [see

Eq. (36)] into Q4 = (τ − z)/β2 yields the following expres-
sion for the cooling power:

Q�(high)
4(ad) = 1

β2

(
τ − τ√

2 − τ

)
. (50)

Similarly, for the adiabatic driving in the low-temperature
regime, substituting Eq. (40) into Eq. (38), we obtain

Q�(low)
4(ad) =

(
1

2−τ

) 1
1−τ

[
1 − τ − ln

(
1

2−τ

)]
τ

eβ2(2 − τ )
. (51)

where e is Euler’s number, e = 2.718. Finally, from Eqs. (48)
and (44), the cooling power at maximum � function for the
sudden-switch case is given by

Q�
4(ss) = 1

2β2

⎛
⎝2τ −

√
τ
(
2τ − 2

√
2τ + 1

)
3 − 2

√
2τ

− 1

⎞
⎠. (52)

We plot cooling power [i.e., Eqs. (50)–(52)] as a function
of τ for a fixed value of β2 in Fig. 5. It is clear from the
figure that the maximum of cooling power exists at some
value of τ for each case discussed. We observe that despite the

FIG. 5. Cooling power at maximum � function against ratio
of reservoir temperatures (τ ) for a fixed value of β2 = 1. For the
adiabatic case, the red solid curve corresponds to the cooling power
in the high-temperature regime [Eq. (50)] while the brown dashed
curve is the cooling in the low-temperature regime [Eq. (51)]. The
gray dotted curve represents the cooling power for the sudden-switch
scenario in the high-temperature regime [Eq. (52)].

sudden-switch operation offering the highest possible cooling
power, the possible range of its operation is limited. Thus, this
provides a guide of the best choice for optimal operation of
a harmonic Otto refrigerator depending on the available re-
sources. We remark that this kind of behavior is not exclusive
to the harmonic Otto refrigerator as it was recently observed
for a three-level quantum refrigerator [83].

V. CONCLUSIONS

We have investigated the optimal performance of a har-
monic quantum Otto cycle working under the conditions of
maximum � function. First, we obtained the analytic ex-
pressions for the efficiency at maximum � function of the
engine in the adiabatic driving regime for both high- and
low-temperature regimes. In particular, for the heat engine
operation in the low-temperature regime, we showed that
the harmonic Otto engine can be mapped to a classical heat
engine known as Feynman’s ratchet and pawl model. Then,
in the nonadiabatic driving regime in which we suddenly
modulate the frequency of the oscillator from its initial to final
value, we obtained loop-shaped curves for the efficiency-work
plot characterizing the irreversible behavior of the engine
under consideration. We repeated our analysis to study the
optimal performance of the Otto refrigerator and obtained
corresponding analytic expressions for the coefficient of per-
formance (COP) of the refrigerator. Furthermore, we explored
the behavior of the cooling power under the conditions of
maximum � function.
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