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We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal
setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system
size. This is in contrast with most existing literature concerned with the low-rank (i.e., constant-rank) regime.
We first consider a class of rotationally invariant matrix denoising problems whose mutual information and
minimum mean-square error are computable using techniques from random matrix theory. Next, we analyze the
more challenging models of dictionary learning. To do so we introduce a combination of the replica method
from statistical mechanics together with random matrix theory, coined spectral replica method. This allows us
to derive variational formulas for the mutual information between hidden representations and the noisy data of
the dictionary learning problem, as well as for the overlaps quantifying the optimal reconstruction error. The
proposed method reduces the number of degrees of freedom from �(N2) matrix entries to �(N ) eigenvalues
(or singular values), and yields Coulomb gas representations of the mutual information which are reminiscent of
matrix models in physics. The main ingredients are a combination of large deviation results for random matrices
together with a replica symmetric decoupling ansatz at the level of the probability distributions of eigenvalues (or
singular values) of certain overlap matrices and the use of Harish-Chandra-Itzykson-Zuber spherical integrals.
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I. INTRODUCTION

The simplest linear-rank matrix inference task is the prob-
lem of recovering the rotationally invariant full-rank matrix S
from noisy observations Y generated as

Y =
√

λS + ξ,

where ξ is some Wigner Gaussian noise matrix. We refer
to this problem as matrix denoising. In the random matrix
theory (RMT) literature, typical problems are concerned with
deriving spectral properties: spectral density and correlation
functions of the eigenvalues or singular values of Y , its bulk
statistics, the fluctuations of its largest and smallest eigen-
values, potential universality properties, etc. The literature
is too large to be exhaustively reviewed here, and relevant
references will be cited along the paper. We refer to [1,2]
for mathematics books or [3–5] for more physics-oriented
presentations. In this paper we instead consider information-
theoretic questions such as “given a certain signal-to-noise
ratio λ, what is the mutual-information between the hidden
matrix signal S and the observed noisy data Y ?” or “what is
the statistically optimal reconstruction error on S?”. We are
interested in answering these questions in certain asymptotic
large size limits. Despite the apparent simplicity of the model,
these questions turn out to be highly nontrivial.

*Corresponding author: jbarbier@ictp.it
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In matrix denoising we are “only” interested in the re-
construction of the matrix S. This allows us to analyze the
model using solely RMT. But there exist models where S
possesses some additional internal structure other than the
(possibly nontrivial) statistics of its spectrum and/or S may
not be rotationally invariant. This is the case in the model
we study next: dictionary learning, where a product structure
arises.

Let M noisy N-dimensional data points (Y j ) j�M be stacked
as the columns of Y ∈ KN×M , with K = R or C. The un-
supervised dictionary learning task we consider is to find a
representation of this data Y in the form

ST † + Z.

The unknowns are both the “dictionary” S ∈ KN×K made of K
features and the coefficients T ∈ KM×K in the decomposition
of the clean data ST † in feature basis. Here Z represents
undesired noise. We also analyze a symmetric (or Hermitian)
version of the problem where one aims to find a positive-
definite first term in the decomposition of Y ∈ KN×N of the
form

XX † + Z,

where X ∈ KN×M . The rich internal structure coming from the
product between matrices requires new ideas for the analysis:
RMT alone does not seem sufficient for analyzing the optimal
reconstruction performance on X , S, T themselves (instead of
the products ST †, XX † seen as individual matrices). This is
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where the statistical mechanics of spin glasses, and in particu-
lar the spectral replica method developed in this paper, enter.

We will consider the Bayes-optimal “matched setting”
where Y is truly generated according to one of the models
described above, and the statistician has perfect knowledge
of (1) this data-generating model (i.e., knows the additive
nature and statistics of the noise and therefore the likelihood
distribution) as well as (2) the prior distributions underlying
the hidden random matrix signals X , S, T . The statistician
can thus exploit this knowledge to write the correct posterior
distribution in order to perform inference. Each model will be
analyzed in both cases of real and complex matrices.

Given its fundamental nature and central role in signal
processing and machine learning [6,7], dictionary learning has
generated a large body of work with applications in repre-
sentation learning [8], sparse coding [9–11], robust principal
components analysis [12,13], submatrix localization [14],
blind source separation [15], matrix completion [16,17], and
community detection [18–20]. Low-rank (i.e., finite-rank) ver-
sions of dictionary learning have been introduced in statistics
under the name of “spike models” as statistical models for
sparse principal components analysis (PCA) [21–24]. In the
low-rank regime M, N → +∞ proportionally and K = �(1)
(or N → +∞ and M = �(1) for the symmetric case), these
models have become paradigms for the study of phase tran-
sition phenomena in the recovery of low-rank information
hidden in noise. In PCA classical rigorous results go back to
Baik, Ben-Arous, and Péché [25,26] who analyzed the perfor-
mance of spectral algorithms. More recently, low-dimensional
variational formulas for the mutual information and corre-
sponding phase transitions at the level of the Bayes-optimal
minimum mean-square error estimator, as well as the algorith-
mic transitions of message passing and gradient descent-based
algorithms and their associated computational-to-statistical
gaps, have been derived due to the global effort of an highly
interdisciplinary community [19,27–51].

In contrast, much less is known in the challenging linear-
rank regime studied here where N, M, K → +∞ at similar
rates, so that rank(ST †) or rank(XX †) diverge linearly with
N . References closely related to our work are [52–56], which
consider the same Bayesian setting. It has been suspected for
some time and eventually confirmed, by the authors of the
very recent study [57], that the mean field replica assump-
tions of these works give approximate formulas which are not
asymptotically exact. Related problems affect the state evolu-
tion analysis [54,55] of message passing algorithms developed
in these papers and in [58,59]. This state of affairs for linear-
rank dictionary learning is to be contrasted to the low-rank
situation where both the replica solutions and state evolution
analyses of message passing algorithms are under rigorous
mathematical control. We will discuss the differences between
the replica assumptions in the above works and our spectral
replica approach in a dedicated section. Another important
work is [60] which considers the same models as ours but
focuses on a certain class of rotational invariant estimators
instead of the information-theoretic performance [61].

The main contribution of this paper is a spectral replica
ansatz introduced in Secs. V and VI which seems to us the
“minimal” possible ansatz to perform a replica symmetric
calculation. This ansatz leads to variational expressions for

the mutual information between hidden representations and
noisy data, whose solutions yield overlaps quantifying the
theoretical reconstruction error. Because the replica ansatz is
minimal and the setting is Bayes-optimal we believe that our
variational expressions are exact. Their solution, however, is
far from trivial and is beyond the scope of this paper. We are
still able to check the validity of our formulas analytically in a
special case. In Secs. II, III, and IV we start by addressing
the easier denoising problem for rotation invariant matrix
ensembles. We propose expressions, conjectured to be exact,
for the mutual information and mean-square errors. These are
again challenging to explicitly compute as a function of the
signal-to-noise ratio because they involve nontrivial spherical
integrals [62,63]. But this time we are able to exploit Bayes
optimality to get rid of the variational problem. Here we
limit ourselves to provide perturbative expansions for some
examples. We refer to [57] for recent work on the denoising
problem, also providing expansions and numerical solutions.

Spherical integrals and the associated Harish-Chandra-
Itzykson-Zuber formula [62,63] turn out to be an important
tool in our analysis. In physics such integrals appear in multi-
matrix models from high-energy physics with applications
in string theory, quantum gravity, quantum chromodynam-
ics, fluctuating surfaces, and map enumeration [64–75]. In
certain aspects multimatrix models from high-energy physics
are similar to matrix inference models appearing in denoising
and dictionary learning. For example, in contrast to the low-
dimensional order parameters of standard low-rank inference
problems [76], in linear-rank regimes the order parameters
are eigenvalue and singular value densities, as in multimatrix
models. Also, at first sight, the variational formulas found in
the present contribution look very much like those appearing
in these models; see [77]. It may thus be tempting to think
that matrix inference models are special cases of known ma-
trix models. This is not the case, however. The presence of
frozen, correlated randomness in inference, namely, the data,
radically changes the nature of the problem: new tools are
needed. This essential difference prevents borrowing various
important techniques from this field, but nevertheless certain
methods used in the analysis of matrix models will be crucial,
in particular the use of spherical integrals in order to integrate
rotational degrees of freedom.

Concretely, having frozen data Y translates, as in spin
glasses [78,79], into the need to evaluate the expectation of
the logarithm of the partition function with respect to it. This
yields the behavior of the model for typical realizations of
the signals and data. The difference is clear: the canonical
two-matrix model from physics reads [66,68,77]

lnZ2MM = ln
∫

dA dB exp Tr[ f (A) + g(B) + h(AB)],

with A = A†, B = B† and with f , g, h just depending on the
spectra. Instead the free energy of matrix inference models
(which is essentially the Shannon entropy of the data) looks
like

EY ln ZINFER(Y ) =
∫

dY exp[Tr f (Y )]

× ln
∫

dU exp Tr[g(U ) + h(UY )]. (1)
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This is a model with “quenched randomness” that needs to
be averaged, namely, the data, while the log-partition func-
tion of the two-matrix model is nonrandom and is a purely
“annealed” model in physics terminology. This form gets
more complicated in nonsymmetric multipartite systems such
as the ST †-dictionary learning problem, with an integration
over more matrices which are not necessarily symmetric or
Hermitian. The presence of a quenched average in (1) is far
from innocent. It generates a whole new level of difficulty,
since the methods in the previous references all rely on a
direct saddle-point evaluation and do not apply [77]. This
quenched average is the reason behind the fact that, even if
only Hermitian matrices are present in the original inference
model, non-Hermitian matrices will appear along the analysis.
The role of the spectral replica method combined with RMT is
precisely to deal with these new difficulties, at a nonrigorous
level.

Many derivations presented in this paper are based on
heuristics, yet they are conjectured to be exact in proper
asymptotic limits. We believe that some of our methodology,
in particular the spectral replica method, will pave the way
to the analysis of a class of inference and learning problems
involving large linear-rank matrices, which remained inacces-
sible until now. Moreover, given the breadth of applications
of such disordered matrix models in information processing
systems but also physics, our results may have an impact in a
broader context.

A. Organization

In Sec. II we start by analyzing the simplest linear-rank
matrix inference model using RMT techniques, namely, de-
noising of an Hermitian rotationally invariant matrix. Two
special cases (one only being nontrivial) are completely
treated, in the sense of deriving explicit enough formulas to
draw a phase diagram. In Sec. III we provide generic system-
atic expansions of the previously derived formulas in the low
signal-to-noise regimes. Section IV generalizes the analysis
to the case of non-Hermitian matrix denoising. Section V is
devoted to the analysis of Hermitian (i.e., positive-definite)
dictionary learning. RMT tools do not suffice anymore, and
we introduce the spectral replica method to go forward.
The first part of this section reduces the model to effective
Coulomb gases of singular values, while the second one ex-
presses it in terms of eigenvalues. We also discuss the main
differences with previous attempts to analyze this model.
Finally in Sec. VI we consider the nonsymmetric case of
dictionary learning. Appendix A recalls known facts about
full-rank spherical integrals which are of crucial importance
in our analyses. Appendix B derives a generic formula for the
minimum mean-square error in matrix denoising. The last Ap-
pendix, Appendix C, provides the necessary MATHEMATICA

codes to reproduce our numerical results.

B. Notations

Let the field K = R if β = 1 or K = C if β = 2, where β

refers to the Dyson index. The symbol † corresponds to the
transpose ᵀ in the real case β = 1 or to the transpose conju-
gate when β = 2, the conjugate being z̄ := Rez − i Imz with

Rez and Imz the real and imaginary parts of z ∈ C and i =√−1. Vectors and matrices are in bold. Vectors are columns
by default and their transpose (conjugate) x† are row vectors.
When no confusion can arise we denote the trace Tr f (A) =
Tr[ f (A)] so, e.g., TrA2 = Tr[A2] or TrAB = Tr[AB]. Sim-
ilarly EX 2 = E(X )2 = E[X 2] � (EX )2 = E[X ]2. The usual
inner product between (possibly complex) vectors

∑
i x̄iyi

is denoted x†y or 〈x̄, y〉 (with x̄ = x if x is real); the ma-
trix inner product is TrX †Y . The usual L2 vector (squared)
norm is

∑
i |xi|2 = ‖x‖2. Every sum or product over j � t

means over j = 1, . . . , t . We will often drop parentheses, e.g.,
exp · · · = exp(· · · ). Depending on the context, the symbol ∝
means “equality up to a normalization,” “equality up to an
irrelevant additive constant,” or “proportional to.” We denote
[N] := {1, . . . , N}. For a diagonal matrix � we will write
the diagonal elements with a single index �i := �ii. For a
diagonalizable matrix A the diagonal matrix of eigenvalues is
λA = λA and the individual eigenvalues are λA

i ; similarly for
a generic matrix B the matrix of singular values is σB = σB

(with the singular values on the main diagonal) and the indi-
vidual singular values are σ B

i . We generically denote ρA the
asymptotic limit of the empirical distribution of eigenvalues
or singular values of a matrix A. Symbol P refers to the set
of probability densities with finite support; P�0 emphasizes
that the support is nonnegative. A matrix M with elements
Mi j may also be written [Mi j] or [Mcd ]. Finally, the symbol
x ∼ y means equality in distribution for two random variables;
x ∼ p instead means that x is a sample from p whenever p is
a probability distribution or a sample from p(x)dx if p is a
probability density function.

II. DENOISING OF AN HERMITIAN ROTATIONALLY
INVARIANT MATRIX

We start with the simplest possible model of inference of
a large matrix: linear-rank rotationally invariant matrix de-
noising. It will require only known tools from random matrix
theory.

A. The model

Let a matrix signal S = S† ∈ KN×N with S ∼ PS,N for some
known prior distribution (which in general does not factor-
ize over the matrix entries), and ξ = ξ† ∈ KN×N a standard
Wigner noise matrix with probability density function (p.d.f.)

dPξ,N (ξ) = CN dξ exp Tr

(
−βN

4
ξ2
)

with CN the normalization factor. Consider a matrix denoising
problem with data Y = Y † ∈ KN×N generated according to
the observation model

Y =
√

λS + ξ. (2)

The hidden matrix S to be recovered from the data is rota-
tionally invariant in the sense that it is drawn from a prior
distribution such that

dPS,N (S) = dPS,N (O†SO)

for any orthogonal (β = 1) or unitary (β = 2) matrix O. It
can thus be diagonalized as S = Ũ

†
λSŨ where Ũ ∼ μ

(β )
N with
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μ
(β )
N the normalized Haar measure over the orthogonal group

O(N ) if β = 1 or over the unitary group U (N ) if β = 2.
Matrix S has O(1/

√
N ) entries. This scaling for the entries of

S and of the Wigner matrix are such that the (real) eigenvalues
of S, ξ and therefore Y remain O(1) in the limit N → +∞.
The joint probability density function (j.p.d.f.) of eigenvalues
of the matrix Y generated according to model (2) is rigorously
established in the case where S has independent entries (which
we do not necessarily assume), and is obtained with tech-
niques of a similar flavor as our strategy (i.e., based on the
use of spherical integrals) [80]; see also [1] for an approach
based on Dyson’s Brownian motion.

The above model defines a random matrix ensemble for
Y which is linked to the Rosenzweig-Porter random matrix
model [81] from condensed matter. A generalized version of
it has a rich behavior with a localization transition and regions
with “multifractal eigenstates”; see [82–85]. The regime we
are interested in, namely, with both λS and the eigenvalues of
ξ being order 1, corresponds precisely to the critical scaling
regime where a recently discovered transition from noner-
godic extended states to ergodic extended states happens in
the model (i.e., the transition towards multifractality; see the
discussion on the regime γ = 1 in [84]). We find the con-
nection with inference particularly intriguing and the results
of this paper may thus may be of independent interest in
the condensed matter context. In particular, if there is an
information-theoretic transition in the inference problem it
may happen to be connected to the γ = 1 ergodicity-breaking
transition found in [84].

We consider a generic j.p.d.f. pS,N (λS ) of eigenvalues
which is symmetric [86] (i.e., invariant under any permuta-
tion of the entries of λS) and whose one-point marginal is
assumed to weakly converge as N → +∞ to a well-defined
measure ρS with finite support and without point masses; in
particular S needs to be full-rank. We discuss at the end of this
section how to overcome this latter constraint. Generically,
rotational invariance implies that the prior over S = Ũ

†
λSŨ

can be decomposed as

dPS,N (S) = dμ
(β )
N (Ũ ) d pS,N (λS ). (3)

A (rather generic) special case of rotationally invariant mea-
sures for the signal are those of the form

dPS,N (S) ∝ μ
(β )
N (Ũ ) dλS exp Tr

[
−βN

4
V (λS )

]

× |
N (λS )|βR (4)

for a rotation invariant matrix potential TrV (S) = TrV (λS ),
and where the Vandermonde determinant for a N × N diago-
nal matrix A with diagonal entries (Ai )i�N reads


N (A) :=
1,N∏
i< j

(Ai − Aj ) = det[(Ac)d−1]. (5)

In this case the eigenvalues j.p.d.f. has the form

pS,N (λS ) ∝ exp Tr

[
−βN

4
V (λS )

]
|
N (λS )|β. (6)

The case of a standard real symmetric or complex Her-
mitian Wigner matrices then corresponds to V (λS ) = λ2

S .

Wishart matrices S = XX † with X ∈ KN×M have a density
for N � M corresponding to V (λS ) = 2[1 − M/N − 1/N +
2/(βN )] ln λS + 2(M/N )λS (see more details later in Sec. III).

The main object of interest is the mutual information be-
tween data and signal:

I (Y ; S) = H (Y ) − H (Y |S)

= H (Y ) − H (ξ)

= −EY ln
∫

dPS,N (s)CN exp Tr

[
−βN

4
(Y −

√
λs)2

]

+ E ln CN exp Tr

(
−βN

4
ξ2
)

= −EY ln
∫

dPS,N (s) exp
βN

2
Tr

(√
λsY − λ

2
s2

)

+ βλN

4
ETrS2. (7)

B. Free entropy and mutual information through
random matrix theory

We define the free entropy fN = fN (Y ) as minus the first
term in (7) divided by N2, without the expectation. The mutual
information will directly be deduced from the free entropy,
and using that the later is expected to concentrate onto its Y
average. Using the eigendecomposition s = U†λsU the free
entropy reads

fN := 1

N2
ln
∫

dPS,N (s) exp
βN

2
Tr

(√
λsY − λ

2
s2

)

= 1

N2
ln
∫

d pS,N (λs) exp

(
−βλN

4
Trλ2

s

)

×
∫

dμ
(β )
N (U ) exp

β
√

λ

2
NTr(U†λsUY )

= 1

N2
ln
∫

dλs exp N2

[
1

N2
ln pS,N (λs)

− βλ

4N
Trλ2

s + I (β )
N (λs,λY ,

√
λ)

]
. (8)

There appears the Harish-Chandra-Itzykson-Zuber
(HCIZ) spherical integral [63,87], which is only a
function of the eigenspectra of its arguments. For N × N
symmetric/Hermitian matrices A and B,

I (β )
N (A, B, γ ) = I (β )

N (λA,λB, γ )

:= 1

N2
ln
∫

dμ
(β )
N (U ) exp

βγ

2
NTr (U†λAUλB),

(9)

where the integration is over O(N ) when β = 1 or U (N ) when
β = 2. We recall known facts about it in Appendix A. It has a
well-defined limit [87,88]:

I (β )[ρA, ρB, γ ] := lim
N→+∞

I (β )
N (λA,λB, γ ), (10)

where ρA, ρB are the asymptotic densities of eigenvalues (i.e.,
one-point correlation functions) of A and B, respectively. In
the present case, the eigenvalues λY of the data matrix Y and
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associated asymptotic density ρY are fixed by the model; λY

can be simulated and ρY can be obtained using free probabil-
ity; see, e.g., [89,90]. Thus, a standard saddle-point argument
leads to the following conjecture for the free entropy fN =
fN (Y ) as N → +∞.

Result 1 (Free entropy of Hermitian rotationally invariant
matrix denoising). The free entropy of model (2) is

fN = sup
λs∈RN

[
1

N2
ln pS,N (λs)

− βλ

4N
Trλ2

s + I (β )
N (λs,λY ,

√
λ)

]
+ τN . (11)

The constant τN fixes the constraint fN (λ = 0) = 0 [the spher-
ical integral (9) vanishes when λ = 0]:

τN := − sup
λs∈RN

1

N2
ln pS,N (λs) + oN (1).

Because we do not rigorously control the saddle-point es-
timation we state the result as a conjecture, but it should not
be out of reach to turn it into a theorem using techniques as
in [77]. This free entropy was not averaged with respect to
Y . But it is expected that additionally it is self-averaging as it
depends on Y only through its spectrum λY :

E fN = fN + oN (1).

Note that from this conjecture, the minimum mean-square
error (MMSE) can be deduced using the I-MMSE relation for
Gaussian channels [91,92]

1

N2
E‖S − E[S|Y ]‖2

= 4

βN2

d

dλ
I (Y ; S) + O(1/N )

= 1

N
ETrλ2

S − 4

β

d

dλ
E fN + O(1/N ). (12)

Regularity of eigenvalues and singular values distributions.
All through the paper we assume that all eigenvalues (and
later singular values) distributions are such that empirical dis-
tributions of eigenvalues or singular values converge weakly
to well-defined asymptotic probability densities with (1) (pos-
sibly disconnected) finite support and (2) without any point
masses. Cases of distributions with point masses (such as a
matrix S of rank lower than N with a point mass δ0 in its
eigenvalues distribution; for example, a rank-deficient Wishart
matrix with N > M) can be approximated by considering
regularizations. If the original signal matrix, say, S ∈ RN×N ,
has a rank(S) < N with a finite fraction of eigenvalues or
singular values strictly null, one may instead consider from
the beginning the same inference model but with full-rank
signal Sε := S + Zε where Zε is an independent rotationally
invariant regularization with norm smaller than ε, such as
a Wigner matrix with sufficiently small variance. In certain
cases it should then be possible to obtain the j.p.d.f. of
the resulting matrix ensemble. The asymptotic formulas for
the free entropies and mutual informations are expected to
be continuous in ε. Thus assuming that the convergence to
the asymptotic value is uniform in ε, we can permute the

N → +∞ and ε → 0+ limits to obtain the formulas for “non-
full-rank” cases and densities with point masses. For the rest
of the paper, we will thus restrict all theoretical arguments to
full-rank cases without point masses.

Let us also mention that despite we focus on full-rank
square models of matrix denoising (2) with S a N × N matrix,
we believe that by combining our approach together with the
idea of “quadratization of rectangular matrices” found in [93],
and exploited, e.g., in [94,95], then it should not require too
much work to generalize the results on matrix denoising of
Secs. II and III to the rectangular setting S ∈ KN×M , N �= M.

C. Expressing the result using a density order parameter
due to a large deviation principle

For the typical form of eigenvalues density (6) we have

ln pS,N (λs)

N2
= β

2N2

1,N∑
i �= j

ln
∣∣λs

i − λs
j

∣∣− β

4N
TrV (λs). (13)

When potential V acts entrywise this can be expressed using
the empirical spectral distribution (ESD)

ρ̂λ
N (x) := 1

N

∑
i�N

δ
(
λs

i − x
)

(14)

as follows:

1

N2
ln pS,N (λs) = β

2

∫
d ρ̂λ

N (x)d ρ̂λ
N (y) ln |x − y|

− β

4

∫
d ρ̂λ

N (x)V (x) + cN .

The “constant” cN is formally infinity and takes care of re-
moving the divergence coming from the double integral when
x = y; it simplifies with the same constant appearing in τN .
This combined with (10) suggests that the formula (11) can
be expressed as an optimization over a density of eigenvalues.
To see that, note that the integral (8) can be written as

1

N2
ln
∫

Dp̂S,N [ρ̂] exp N2

(
−βλ

4

∫
d ρ̂(x)x2

+ I (β )[ρ̂, ρY ,
√

λ] + oN (1)

)
, (15)

where the density of the ESD induced by pS,N (λs) can be
formally written as

Dp̂S,N [ρ̂] = D[ρ̂]
∫

d pS,N (λs)δ(ρ̂λ
N − ρ̂ ). (16)

For a large class of potentials V a large deviation principle
(LDP) at scale N2 with rate functional L holds for the random
ESD [96–98]:

Dp̂S,N [ρ̂] ∼ D[ρ̂] exp(−N2L[ρ̂]). (17)

If L is known, plugging this expression in (15) and evaluating
the integral by saddle point approximation over the density
provides the desired expression.

Let us discuss how to obtain the rate function L. Given
a potential V defining a rotationally invariant ensemble of
symmetric or Hermitian matrices given by (3) or (4), the
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associated rate function L of the ESD ρ̂λ
N is rather generically

given, up to an irrelevant additive constant, by [96–98]

L[ρ̂] = β

2

∫
d ρ̂(x)

(
V (x)

2
−
∫

d ρ̂(y) ln |x − y|
)

. (18)

A direct way to see that starting from (16) is by using (13) to
get∫

d pS,N (λs)δ
(
ρ̂λ

N − ρ̂
)

= exp N2

[
β

2

∫
d ρ̂(x) d ρ̂(y) ln |x − y|

− β

4

∫
d ρ̂(x)V (x) + 1

N2
ln
∫

dλsδ
(
ρ̂λ

N − ρ̂
)]

. (19)

Now, the entropic contribution H[ρ̂] := ln
∫

dλsδ(ρ̂λ
N − ρ̂)

can be evaluated by introducing a Fourier representation of
the Dirac delta:

H[ρ̂] = ln
∫

dλs
∫

D[g]

× exp

{
i
∫

dx g(x)

[
N ρ̂(x) −

∑
i�N

δ
(
λs

i − x
)]}

∝ −N
∫

d ρ̂(x) ln ρ̂(x) = O(N ).

We recognize N times the Shannon entropy of ρ̂ [see Sec. 4.2
in Chapter 4, Eqs. (4.14)– (4.18) in [5], or Appendix C of
[99]]. Therefore, at leading order exp �(N2) this entropic
contribution is negligible, and we identify from (17) the rate
functional (18) from the LDP approach.

Now imagine that the potential V underlying the RMT
ensemble (4) is not known but, instead, its asymptotic spectral
density is. The generalized Tricomi formula (see, e.g., Chapter
5 of [5]) states that for a rotationally invariant ensemble of
symmetric or Hermitian random matrices whose j.p.d.f. of
the matrix entries is (3), the equilibrium spectral density ρ

describing its O(1) eigenvalues verifies

Hρ (x) := Pr
∫

dρ(t )
1

x − t
= β

4
V ′(x), (20)

where Hρ is the Hilbert transform of density ρ whose domain
is R and Pr is the principal value. When unknown, it allows
us to reconstruct the potential V given ρ by integration:

V (x) = 4

β

∫ x

Hρ (t ) dt + C (21)

for a certain irrelevant constant C that can be set to 0 without
loss of generality. Therefore at the level of rigor of this paper,
a RMT ensemble of the form (4) can equivalently be defined
from the knowledge of the potential or its asymptotic spectral
distribution.

With all these results in hand we can now restate the
previous replica symmetric formula using a density order
parameter:

Result 2 (Free entropy of Hermitian rotationally invariant
matrix denoising). The asymptotic free entropy of model (2)
when the signal is drawn from the random matrix ensemble

(4) is

fN → sup
ρs∈P

[
β

2

∫
dρs(x) dρs(y) ln |x − y| − βλ

4

∫
dρs(x) x2

− β

4

∫
dρs(x)V (x) + I (β )[ρs, ρY ,

√
λ]

]
+ τ.

The optimization is over the set P of probablity densities with
finite support. The constant τ fixes the constraint fN (λ = 0) =
0 and is given by

− sup
ρs∈P

[
β

2

∫
dρs(x) dρs(y) ln |x − y| − β

4

∫
dρs(x)V (x)

]
.

D. Simplifications in the Bayes-optimal setting using
the Nishimori identity

The above conjectures have already reduced the compu-
tation of an integral over �(N2) degrees of freedom (the
matrix elements) onto an optimization problem over �(N )
eigenvalues or a functional optimization over a density. But
we claim that because we are in the Bayesian optimal setting
the formulas can be further simplified in the form of Result
3 below. In the matched setting the posterior is the “correct”
one, and as a consequence, a fundamental property known as
the Nishimori identity holds. This identity states that for any
well-behaved function g : RN×N → R we have (here we state
a restricted form of the most general identity found in [76])

E〈g(s)〉 = E g(S), (22)

where the signal S ∼ PS,N , while s is a sample from the Bayes-
optimal posterior j.p.d.f.

dPS|Y,N (s|Y )

= 1

Z (Y )
dPS,N (s) exp Tr

[
−βN

4
(Y −

√
λs)2

]
,

and the Gibbs bracket 〈 · 〉 is the associated expectation. In
particular we have

E

〈
Trλk

s

N

〉
= E

Trλk
S

N
, (23)

for the kth moment of the empirical density of eigenvalues of
the signal.

We now give an heuristic argument based on four steps and
leading to Result 3 below, and believe that this may be the
starting point of a rigorous proof strategy. Recall that ρ̂λ

N given
by (14) is the ESD associated with the eigenvalues λs of the
posterior sample. Define its moments

mk,N :=
∫

dx xk ρ̂λ
N (x) = Trλk

s

N
.

(1) First, note that in expression (8) or (15) the ESD plays
the role of an order parameter for a “mean-field” free entropy
functional given by the logarithm of the integrand in (15),
or equivalently, by the functional to be extremized in Result
2. Concretely, one can express the integrand in (8) or (15)
entirely in terms of the moments (mk,N )k�1.

(2) Second, we assume that the ESD ρ̂∗
N corresponding

to the extremizer in Result 1 is such that its moments m∗
k,N
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are close to the Gibbs averages 〈mk,N 〉 = N−1〈Trλk
s 〉. In other

words

m∗
k,N = 〈mk,N 〉 + oN (1).

This is a natural self-consistency hypothesis for any “replica-
symmetric” mean-field theory, where the optimal value of the
order parameter generally coincides with the Gibbs average
(the reader may recall the solution of the Curie-Weiss model
for the prime example of this mechanism). Replica symmetry,
namely, the self-averaging or concentration of the order pa-
rameters (or the moments (mk,N )k), is generically rigorously
valid in Bayes-optimal inference of low-rank models [76,100]
and we think that this property extends to linear-rank regimes.

(3) Third, we assume that the Gibbs expectation of the
moments concentrates with respect to the data Y : 〈mk,N 〉 =
E〈mk,N 〉 + oN (1). This translates to

〈mk,N 〉 = N−1E
〈
Trλk

s

〉+ oN (1)

= E
〈(
λs

1

)k 〉+ oN (1).

This is again true in low-rank Bayes-optimal inference
[76,100].

(4) Finally, from the two previous points and the Nishi-
mori identity (23) we conclude

m∗
k,N = E

(
λS

1

)k + oN (1).

We have thus found that, somewhat remarkably, the ex-
tremizer in Result 1 has a corresponding ESD matching the
one of the signal ρ̂∗

N = ρ̂S,N . Taking N → +∞, the argu-
ment becomes exact: the empirical density ρ̂∗

N → ρ∗ = ρS the
asymptotic density of eigenvalues of the signal. This yields
the formula (24) below. In particular the supremum in both
the non trivial term where the spherical integral appears in
Result 1 and the constant term τN (or τ in the case of infinite
N) are the same. Consequently we obtain a greatly simplified
expression for the mutual information using relation (7), the
fact that N−1TrS2 = N−1Trλ2

S concentrates onto E(S1)2 when
N → +∞, and the concentration assumption for the free en-
tropy E fN = fN + oN (1). We also obtain a formula for the
MMSE using the I-MMSE relation (12).

Result 3 (Mutual information of Hermitian rotationally
invariant matrix denoising). Let λs ∈ RN be the eigenvalues
of a random matrix s ∼ PS,N , i.e., λs ∼ pS,N . The mutual
information of model (2) verifies

1

N2
I (Y ; S) = βλ

2N
Trλ2

s − I (β )
N (λs,λY ,

√
λ) + oN (1).

Introducing ρs = ρS the asymptotic spectral density of s ∼
PS,N we get for N → +∞

1

N2
I (Y ; S) → βλ

2

∫
dρs(x) x2 − I (β )[ρs, ρY ,

√
λ]. (24)

We deduce from (12) and a convexity argument (as
[I (Y ; S)]N is a sequence of concave functions in λ) that the
minimum mean-square error verifies

1

N2
E‖S − E[S|Y ]‖2 = 2

N
ETrλ2

s − 4

β

d

dλ
I (β )
N

× (λs,λY ,
√

λ) + oN (1), (25)

or, working with the eigenvalue densities, for N → +∞
1

N2
E‖S − E[S|Y ]‖2

→ 2
∫

dρs(x) x2 − 4

β

d

dλ
I (β )[ρs, ρY ,

√
λ].

Remark 1. The spherical integral I (β ) or I (β )
N is difficult to

compute. One route is to try using the HCIZ formula, but
it is known that the ratio of determinants involved in the
formula (see Appendix A) is notoriously difficult to evaluate
analytically or even numerically. Another one is to employ
its asymptotic hydrodynamic description [87,88], but this is
challenging too. The HCIZ formula can be evaluated exactly
in very special cases (e.g., the uniform and Wigner cases
below) or perturbatively (see Sec. III), or approximated by
using sampling techniques [101]. We wish to point out that
an easy and nice application of the HCIZ formula is to check
that the asymptotic mutual information obtained in Result 3
is the same for a signal S or its centered (traceless) version
S − Id,N N−1TrS (where Id,N is the identity of size N); this
can be checked using basic properties of determinants. We
know a priori that this should be so because in the Bayesian-
optimal case the statistician knows the asymptotic value of
N−1TrS → EλS

1 (which is nothing else than the first moment
of distribution of the signal) and can subtract it from the data
matrix, so information-theoretically it has no influence.

Remark 2. Result 3 was first obtained in the thesis of
Schmidt [56] in the real case β = 1 (see Appendix 7). But
what we believe are crucial steps and justifications were omit-
ted in his derivation, and it is not obvious to us how the
final (correct) result was obtained. In particular, [56] jumps
from Eq. (8) to the final Result 3 without justification [see the
transition from Eq. (A.79) to (A.83) in Appendix 7 of [56]].

Remark 3. The formula for the MMSE involves the deriva-
tive of the HCIZ formula with respect to λ. This can be
computed in cases where some expression for the asymptotic
value I (β )[ρS, ρY ,

√
λ] is known. This is for example the case

in the sanity checks of the next paragraphs, and also in terms
of perturbative expansions presented in Sec. III for small and
large signal-to-noise ratio. It is possible to deduce from the
HCIZ formula an expression for the derivative directly in
terms of the eigenvalues and eigenvectors of Y . While this
is not directly used in the present paper it could be of interest
in numerical approaches and for the analysis of the various
variational problems in this paper. For this reason we include
it in Appendix B.

Let us comment on an a priori quite surprising observation.
Consider three scenarios for the prior over the eigenvalues λS

of the signal:
(1) The prior over the eigenvalues is of the form (6). When

N → +∞ (which can be thought of as a vanishing tempera-
ture limit), strongly coupled eigenvalues λS drawn according
to pS,N (λS ) “freeze” into configurations of low energy (which
includes the external potential V plus the long range Coulomb
repulsion due to the Vandermonde). The resulting one-point
marginal is a nontrivial density ρS .

(2) The prior is factorized as pS,N (λS ) = ∏
i�N ρS (λS

i ),
where ρS corresponds to the asymptotic marginal from the
prior in case (a). In this case the prior does not induce any
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sort of interaction among eigenvalues and fluctuations survive
even in the limit N → +∞: the “temperature remains finite”
and no “freezing” occurs.

(3) The eigenvalues are deterministic and given to the
statistician, i.e., pS,N (λS ) = δ(λS − λS

0 ), where the fixed con-
figuration λS

0 has an empirical density weakly converging to
ρS .

By construction these three priors have the same one-point
marginals (in the large size limit). For example, in the Wigner
case, (1) would correspond to (6) with V (λS ) = λ2

S , and
case (2) to pS,N (λS ) = ∏

i�N (4 − (λS
i )2)1/2/(2π ) a product of

semicircle laws. For case (3) one can generate a typical sample
from priors (1) or (2) and fix it. For the Wishart ensemble it
would correspond to V (λS ) = 2[1 − M/N − 1/N + 2/(βN )]
ln λS + 2(M/N )λS in (6) for case (A), and pS,N (λS ) =∏

i�N ρMP(λS
i ) a product of Marcenko-Pastur laws (42).

Now, we claim that in all three cases Result 3 holds without
any difference apart from possible oN (1) corrections. Indeed,
in case (3) the integration over λs in (8) is trivial and it
gives directly Result 3. In case (2) if one plugs pS,N (λS ) =∏

i�N ρS (λS
i ) in formula (11) the term N−2 ln pS,N (λs) =

oN (1), so one may think that the prior has no influence on the
formula. But this is not true, because the influence of this prior
manifests itself through the data Y in the spherical integral
which strongly depends on it. Going again through the four
points above leading to the simplified Result 3, one can see
that they all remain valid. And because the moments E(λS

1 )k

are the same in scenarios (1) and (2) [and (3) as well], the last
point based on the Nishimori identity (23) identifies the same
maximizing (m∗

k,N ), i.e., the same optimal density ρ∗ = ρS .
Let us provide an alternative information-theoretic count-

ing argument in order to obtain Result 3 “directly” without
going through all the previous steps, and that justifies a
posteriori the equivalence of these seemingly very different
situations at the level of the mutual information, which is
thus insensitive to possible strong correlations between the
eigenvalues of S and only depends on their density. By the
chain rule for mutual information it can be decomposed as
(recall S = Ũ

†
λSŨ )

1

N2
I (Y ; S) = 1

N2
I[Y ; (Ũ ,λS )]

= 1

N2
I (Y ; Ũ |λS ) + 1

N2
I (Y ; λS ).

Now, because there are only N eigenvalues while there are N2

[resp. N (N − 1)/2] angles defining the eigenbasis Ũ ∈ U (N )
[resp. Ũ ∈ O(N )], the second term in the right-hand side in
the above decomposition is O(1/N ). Thus, at leading order
�(N2), the mutual information I (Y ; S) and the one given the
eigenvalues I (Y ; Ũ |λS ) are equal. Said differently, there are so
much fewer eigenvalues λS than angular degrees of freedom
and data points that their inference has comparably negligible
cost. In particular in I (Y ; Ũ |λS ) the set of eigenvalues is given,
so that their correlations does not matter and the mutual infor-
mation can only depend on their density ρS . Since the priors
(1)–(3) above have the same density the corresponding mu-
tual informations are identical. Finally, note that by the same
arguments we also have that I (Y ; Ũ |λS ) [and thus I (Y ; S) too]

is equal, at leading order in N , to

I (Y ; Ũ ) = I (
√

λ Ũ
†
λSŨ + ξ; Ũ ).

E. A sanity check: The case of a Wigner signal

Consider the problem of denoising a Wigner matrix: S is
itself a standard Wigner with same distribution as the noise ξ.
So V (S) = S2 in (4). The data Y are therefore also a centered
Wigner matrix with law

P(Y ) ∝ exp Tr

[
− βN

4(1 + λ)
Y 2

]

whose asymptotic spectral density is a semicircle of width
σY := √

1 + λ. This case is completely decoupled in the sense
that each i.i.d. entry of the matrix S is corrupted independently
by an i.i.d. Gaussian noise, so we should recover the known
formulas for scalar decoupled Gaussian channels [91]. This
can be verified as follows: in this case the supremum over ρs

in Result 1 is attained for ρs being itself a semicircle of width
σs = 1. Note that in this particular case, this can be deduced
without making use of the Nishimori identity by realizing that
whenever λ → +∞ or λ → 0+ it has to be so. Indeed in
the noiseless limit λ → +∞ the posterior is peaked on the
ground-truth signal S and thus a sample s will match it and
have the same spectrum λs = λS whose density is a semicircle
of width 1. In the opposite completely noisy limit limit λ = 0,
a sample from the posterior is simply drawn according to
the prior PS,N which is the law of a standard Wigner matrix.
Therefore in both cases the density ρs is a semicircle of width
1, but only in the second case the actual eigenvalues will
match those of S. For any intermediate value of λ the eigen-
values λs will be in a mixture that polarize more towards λS as
λ increases, but which maintains the same asymptotic density.
In the complex case β = 2, the asymptotic spherical integral
I (2)[ρs, ρY ,

√
λ] has a closed expression when evaluated for

two semicircle laws [102]:

I (2)[ρs, ρY ,
√

λ] = 1
2 {
√

4σ (λ)4 + 1 − 1

− ln[1 +
√

4σ (λ)4 + 1] + ln 2}, (26)

where σ (λ)2 := √
λσY σs = √

λ(1 + λ). Moreover, according
to “Zuber’s 1

2 -rule” [103] we can simply relate the real case
β = 1 to the complex one β = 2:

I (1)[ρs, ρY ,
√

λ] = 1
2 I (2)[ρs, ρY ,

√
λ]. (27)

Using that the second moment of the semicircle law E(λS
1 )2 =∫ 2

−2 dx x2
√

4 − x2/(2π ) = 1 we reach from Result 3 the ex-
pected expression:

1

N2
I (Y ; S) → β

4
{2λ + 1 −

√
4λ(1 + λ) + 1

+ ln[1 +
√

4λ(1 + λ) + 1] − ln 2}

= β

4
ln(1 + λ). (28)

The minimum mean-square error is thus

1

N2
E‖S − E[S|Y ]‖2 → 1

1 + λ
. (29)
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So we recover the formulas of [91]. Note that in the present
case, the convergence → in the above identities are actually
equalities for any N (but our derivation here is asymptotic in
nature).

F. An explicit model with uniform spectral distribution

We consider model (2) with λS being a uniform permuta-
tion of equally spaced eigenvalues in [−√

3,
√

3):

pS,N (λS ) = 1

N!
1
{
λS ∈ �

[√
γ

(
−1

2
,

1

N
− 1

2
,

2

N
− 1

2
, . . . ,

1

2
− 1

N

)]}
, (30)

where �(v) is the set of all N! permutations of v ∈ RN , 1(·) is the indicator function, and γ = γN → 12 enforces Trλ2
S = N .

The advantage of this model is that the HCIZ integral appearing in Result 3 is explicit when β = 2. Let λs ∼ pS,N . The HCIZ
integral (see Appendix A) does not depend on the ordering of the eigenvalues, therefore we can consider the increasing ordering
λs

i = √
γ (i − 1)/N − √

γ /2. Denote σ := γ λ. The HCIZ formula then gives (because the ratio of determinants is nonnegative
we can insert an absolute value)

N2I (2)
N (λs,

√
λλY , 1) = ln

∏
k�N−1 k!

NN (N−1)/2
+ ln

∣∣∣∣det
[(

exp
√

σλY
j

)i−1
exp

(−N
√

σλY
j /2
)]


N (λS )
N (
√

λλY )

∣∣∣∣
= ln

∏
k�N−1 k!

NN (N−1)/2
+ ln

∣∣∣∣det
[(

exp
√

σλY
j

)i−1]

N (λS )
N (

√
λλY )

∣∣∣∣− N

2

√
σ TrλY .

The matrix [(exp
√

σλY
j )i−1] is a generalized Vandermonde, and thus

det
[(

exp
√

σλY
j

)i−1] =
1,N∏
i< j

(
exp

√
σλY

i − exp
√

σλY
j

)
.

The mutual information from Result 3 then reads

1

N2
I (Y ; S) = λ − 1

N2

1,N∑
i< j

ln
∣∣ exp

√
σλY

i − exp
√

σλY
j

∣∣+ 1

N2

1,N∑
i< j

ln
(√

λ
∣∣λY

i − λY
j

∣∣)

+ 1

N2

1,N∑
i< j

ln

(√
γ

|i − j|
N

)
+

√
σ

2N
TrλY − 1

N2
ln

∏
k�N−1 k!

NN (N−1)/2
+ oN (1). (31)

The MMSE can then be obtained using the I-MMSE relation (12):

β

N2
E‖S − E[S|Y ]‖2 = 4 − 4

N2

1,N∑
i< j

e
√

σλY
i d

dλ

(√
σλY

i

)− e
√

σλY
j d

dλ

(√
σλY

j

)
e
√

σλY
i − e

√
σλY

j

+ 1

λ
+ 4

N2

1,N∑
i< j

d
dλ

(
λY

i − λY
j

)
λY

i − λY
j

+
√

γ

λ

1

N
TrλY + 2

√
σ

N

∑
i�N

d

dλ
λY

i + oN (1).

Introducing the Y -eigenvectors YψY
i = λY

i ψY
i , the Hellmann-Feynman theorem implies

d

dλ
λY

i = 1

2
√

λ

(
ψY

i

)†
SψY

i =:
1

2
√

λ
pi,
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where S is the ground truth in (2) (not to be confused with s, another independent sample from PS,N ). As a consequence we
finally obtain the explicit expression

β

N2
E‖S − E[S|Y ]‖2 = 4 − 2

√
γ

N2

1,N∑
i< j

e
√

σλY
i
(

1√
λ
λY

i + pi
)− e

√
σλY

j
(

1√
λ
λY

j + p j
)

e
√

σλY
i − e

√
σλY

j

+ 1

λ
+ 2√

λN2

1,N∑
i< j

pi − p j

λY
i − λY

j

+
√

γ

λ

1

N
TrλY +

√
γ

N

∑
i�N

pi + oN (1). (32)

Let us introduce the asymptotic spectral densities ρs and
ρY associated with the matrices s and Y . Then the above
expression reads, in the large size limit N → +∞,

1

N2
I (Y ; S) → λ + ln λγ

4
+ 1

2

∫
dρY (x) dρY (y)

× ln

∣∣∣∣ x − y

exp x
√

λγ − exp y
√

λγ

∣∣∣∣. (33)

We used that

1

N2

1,N∑
i< j

ln
|i − j|

N
→ 1

2

∫
[0,1]×[0,1]

dx dy ln |x − y|

= −3

4
= lim

N→+∞
1

N2
ln

∏
k�N−1 k!

NN (N−1)/2

so these two terms asymptotically cancel each others. We
also used that Y , as a sum of asymptotically traceless ma-
trices, is asymptotically traceless too and therefore the term∫

dρY (x) x = 0.
Note that, as explained below Result 3, we could

have fixed from the beginning one arbitrary permuta-
tion of the eigenvalues: pS,N (λS ) = δ[λS − √

γ (−1/2, 1/N −
1/2, 2/N − 1/2, . . . , 1/2 − 1/N )], instead of considering the
uniform measure (30) over permutations. This would have
lead to the same calculations as can be easily seen. What is
less trivial to see (because in that case we cannot simplify any-
more the HCIZ formula using the generalized Vandermonde
form) is that the result would be asymptotically the same if the
prior was instead uniform but not necessarily equally spaced,
i.e., pS,N = U [−√

3,
√

3)⊗N .
The λ-dependent data spectral distribution ρY can be ob-

tained from free probability as follows; we refer to [89,104]
for clean definitions, domains of definitions and properties of
the functions we are going to use now. The complex-valued
Green function (or minus Stieljes transform) associated with
ρ, whose domain is the complex plane minus the support of
ρ, is

Gρ (z) :=
∫

dρ(x)
1

z − x
.

The Blue function is its functional inverse verifying
Bρ[Gρ (z)] = Gρ[Bρ (z)] = z. Then the complex valued R
transform is defined as

Rρ (z) = Bρ (z) − 1

z
=
∑
i�1

ki zi−1,

where the coefficients (ki )i�1 in its series expansion are the
so-called free cumulants associated with density ρ. Asymp-
totically, the matrix

√
λS has eigenvalue density ρ√

λS which

is the uniform distribution in [−√
3λ,

√
3λ). The associated

Green function is

Gρ√
λS

(z) = 1

2
√

3λ
ln

z + √
3λ

z − √
3λ

,

thus

Rρ√
λS

(z) =
√

3λ coth(z
√

3λ) − 1

z
.

The R transform of the standard Wigner semicircle law is the
identity: RρZ (z) = z. Finally, by additivity of the R transform
for asymptotically free random matrices, the R transform of
the spectral density of the data matrix is

RρY (z) = Rρ√
λS

(z) + RρZ (z) =
√

3λ coth(z
√

3λ) − 1

z
+ z.

Its Blue function is thus BρY (z) = √
3λ coth(z

√
3λ) + z from

which we get a transcendental equation for its Green function:

z =
√

3λ coth(GρY (z)
√

3λ) + GρY (z). (34)

This equation can be solved numerically using a complex
nonlinear solver. A MATHEMATICA code to do so is provided
in Appendix C. From its solution we can access the spectral
density due to

ρY (x) = 1

π
lim

ε→0+
|ImGρY (x − iε)|. (35)

Figure 1 shows in red the asymptotic prediction from the spec-
trum extracted from the numerical solution of (34) and (35). It
almsot perfectly matches the empirical density of eigenvalues
of Y for realizations of the model for large sizes, see the blue
histograms.

Given a signal-to-noise ratio λ, we can compute the mutual
information as N → +∞ using (33), (34) and (35). This
yields the pink dots of Fig. 2. The blue dots are instead for
the mutual information computed for large realizations of the
model (2) for a S with a uniform spectrum; see formula (31).
The orange dots are for the MMSE for that case; see for-
mula (32). These curves are compared to the case of Wigner
signal and match surprisingly well up to relative differences
of O(10−3). But our perturbative expansions of the next sec-
tion as well as the comparison with the asymptotic predictions
from (33) show that this difference, even if small, is not just
due to numerical imprecisions: the curves really are different
even in the large size limit. Yet it is interesting to observe
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FIG. 1. (a) Asymptotic N → +∞ spectral density ρY (x) (red)
for the denoising model (2) with λ = 20 and a signal S with uniform
eigenvalues in [−√

3,
√

3). It is compared to the empirical spectral
density of Y for a realization of size N = 5000 (blue). (b) The same
for a smaller signal-to-noise ratio λ = 2. As expected, the spectrum
resembles more the semicircle law in that case. The density does
approach Wigner’s semicircle law of radius 2 as λ → 0+.

that the simple (decoupled) case of matrix denoising with S
a Wigner matrix allows us to very accurately approximate the
information-theoretic quantities of the much less trivial setting
where S has a uniform spectrum (and therefore the matrix
elements of S are dependent, as opposed to the Wigner case).
Further investigation around this fact is needed and left for
future work.

III. PERTURBATIVE EXPANSIONS FOR
HERMITIAN MATRIX DENOISING

We exploit perturbative expansions of the HCIZ integral
for small λ to discuss the corresponding expansions of the
mutual information and MMSE as predicted by Result 3.
In this section we consider only complex cases β = 2, for
which expansions of the HCIZ integral have been worked out
[105,106].

Let A and B two Hermitian N × N matrices. We use
an expansion of the HCIZ integral (9) in the complex case

FIG. 2. Main panel: The abcissa corresponds to the signal-to-
noise ratio λ in model (2). The blue dots correspond to the mutual
information (MI) for the uniform spectrum case evaluated from (31)
for N = 1000 averaged over 100 independent realizations; the orange
dots are the MMSE in the same Monte Carlo experiment, evaluated
from (32). The pink dots correspond to the asymptotic N → +∞
mutual information for the uniform spectrum case evaluated from
(33). The finite N and asymptotic N → +∞ values of the mutual
information match very closely as can be seen from the superposition
of the pink and blue dots. The red dashed line is the mutual informa-
tion for the Wigner signal case (28) and the black one the MMSE
(29). All is for β = 2. The curves for the uniform and semicircle
laws match surprinsingly well but are actually different. Inset: These
curves quantify the relative difference between the empirical curves
(the blue or orange dots) for the uniform case and the (dashed)
curves for the Wigner case. The relative difference is typically of
order O(10−3). When comparing instead the N → +∞ curve for
the uniform case (pink dots) to the Wigner mutual information so
that any finite-size effects are removed, a difference of the same
order survives (which is much higher than the expected numerical
precision for these computations). This confirms that the curves are
not exactly the same.

I (2)
N (A, B,

√
λ) in terms of moments

θp := lim
N→+∞

1

N
TrAp = lim

N→+∞
1

N

∑
i�N

(
λA

i

)p
,

θ̄p := lim
N→+∞

1

N
TrBp = lim

N→+∞
1

N

∑
i�N

(
λB

i

)p

for integer p � 1. Note that by concentration θp is also equal
to limN→+∞ N−1ETrAp and similarly for θ̄p. We assume that
A and B are traceless, i.e, θ1 = θ̄1 = 0. Then, according to
[106],

lim
N→+∞

I (2)
N (A, B,

√
λ) = I (2)[ρA, ρB,

√
λ]

=
∑
n�2

λ
n
2 Fn(A, B) (36)

with (terms up to n = 8 are explicitly derived in [106] and
diagrammatic rules are given for higher orders; see also
Appendix C for their complete expressions)

F2 = 1
2θ2θ̄2,

F3 = 1
3θ3θ̄3, (37)

F4 = 3
4θ2θ̄2 − 1

2θ2
2 θ̄4 − 1

2θ4θ̄
2
2 + 1

4θ4θ̄4.
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We will also make use of the derivatives with respect to the
moments θ̄p. These read

∂

∂θ̄p
I (2)[ρA, ρB,

√
λ] = D̄p

p
for p � 2,

with

D̄2 = λθ2 + λ2 1
2 (3θ2 − 4θ4θ̄2) + O(λ5/2),

D̄3 = λ3/2θ3 + O(λ5/2), (38)

D̄4 = −λ2(2θ2
2 − θ4) + O(λ3),

where the higher order corrections come from the structure of
F5 and F6 and can be worked out from [106]. These formulas
are applied for A = S and B = Y = √

λS + ξ with N−1TrS =
oN (1) and N−1TrY = oN (1). As explained in Remark 1 after
Result 3 the mutual information remains the same if we center
the signal to make S and Y traceless. Although this is not nec-
essary, and one can work out the expansion for a noncentered
signal and data, this turns out to be a major simplification in
the ensuing calculations. For the mutual information, accord-
ing to Result 3 we find the expansion when β = 2:

lim
N→+∞

1

N2
I (Y ; S) = λθ2 −

∑
n�2

λ
n
2 Fn (39)

and for the MMSE

lim
N→+∞

β

N2
E‖S − E[S|Y ]‖2

= 4θ2 − 4
∂

∂λ
I (2)[ρS, ρY ,

√
λ]

− 4
∑
p�2

∂

∂θ̄p
I (2)[ρS, ρY ,

√
λ]

d θ̄p

dλ

= 4θ2 − 4
∑
n�2

n

2
λ

n
2 −1Fn − 4

∑
p�2

D̄p

p

d θ̄p

dλ
. (40)

In these expressions Fn and Dp are given by their expansions
in terms of the moments

θp = lim
N→+∞

N−1TrSp = lim
N→+∞

N−1ETrSp,

θ̄p = lim
N→+∞

N−1TrY p = lim
N→+∞

N−1ETrY p,

which themselves are polynomials in
√

λ. To go further we
must fix a specific model of interest.

Example 1 (Wigner signal): Let ξ = ξ† ∈ CN×N , ξ ∼
exp Tr[−N

2 ξ2] a standard Hermitian Wigner matrix; this cor-
responds to a potential V (x) = x2 in (4). Take an i.i.d. copy
ξ′ and set S = ξ′ and Y = √

λξ′ + ξ. We note that Y ∼√
1 + λ ξ. Wigner’s semicircle law

ρξ (x) = 1(|x| � 2)

√
4 − x2

2π

implies for even moments (odd moments vanish)

θ2p = lim
N→+∞

1

N
ETrξ2p = 1

p + 1

(
2p

p

)
,

θ̄2p = lim
N→+∞

1

N
ETrY 2p = (1 + λ)p

p + 1

(
2p

p

)
.

From θ2 = 1, θ4 = 2, θ6 = 5 and θ̄2 = 1 + λ, θ̄4 = 2(1 + λ)2,
θ̄6 = 5(1 + λ)3 we find

F2 = 1
2 (1+ λ), F4 = − 1

4 (1+ λ)2, and F6 = 1
3 (1+ λ)3.

The expansion (39) for the mutual information yields

lim
N→+∞

1

N2
I (Y ; S) = λ

2
− λ2

4
+ λ3

6
+ O(λ4). (41)

We recognize the expansion of 1
2 ln(1 + λ) and the result is

consistent with (28).
Example 2 (Wishart signal): Consider S = XX † and Y =√

λXX † + ξ, where the noise ξ ∈ CN×N is an Hermitian
Wigner matrix normalized as in the previous example and X ∈
CN×M is drawn from PX,M (X ) ∝ exp Tr[−MXX †]. Let ϕ :=
N/M. For ϕ � 1 the eigenvalue j.p.d.f. is well defined, and
corresponds to the potential V (x) = 2(1 − 1/ϕ) ln |x| + 2x/ϕ
in (4) (see, e.g., [104]). When ϕ > 1 the matrix is rank defi-
cient and there is no well-defined j.p.d.f. for the eigenvalues
but the model can be regularized as explained in Sec. II and
the final conjectures apply. In particular the Marcenko-Pastur
distribution for the eigenvalues of S = XX † is well defined
for all ϕ > 0:

ρMP(x) = max(1 − 1/ϕ, 0)δ(x)

+ 1(c � x � d )

2πϕx

√
(x − c)(d − x), (42)

where c := (
√

ϕ − 1)2 and d := (
√

ϕ + 1)2. The spectral mo-
ments are deduced by standard integration methods, and we
find

lim
N→+∞

1

N
Tr(XX †)p

= lim
N→+∞

1

N
ETr(XX †)p = 1

p

∑
k�p

ϕk−1

(
p

k

)(
p

k − 1

)
.

In particular limN→+∞ N−1ETrXX † = 1 for the first mo-
ment. Now, as explained before, in order to compute the
mutual information it is convenient to center the signal so
that it becomes traceless. In other words we replace XX †

by S = XX † − Id,N so that N−1TrS → 0. This also implies
Y = √

λ(XX † − Id,N ) + ξ and N−1TrY → 0. The first mo-
ments of the spectral density of this S are in the asymptotic
limit θ2 = ϕ, θ3 = ϕ2, θ4 = ϕ3 + 2ϕ2, θ5 = ϕ4 + 5ϕ3, θ6 =
5ϕ3 + 9ϕ4 + ϕ5 and those of Y are θ̄1 = 0, θ̄2 = 1 + λϕ, θ̄3 =
λ3/2ϕ2, θ̄4 = λ2(ϕ3 + 2ϕ2) + 4λϕ + 2, θ̄5 = O(λ3/2), θ̄6 =
5 + O(λ). This yields

F2 = ϕ

2
+ λ

ϕ2

2
,

F3 = λ3/2 ϕ4

3
,

F4 = −ϕ4

4
− λ

ϕ3

2
+ λ2 1

4
(ϕ6 − ϕ4), (43)

F5 = O(λ3/2),

F6 = ϕ3

3
− ϕ4

6
+ O(λ).
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For the mutual information we find

lim
N→+∞

1

N2
I (Y ; S)

= λ
ϕ

2
− λ2 ϕ2

4
+ λ3 ϕ3 − ϕ4

6
+ O(λ4). (44)

We note that the contribution of the order O(λ3) only comes
from the order O(λ) in F4 and the constant term in F6. We also
remark that for ϕ = 1 the first two orders are the same than the
pure Wigner case of Example 1. It is possible to show that this
is a universal feature for all matrices S such that N−1TrS → 0
and N−1TrS2 → 1; see the next example.

Example 3 (general case): As before (θp)p�1 correspond
to the asymptotic spectral moments of the signal S. It easy
to skim through the above calculations and obtain the first
terms of an expansion for general signals with even spectral
density such that θ2 = 1 and θ2p+1 = 0, p � 0 (note that for
the traceless Marchenko-Pastur distribution this is true only if
p = 0). At third order the resulting expansion can be read off
by removing the contribution of F3 and the term −ϕ4/6 from
F6, and we find

lim
N→+∞

1

N2
I (Y ; S) = λ

2
− λ2

4
+ λ3

6
+ O(λ4). (45)

The generic case until fourth order is heavy to handle by hand.
We provide in Appendix C a MATHEMATICA code to get the
following expansions. Let (kp)p�2 be the free cumulants asso-
ciated with the asymptotic spectral density ρS of S (see, e.g.,
[4,89] to learn about free cumulants). For N → +∞ followed
by λ → 0+ and a ρS such that θ1 = k1 = 0 and θ2 = k2 = 1,

lim
N→+∞

1

N2
I (Y ; S)

= λ

2
− λ2

4
+ λ3 1 − k2

3

6
− λ4 1 + 4k2

3 + k2
4

8
+ o(λ4). (46)

Or expressed in terms of the moments (the mapping between
moments and free cumulants can be obtained using the rou-
tines in Appendix C),

lim
N→+∞

1

N2
I (Y ; S) = λ

2
− λ2

4
+ λ3 1 − θ2

3

6

− λ4 5 + 4θ2
3 + θ2

4 − 4θ4

8
+ o(λ4). (47)

Interestingly, for any even spectral density this matches the
pure Wigner case of Example 1 up to third order. However,
this breaks down at fourth order as soon as the fourth mo-
ment θ4 of ρS is different from 2. This is another indication
that the curves for the uniform spectrum and Wigner cases
of Fig. 2 are different. Indeed, it can be checked that the

(Fn) in the expansion (39) for these two cases are very close
but different—or that their respective expansions (47) are
the same up to order three, but the order four for the Wigner
case is − 1

8λ4 while it is − 1
8

26
25λ4 for the case of uniform

spectrum in [−√
3,

√
3), and is thus very close. If one is

instead interested in obtaining expansions in the opposite large
signal-to-noise ratio regime, it is possible to do so using the
expressions found in [102].

IV. DENOISING OF A ROTATIONALLY INVARIANT
MATRIX: NON-HERMITIAN CASE

A. The model

We consider again a model of the form (2) but we now relax
the hypothesis that S is Hermitian. This time we consider that
ξ is a standard (non-Hermitian) Ginibre matrix with law

dPξ,N (ξ) = CN dξ exp Tr

(
−βN

2
ξξ†
)

.

Its entries are typically of order O(1/
√

N ) and singular values
O(1). The planted full-rank matrix signal S ∈ KN×N is no
longer Hermitian but is still rotationally invariant in the sense
that

dPS,N (S) = dPS,N (OSÕ)

for any orthogonal or unitary O, Õ. It has O(1/
√

N ) entries
and O(1) singular values. Its singular values decomposition
(SVD) reads S = ŨσSṼ . Its singular values σS have a generic
empirical distribution converging as N → +∞ to ρS with
finite support. Left and right rotational invariance implies that
its measure is decomposed as

dPS,N (S) ∝ dμ
(β )
N (Ũ ) dμ

(β )
N (Ṽ ) d pS,N (σS ),

where the Vandermonde determinant and other terms inherent
to the change of variable are included in the generic symmetric
j.p.d.f. pS,N (σS ) of the singular values. For example, in the
case of a measure defined by a rotationally invariant potential
it reads [107]

dPS,N (S) ∝ dμ
(β )
N (Ũ ) dμ

(β )
N (Ṽ ) dσS

(∏
i�N

σ S
i

)β−1

× exp Tr

[
−βN

2
V (σS )

] ∣∣
N
(
σ2

S

)∣∣β. (48)

B. Free entropy through random matrix analysis

Using the SVD s = UσsV the free entropy reads

fN := 1

N2
ln
∫

dPS,N (s) exp
βN

2
Tr(

√
λY †s +

√
λY s† − λs†s)

∝ 1

N2
ln
∫

d pS,N (σs) exp

[
−βλN

2
Trσ2

s + (β − 1)
∑
i�N

ln σ s
i

]

×
∫

dμ
(β )
N (U ) dμ

(β )
N (V ) exp β

√
λNReTr(Y †UσsV )

= 1

N2
ln
∫

dσs exp N2

[
1

N2
ln pS,N (σs) − βλ

2N
Trσ2

s + J (β )
N (σs, σY , 2

√
λ)

]
+ O(1/N ).
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Here and everywhere integrals over individual singular values
are restricted to R�0. The expression of the rectangular log-
spherical integral density is [108,109]

J (β )
N (A, B, γ ) = J (β )

N (σA, σB, γ )

:= 1

N2
ln
∫

dμ
(β )
N (U ) dμ

(β )
N (V )

× exp
βγ

2
NReTr (σAUσBV ) (49)

for generic N × N matrices A, B with respective singular
values σA and σB. It has a well-defined limit [110,111]:

J (β )[ρA, ρB, γ ] := lim
N→+∞

J (β )
N (σA, σB, γ ), (50)

where ρA, ρB are the asymptotic normalized densities of sin-
gular values associated with A and B, respectively. Let ρY

be the the asymptotic singular values density associated with
the data Y ; again both σY and ρY are obtainable. In the large
size limit N → +∞ we obtain by saddle-point the following
conjecture for fN (Y ):

fN = sup
σs∈RN

�0

[
1

N2
ln pS,N (σs) − βλ

2N
Trσ2

s

+ J (β )
N (σs, σY , 2

√
λ)

]
+ τN .

Focusing on the case of a prior of the form (48),

fN = sup
σs∈RN

�0

[
β

2

1,N∑
i �= j

ln
∣∣(σ s

i )2 − (
σ s

j

)2∣∣
N2

−β

2

∑
i�N

λ
(
σ s

i

)2 + V
(
σ s

i

)
N

+ J (β )
N (σs, σY , 2

√
λ)

]
+ τN .

Introducing asymptotic densities of singular values and by the
same type of LDP as in Sec. II C, the previous variational
formula can be reexpressed as

fN → sup
ρs∈P�0

{
β

2

∫
dρs(x) dρs(y) ln |x2 − y2| − β

2

∫
dρs(x)

× [λx2 + V (x)] + J (β )[ρs, ρY , 2
√

λ]

}
+ τ.

The optimization is over a p.d.f. with bounded nonnegative
support. The constants τN and τ are fixed by the constraint
fN (λ = 0) = 0:

τN := − sup
σs∈RN

�0

[
β

2

1,N∑
i �= j

ln
∣∣(σ s

i

)2 − (
σ s

j

)2∣∣
N2

− β

2

∑
i�N

V
(
σ s

i

)
N

]
+ oN (1),

τ := − sup
ρs∈P�0

[
β

2

∫
dρs(x) dρs(y) ln |x2 − y2|

− β

2

∫
dρs(x)V (x)

]
.

Again, as fN ends up being solely a function of the singular
values of the data matrix, it is expected to be self-averaging
with respect to Y : E fN = fN + oN (1). The free entropy is
linked to the mutual information through

I (Y ; S) = −E fN + βλN

2
ETrSS†.

With the Ginibre noise instead of Wigner and for a non-
Hermitian signal S the I-MMSE relation reads

1

N2
E‖S − E[S|Y ]‖2 = 2

βN2

d

dλ
I (Y ; S). (51)

Like in the Hermitian case, the Nishimori identities combined
with the concentration of the moments of the density of sin-
gular values of the posterior samples imply together that the
supremum is attained for the density of singular values of the
planted signal S.

Result 4 (Mutual information of rotationally invariant
matrix denoising). Let the singular values σs ∼ pS,N of a
random matrix drawn according to the prior PS,N . The mutual
information of model (2) in the case where S is not necessarily
Hermitian and the noise ξ is a standard Ginibre matrix verifies

1

N2
I (Y ; S) = βλ

N
Trσ2

s − J (β )
N (σs, σY , 2

√
λ) + oN (1).

Introducing asymptotic densities of singular values it reads as
N → +∞

1

N2
I (Y ; S) → βλ

∫
dρs(x) x2 − J (β )[ρs, ρY , 2

√
λ],

where ρs = ρS is the asymptotic density of singular values
of s ∼ PS,N . We deduce from (51) that the minimum mean-
square error verifies

1

N2
E‖S − E[S|Y ]‖2

= 2

N
ETrσ2

s − 2

β

d

dλ
J (β )

N (σs, σY ,
√

λ) + oN (1),

or, working with asymptotic densities of singular values,

1

N2
E‖S − E[S|Y ]‖2

→ 2
∫

dρs(x) x2 − 2

β

d

dλ
J (β )[ρs, ρY ,

√
λ].

V. HERMITIAN POSITIVE DEFINITE
DICTIONARY LEARNING

We now move to the more challenging problem of dictio-
nary learning, first in the positive-definite case. Its analysis
will require the introduction of the main methodological ad-
vancement of this paper: the spectral replica method.

A. The model

Consider a ground-truth matrix signal X = [Xik] ∈ KN×M ,
with

M = αN + o(N )

with fixed α > 0, and with prior distribution X ∼ PX,N which
is centered EXik = 0 and such that typically Xik = O(1). This
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prior is not necessarily rotationally invariant nor factorized
over the matrix entries, but we require that it induces a per-
mutation symmetric j.p.d.f. over the singular values of X . Let
Z = Z† ∈ KN×N a noise Wigner matrix with p.d.f.

PZ,N (Z) ∝ exp Tr

(
−β

4
Z2

)
.

With this scaling the eigenvalues of Z are O(
√

N ). Con-
sider having access to an Hermitian data matrix Y = [Yi j] ∈
KN×N with entries generated through the following observa-
tion channel:

Y =
√

λ

N
XX † + Z. (52)

Matrix
√

λ/N XX † has O(
√

N ) eigenvalues like the noise
[and generically O(1) entries], hence the scaling

√
λ/N of the

signal-to-noise ratio. The Bayesian posterior reads

dPX |Y,N (x|Y )

= 1

Z (Y )
dPX,N (x) exp

β

2
Tr

[√
λ

N
Y xx† − λ

2N
(xx†)2

]
.

Note the invariance of the model under X → XU for any M ×
M orthogonal or unitary U such that PX,N (XU ) = PX,N (X ).
The mutual information I (Y ; X ), which we aim at computing,
is obtained by similar manipulations as in the previous sec-
tions:

1

MN
I (Y ; X ) = − 1

MN
EY ln

∫
dPX,N (x)

× exp
β

2
Tr

[√
λ

N
Y xx† − λ

2N
(xx†)2

]

+ βλ

4MN2
ETr(XX †)2,

where the first term is minus the expected free entropy

E fN := 1

MN
EY lnZ (Y ).

Note that compared with our analysis on matrix denoising,
we now do consider the expectation over the data in the free
entropy. In the case where X is rotationally invariant, and
therefore XX † too, the results of the previous section on
denoising can be applied. But it is important to notice right
away that even in this case, the previous conjectures do not give
any information about one of the main quantities of interest in
order to evaluate the inference performance, namely, the scalar
overlap between the ground-truth X and a sample x from the

posterior PX |Y,N :

q := lim
N→+∞

1

N2
E〈|TrxX †|〉. (53)

The absolute value is needed because Y contains no informa-
tion about the sign of X , so x and −x have same posterior
weight. Only the MMSE on the product XX † is obtainable
through this approach, through the I-MMSE identity. But this
quantity is much less interesting than q as it does not carry
information about the reconstruction of the internal structure
of XX †. In particular, as noted in [56], in the present linear-
rank regime of Hermitian dictionary learning with a factorized
prior PX,N = g⊗N (N+1)/2 over the matrix entries, the MMSE on
XX † is expected to be a universal quantity independent of the
specific distribution g of the individual entries of X (as long
as the first few moments exist). This is because the entries
of XX † are sums of many independent random contributions
and thus the resulting matrix should behave at the level of the
mutual information and MMSE on XX † as a random matrix
from the Wishart ensemble (i.e., as if X had i.i.d. standard
normal entries) due to strong universality properties [112].
Therefore, it is crucial to do the following:

(1) Access the (a priori) nonuniversal PX,N -dependent
scalar overlap q, both in rotationally invariant and non rota-
tionally invariant models

(2) Go beyond models with factorized distributions over
the components of the hidden matrices.

Concerning the second point: as will become clear, the
spectral replica method presented below does not a priori re-
quire the hidden matrix X (or S, T in the nonsymmetric case)
to have independent entries. But the possibility to concretely
evaluate expressions in the ensuing conjectures depends on
the solution of a classical (but in general highly nontrivial)
RMT subproblem, namely, that of evaluating the j.p.d.f. of the
matrix product between two i.i.d. samples from the prior PX,N .
As a consequence, in situations where this task can be solved
(despite the lack of independence of the signal matrix entries)
then quantitative predictions may be reachable. Advancing on
the above two points is the main role of the spectral replica
method as compared with the pure RMT approaches. To fix
ideas let us consider at the moment the complex case β = 2.
Model (52) is equivalent to three coupled real models:

ReYi j ∼ N
(√

λ

N

〈X i, X̄ j〉 + 〈X̄ i, X j〉
2

,
1

2

)
for i < j ∈ [N]2,

ImYi j ∼ N
(√

λ

N

〈X i, X̄ j〉 − 〈X̄ i, X j〉
2i

,
1

2

)
for i < j ∈ [N]2,

Yii ∼ N
(√

λ

N
‖X i‖2, 1

)
for i ∈ [N].

The average free entropy then concretely reads

E fN = 1

NM
E ln

∫
dPX,N (x) exp

∑
i�N

[√
λ

N
Yii‖xi‖2 − λ

2N
‖xi‖4

]
exp 2

1,N∑
i< j

[√
λ

N
ReYi j

〈xi, x̄ j〉 + 〈x̄i, x j〉
2

− λ

2N

( 〈xi, x̄ j〉 + 〈x̄i, x j〉
2

)2]
exp 2

1,N∑
i< j

[√
λ

N
ImYi j

〈xi, x̄ j〉 − 〈x̄i, x j〉
2i

− λ

2N

( 〈xi, x̄ j〉 − 〈x̄i, x j〉
2i

)2]
. (54)
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B. Replica trick and spectral replica symmetry

The important difficulty is that the potential lack of rota-
tional invriance of X and therefore of S = XX † prevents the
direct use of spherical integration of the rotational degrees of
freedom. Moreover, we want to access the scalar overlap q,
which random matrix theory alone seems not able alone to
reach. But combining random matrix theory with the replica
method will allow us to overcome these difficulties. The ap-
proach starts from the replica trick:

lim
N→+∞

E fN = lim
N→+∞

lim
u→0+

1

NMu
lnEZ (Y )u

= lim
u→0+

lim
N→+∞

1

NMu
lnEZ (Y )u. (55)

As in standard replica theory, we assume that the u and N
limits commute, and later on that the formulas we will derive
for integer u can be analytically continued to real u → 0+.
We therefore need to evaluate the expectation of the repli-
cated partition function. We directly integrate the quenched

Gaussian observations in (54) using the following useful
formula:

Y ∼ N
(√

λ

N
f0, γ

)
⇒ EY | f0

∏
a�u

exp γ

(√
λ

N
Y fa − λ

2N
f 2
a

)

=
0,u∏
a<b

exp
γ λ

N
fa fb. (56)

In the Bayes-optimal setting the ground truth X plays a totally
similar role as one additional replica, so we rename it x0 := X .
We set xa

i = (xa
ik )k�M and introduce the notation∫

dPX,N ({x}u
0) · · · =

∫
RMNu

u∏
a=0

dPX,N (xa) · · · .

Define the complex-valued M × M overlap matrix

Qab :=
(

1

N

∑
i�N

xa
ik x̄b

i�

)
k,��M

= (xa)ᵀx̄b

N
= (Qba)†. (57)

Then the above formula (56) applied thrice yields

EZ (Y )u =
∫

dPX,N
({x}u

0

) 0,u∏
a<b

exp
λ

N

∑
i�N

∥∥xa
i

∥∥2∥∥xb
i

∥∥2 × exp
2λ

N

1,N∑
i< j

〈
xa

i , x̄a
j

〉+ 〈
x̄a

i , xa
j

〉
2

×
〈
xb

i , x̄b
j

〉+ 〈
x̄b

i , xb
j

〉
2

× exp
2λ

N

1,N∑
i< j

〈
xa

i , x̄a
j

〉− 〈
x̄a

i , xa
j

〉
2i

×
〈
xb

i , x̄b
j

〉− 〈
x̄b

i , xb
j

〉
2i

=
∫

dPX,N
({x}u

0

) 0,u∏
a<b

exp
λ

N

∑
i, j�N

(
Re
〈
xa

i , x̄a
j

〉
Re
〈
xb

i , x̄b
j

〉+ Im
〈
xa

i , x̄a
j

〉
Im
〈
xb

i , x̄b
j

〉)

=
∫

dPX,N
({x}u

0

) 0,u∏
a<b

exp
λ

N

∑
i, j�N

Re
(〈

xa
i , x̄a

j

〉〈
x̄b

i , xb
j

〉)

=
∫

dPX,N
({x}u

0

) 0,u∏
a<b

exp λN
∑

k,��M

(
1

N

∑
i�N

xa
ik x̄b

i�

)(
1

N

∑
j�N

x̄a
jkxb

j�

)

=
∫

dPX,N
({x}u

0

) 0,u∏
a<b

exp λNTrQab(Qab)†. (58)

Until now the computation is standard. Our difference starts
here. Let the singular value decomposition

Qab = AabσabBab.

All matrices are of size M × M; note that the overlaps
(Qab)a<b have rank equal to n := min(N, M ), so (σab)a<b have
n nonzero entries on their diagonal. The dependence of the
replicated system in (xa)a is through the overlap matrices
(Qab)a<b. Changing variables for (Qab)a<b we have the com-
pletely generic change of density

dPX,N ({x}u
0) = dP(Q),M [(Qab)a<b]

= dP(A,B)|(σ ),M [(Aab, Bab)a<b|(σab)a<b]

× dP(σ ),M[(σab)a<b] (59)

for a generic conditional j.p.d.f. P(A,B)|(σ ),M of the singular
vectors and j.p.d.f. of singular values P(σ ),M . With this, and
because the density over singular vectors can be integrated
right away, we now have

EZu =
∫

dP(σ ),M[(σab)]
0,u∏
a<b

exp
β

2
λNTr(σab)2. (60)

This measure couples all matrices of singular values. It thus
seems hopeless to go further without assuming some sort
of simplification. We are now in position to move forward
due to a type of decoupling assumption which we think is
the weakest (and most natural) possible assumption allow-
ing us to carry on computations from there. The spectral
replica symmetric ansatz states that the replicated partition
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function is dominated by configurations such that the joint law
P(σ ),M[(σab)a<b] factorizes as N, M → +∞ into a product of
identical laws:

Assumption (spectral replica symmetry):

P(σ ),M[(σab)a<b] →
0,u∏
a<b

p̃M (σab). (61)

The convergence → means that both the left- and right-hand
sides weakly converge to the same asymptotic distribution as
N → +∞. The j.p.d.f. p̃M (σab), which is shared by assump-
tion by the different overlap matrices/pairs of replica indices
a < b, corresponds to the j.p.d.f. of the singular values of
the overlap N−1(xa)ᵀx̄b [or equivalently N−1(xb)†xa] between
two i.i.d. matrices xa, xb drawn from the prior PX,N , and can
thus in theory be obtained using random matrix theory; we
will discuss further this point in the next section. Denoting
σab = σab(xa, xb) the singular values of the overlap,

p̃M (σ) =
∫

dPX,N (xa)dPX,N (xb)δ(σab − σ). (62)

The law p̃M enforces M − min(N, M ) singular values to be
identically zero. We denote by pn the law of the remaining n
nonzero singular values only, that we continue to denote σab

with a slight abuse of notation. Note that we did not assume
anything at the level of singular vectors which is an important
feature. The decoupling is only assumed at the spectral level.
So we have now that at leading exponential order and as N
gets large,

EZu =
∫ 0,u∏

a<b

d p̃M (σab) exp
β

2
λNTr(σab)2

=
∫ 0,u∏

a<b

d pn(σab) exp
β

2
λNTr(σab)2

=
[ ∫

d pn(σ) exp
β

2
λNTrσ2

]u(u+1)/2

. (63)

Therefore the replica computation gives, using formula (55),
that the expected free entropy limit is given by

lim
N→+∞

1

2MN
ln
∫

dσ exp MN

(
ln pn(σ)

MN
+ βλ

2M
Trσ2

)
,

which can be estimated by saddle point.

C. Replica symmetric formula

Our computation shows that the order parameters are
the (nonzero) singular values σ of the overlap matrix Q :=
N−1x†x̃ between i.i.d. samples x, x̃ from the posterior distribu-
tion PX |Y,N (i.e., two conditionally independent replicas). Let
us see how the scalar overlap q defined by (53) can be deduced
from it. A general Nishimori identity reads (see [76])

E〈g(x, x̃)〉 = E〈g(x, X )〉. (64)

When two or more replicas appear inside a Gibbs bracket
〈 · 〉 it has to be understood as the expectation with respect
to the product Gibbs measure. From it, one can deduce the

nonuniversal scalar overlap q. Indeed, the latter is equal to

q := lim
N→+∞

1

N2
E〈|TrxX †|〉 = lim

N→+∞
1

N
E〈|TrQ|〉

= lim
N→+∞

1

N
|TrE〈Q〉| = 1

N
|TrQ| + oN (1). (65)

The second equality follows from (64), while the third and
last by concentration of the spectral moments of Q; this does
not mean that Q concentrates elementwise, only the mo-
ments N−1TrQk = N−1TrE〈Q〉k + oN (1) do. Finally, because
E〈Q〉 = E[〈x〉〈x〉†] is positive definite, its trace is also the sum
of its singular values which, by the assumed self-averaging of
the (moments of the) distribution of singular values, must be
relatively close to Trσ of singular values of Q (which is not
symmetric). Therefore, the mean of the singular values of the
overlap matrix yield the scalar overlap q.

Result 5 (Replica symmetric formula for Hermitian dictio-
nary learning). Let pn be the j.p.d.f. of the n := min(M, N )
nonzero singular values (which are O(1)) of the matrix
N−1x†x̃, where x, x̃ are i.i.d. N × M (not necessarily rotation-
ally invariant) random matrices drawn from the prior PX,N .
The mutual information of model (52) verifies

1

MN
I

(
X ;

√
λ

N
XX † + Z

)

= −1

2
sup

σ∈Rn
�0

{
ln pn(σ)

MN
+ βλ

2M
Trσ2

]
+ βλ

4

ETr(XX †)2

MN2

+ 1

2
sup

σ∈Rn
�0

ln pn(σ)

MN
+ oN (1). (66)

Denote σ∗ the overlap singular values achieving the supre-
mum in (66). The overlap (65) is then

q = 1

N
Trσ∗ + oN (1). (67)

D. Validity of the spectral replica method in a simple scenario

Let us show that Result 5 is correct in a simple (but non-
trivial) setting. Let N = M = n. Consider the case where X =√

NO for an orthogonal (β = 1) or unitary (β = 2) matrix O.
Then XX † is N times the identity and, therefore, the mutual
information is null (the data Y being independent of X ). The
law pn in Result 5 thus simply enforces all singular values to
be one for any λ. Thus (66) becomes

0 = −βλ

4N
Trσ2 + βλ

4

ETr(XX †)2

N3

with all σi = 1, which is indeed true.

E. Working with a density order parameter, and
a weaker spectral replica symmetric ansatz

Let us show that the variational problem in Result 5 can
equivalently be expressed as an optimization over a density,
similarly as in Sec. II C. For the rest of this section we consider
that the prior PX,N defines a rotationally invariant ensemble of
random matrices in the sense that matrices of left and right
singular vectors of X ∼ PX,N are Haar distributed. Another
interest of the following derivation is that it will be based on
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a weaker form of the spectral replica symmetric ansatz (61).
We start again from the averaged replicated partition function
(60). Because the exponents are functions of the nonzero
singular values only, we can simply think of P(σ ),M[(σab)]
entering (60) as the j.p.d.f. of these n nonzero singular val-
ues. The empirical distribution n−1∑

k�n δ[(σ ab
k )2 − x] of the

nonzero squared singular values of the overlap Qab is also the
empirical distribution ρ̂ab

n of the nonzero eigenvalues (λab
i )i�n

of the nonnegative definite Hermitian matrix Qab(Qab)†:

ρ̂ab
n (x) := 1

n

∑
i�n

δ
(
λab

i − x
)
.

The j.p.d.f. P(σ ),M ((σab)a<b) induces a joint probability den-
sity P̂n[(ρ̂ab)a<b] for the u(u + 1)/2-dimensional random
vector of empirical spectral measures (ρ̂ab

n )a<b. Then the in-
tegral (60) can be reexpressed as∫

DP̂n[(ρ̂ab)a<b]
0,u∏
a<b

exp

[
βλ

2
NM

∫
d ρ̂ab(x)x

]
. (68)

We assume that an LDP at scale M2 = �(N2) with rate func-
tional L̃ holds for (ρ̂ab

n )a<b; this is quite generally correct
for ESDs of (single) rotationally invariant random matrices
[96–98], which is the reason why we assume this invariance
here. This LDP reads

DP̂n[(ρ̂ab)a<b] ∼ exp
{− M2L̃[(ρ̂ab)a<b]

} 0,u∏
a<b

D[ρ̂ab].

The weaker form of the spectral replica symmetric ansatz (61)
that we use here states that the rate functional L̃ is actually
additive over the pairs of indices a < b or, said differently, that
the ESDs (ρ̂ab

n )a<b asymptotically decouple with same laws
dictated by a common rate function L:

Assumption (spectral replica symmetry, weaker form):

L̃[(ρ̂ab)a<b] →
0,u∑
a<b

L[ρ̂ab]. (69)

This ansatz is indeed weaker than (61) as decoupling is as-
sumed for a much coarser statistics than the j.p.d.f. of the
singular values, namely, decoupling of the ESDs over the
replica pairs, which capture only the one-point marginals.
The rate function L is naturally taken to be the one corre-
sponding to the ESD of Qab(Qab)† where xa and xb are now
simply two i.i.d. samples from the prior PX,N , thus L can be
obtained, at least in certain cases as we will discuss in the
next section. Therefore (68) simplifies into{∫

D[ρ̂] exp

[
βλ

2
NM

∫
d ρ̂(x)x − M2L[ρ̂]

]}u(u+1)/2

.

Plugging this expression in (55) and evaluating the integral by
saddle point over the density gives an expression in the case
where the prior PX,N generates rotationally invariant matrices.

Result 6 (Replica symmetric formula for Hermitian dictio-
nary learning with rotationally invariant prior). Consider
the rotationally invariant random matrix ensemble defined
by Hermitian matrices T := N−2x†x̃x̃†x where x, x̃ are i.i.d.
N × M samples from the rotationally invariant prior PX,N .

Assume that the empirical spectral distribution of the nonzero
eigenvalues of T verifies a LDP at scale M2 with rate func-
tional L. The asymptotic mutual information of model (52)
then verifies

1

MN
I

(
X ;

√
λ

N
XX † + Z

)

→ −1

2
sup

ρ∈P�0

{
βλ

2

∫
dρ(x)x − αL[ρ]

}

+ 1

2
sup

ρ∈P�0

{−αL[ρ]} + lim
N→+∞

βλ

4

ETr(XX †)2

MN2
. (70)

Denote ρ∗ the supremum in (70), which corresponds to the
asymptotic density of nonzero eigenvalues of the (expected)
overlap matrix times its conjugate transpose. Using a standard
change of density we can access the asymptotic density γ ∗ ∈
P�0 of singular values of the overlap using γ ∗(x) = 2xρ∗(x2).
Let a := min(1, α). The overlap (65) is then

q = 1

a

∫
dγ ∗(x)x = 1

a

∫
dρ∗(x)

√
x. (71)

In case the rate functional L′ for the LDP of the empirical
density of nonzero singular values of the matrix N−1x†x̃ is
easier to obtain than L, then formula (70) is simply changed
by replacing L by L′ as well as the expectation

∫
dρ(x)x

by the second moment
∫

dρ(x)x2. The optimizer ρ∗ of the
resulting formula then gives access to the scalar overlap due
to q = ∫

dρ∗(x)x/a. Assume there exists an effective po-
tential VT underlying this ensemble, in the sense that T ′ ∼
exp[− βM

4 TrVT (T ′)] has same asymptotic spectral density as
T . This effective potential VT can be deduced from the asymp-
totic spectral density using (21). Then by approximation of
the rate functional L by the usual form (18) for rotationally
invariant ensembles, the asymptotic mutual information can
be approximated by

1

MN
I

(
X ;

√
λ

N
XX † + Z

)

≈ −1

2
sup

ρ∈P�0

[
βλ

2

∫
dρ(x)x − αβ

4

∫
dρ(x)VT (x)

+ αβ

2

∫
dρ(x) dρ(y) ln |x − y|

]

+ 1

2
sup

ρ∈P�0

[
αβ

2

∫
dρ(x) dρ(y) ln |x − y|

− αβ

4

∫
dρ(x)VT (x)

]
+ lim

N→+∞
βλ

4

ETr(XX †)2

MN2
. (72)

F. A more explicit special case: The Ginibre signal

Obtaining the j.p.d.f. pn of singular values entering Result
5 from the knowledge of PX,N or the rate functional L in Result
6 may be highly nontrivial, but this has the merit of being
well-defined “standard” random matrix theory problems. In
certain cases these are known. For example, for products of
i.i.d. Gaussian (Ginibre) matrices (or with an additional source
[113]). Starting with the j.p.d.f., in this case the law pn is
related to the partition function of a two-matrix model (see
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next section) that can be integrated and yields a determinantal
point process defined in terms of the Meijer G function; see
[94,114–118]. Products of finitely but arbitrarily many matri-
ces are considered in these references, but for us only the case
of a product between two matrices is needed. There also exist
results for products of truncated unitary matrices [119,120]
and for more general product ensembles (but with less explicit
formulas) [95]. We refer to [121] for a review on the subject.
See also [122,123] for information about fluctuations and
universality properties in such matrix product ensembles, or
[114,124–127] for results concerning their asymptotic density
of eigenvalues and singular values. Using this body of work
we can go further in explicating Results 5 and 6 in these
known cases. In this section we restrict ourselves to the special
case where the signal X is a Ginibre matrix, so that XX † is
Wishart. We want to find the j.p.d.f. of the singular values
of the matrix N−1x†

0x̃0 where x0, x̃0 are i.i.d. N × M Ginibre
matrices with O(1) entries, which is equivalent to find it for
the matrix y†

0ỹ0 where y0, ỹ0 are i.i.d. N × M standard Ginibre
matrices with law

PY0,N (y0) ∝ exp Tr

(
−βN

2
y0y†

0

)
.

Recall n := min(N, M ). The steps leading to (2.11) of [118]
for the square case M = N , or those leading to (16) of [94]
for the general rectangular case (where M and N do not
necessarily match), imply that the j.p.d.f. pn of the n nonzero
singular values σ of the matrix y†

0ỹ0 is

pn(σ) ∝ |
n(σ2)|β
(∏

k�n

σk

)β(M−n+1)−1

Rn(σ)

∝ exp MN

[
β

MN

1,n∑
i< j

ln
∣∣σ 2

i − σ 2
j

∣∣+ β
M − n

MN
Tr ln σ

+ 1

MN
ln Rn(σ) + on(1)

]
, (73)

where the function

Rn(σ) :=
∫
Rn

�0

dr |
n(r2)|β exp Tr

(
−βN

2
r2

)

×
∫

dμ(β )
n (U ) exp Tr

(
−βN

2
U†σ2Ur−2

)

×
(∏

k�n

rk

)β(N−M−n+1)−1

. (74)

We recognize a two-matrix model. The spherical integral
appears in the function Rn(σ), that we reexpress in a form
appropriate for a saddle-point evaluation:

∫
dr exp MN

[
β

MN

1,n∑
i< j

ln
∣∣r2

i − r2
j

∣∣− β

2M
Tr r2

+β
N − M − n

MN
Tr ln r + I (β )

n

(
σ2, r−2,−N

n

)
+ on(1)

]
.

Therefore we reach

ln Rn(σ)

MN
= sup

r∈Rn
�0

[
β

MN

1,n∑
i< j

ln
∣∣r2

i − r2
j

∣∣− β

2M
Tr r2

+ β
N − M − n

MN
Tr ln r + I (β )

n

(
σ2, r−2,−N

n

)]

+ on(1).

Thus we end up with

ln pn(σ)

MN

= β sup
r∈Rn

�0

[
1,n∑
i �= j

ln
∣∣σ 2

i − σ 2
j

∣∣
2MN

+ M − n

2MN
Tr ln σ2

+
1,n∑
i �= j

ln
∣∣r2

i − r2
j

∣∣
2MN

− Tr r2

2M
+ N − M − n

2MN
Tr ln r2

+ n2

βMN
I (β )
n

(
σ2, r−2,−N

n

)]
+ on(1). (75)

With this expression in hand we can write down a more
explicit version of Result 5 when the signal is Ginibre. By
the same type of manipulations as those found in Sec. II C
we can also identify the rate functional L starting from (75)
and therefore express the result in terms of a density order
parameter.

Result 7 (Replica symmetric formula for Hermitian dictio-
nary learning with a Ginibre signal). Let n := min(N, M ).
When PX,N (X ) ∝ exp Tr[−(β/2)XX †] the mutual informa-
tion of model (52) verifies

1

MN
I

(
X ;

√
λ

N
XX † + Z

)

= −β

2
sup

(σ,r)∈Rn
�0×Rn

�0

[ 1,n∑
i �= j

ln
∣∣σ 2

i − σ 2
j

∣∣
2MN

+
1,n∑
i �= j

ln
∣∣r2

i − r2
j

∣∣
2MN

+ M − n

2MN
Tr ln σ2 + N − M − n

2MN
Tr ln r2

+ λ

2M
Trσ2 − 1

2M
Tr r2 + n2

βMN
I (β )
n

(
σ2, r−2,−N

n

)]

+ βλ

4

ETr(XX †)2

MN2
+ τN . (76)

Constant τN fixes I (X ; Z) = 0:

τN := β

2
sup

(σ,r)∈Rn
�0×Rn

�0

gRS
n (σ, r, λ = 0) + oN (1)

for the replica symmetric potential function gRS
n : Rn

�0 ×
Rn

�0 × R�0 → R defined by the curly bracket {· · · } in the
variational problem (76). Denote σ∗ the overlap singular val-
ues achieving the supremum in (76). The overlap (65) is
then given by q = N−1Trσ∗ + oN (1). Introducing asymptotic
densities ρ and ρ̃ associated to the squared singular values σ2

and r2, respectively, the conjecture can be reexpressed in the
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limit N → +∞ and M/N → α as

1

MN
I

(
X ;

√
λ

N
XX † + Z

)

→ −β

2
sup

(ρ,ρ̃ )∈P�0×P�0

{
min

(
α

2
,

1

2α

)[∫
dρ(x) dρ(y) ln |x − y| +

∫
dρ̃(x) d ρ̃(y) ln |x − y|

]

+ max

(
0,

1

2
− 1

2α

)∫
dρ(x) ln x + max

(
1

2
− α,−1

2

)∫
dρ̃(x) ln x + min

(
1

2
,

1

2α

)[
λ

∫
dρ(x)x −

∫
dρ̃(x)x

]

+ 1

β
min

(
α,

1

α

)
I (β )

[
ρ, ρ̂[ρ̃],

−1

min(1, α)

]}
+ βλ

4α
lim

N→+∞
ETr(XX †)2

N3
+ τ. (77)

Using a standard change of density the density ρ̂[ρ̃] belong-
ing to P�0 can be expressed in terms of ρ̃ over which the
optimization takes place:

ρ̂[ρ̃](x) = ρ̃(1/x)

x2
.

Constant τ fixes the constraint I (X ; Z) = 0:

τ := β

2
sup

(ρ,ρ̃ )∈P�0×P�0

gRS[ρ, ρ̃, λ = 0]

for the replica symmetric potential functional gRS : P�0 ×
P�0 × R�0 → R defined by the curly brackets {· · · } in (77).
Denoting by ρ∗ the density of squared singular values of the
overlap that achieves the supremum over ρ in (77), the scalar
overlap reads q = ∫

dρ∗(x)
√

x/ min(1, α).
Due to the presence of the spherical integral, solving

the above variational problem(s) is an important challenge.
Because the Ginibre prior induces a rotationally invariant
(Wishart) matrix XX † this formula must match the simpler
Result 3. But, as already mentioned, the great advantage of
Result 7 (and more generically of Results 5 and 6) is that
their numerical solution would also give access to the scalar
overlap q, which cannot be extracted from Result 3. Solving
the functional variational problems of Result 7 and comparing
it to Result 3, whose solution can be numerically obtained
thanks to Matytsin’s formalism [88], is therefore one (rather
challenging) route to check the validity of our spectral replica
method. We do not know at the moment how to do that,
and this is left for future investigations. But there is another
alternative route to check the validity of our replica theory
without actually solving the above variational problems. It
goes as follows. Recall the integral appearing in (63). In the
case of a Ginibre signal it reads∫

dσ dr |
n(σ2)
n(r2)|β

×
(∏

k�n

σk

)β(M−n+1)−1(∏
k�n

rk

)β(N−M−n+1)−1

×
∫

dμ(β )
n (U ) exp

βN

2
Tr(λσ2 − r2 − U†σ2Ur−2).

This is a two-matrix model. If one was able to actually
compute this integral without using a saddle point (which
generates the variational formulation), the result could be
compared to Result 3. Fortunately, it can be computed exactly

using the method of biorthogonal polynomials as used in
[66,94,118]; see also [128]. This promising strategy to test the
validity of our spectral replica method is nontrivial and left for
future work.

VI. DICTIONARY LEARNING

A. The model

Let the ground-truth dictionary S = [Sik] ∈ KN×K be
drawn from a centered distribution S ∼ PS,K , and the co-
efficients T = [Tjk] ∈ KM×K from T ∼ PT,K centered also,
where the entries of both S and T are typically O(1). These
two priors should induce symmetric j.p.d.f. of singular values
for S and T . We set

N = αK + o(K ) and M = γ K + o(K )

with fixed α, γ > 0 as K → +∞. Consider having access
to a data matrix Y = [Yi j] ∈ KN×M with entries generated
according to

Y =
√

λ

N
ST † + Z, (78)

with a Ginibre noise matrix Z ∈ KN×M with law

PZ,N (Z) ∝ exp Tr

(
−β

2
ZZ†

)
.

The scaling in N of the matrix entries and eigenvalues are
the same as in the positive definite case (52). We assume this
time that both priors are biorthogonal or unitary rotationally
invariant, i.e.,

dPS,K (S) = dPS,K (OSÕ),

dPT,K (T ) = dPT,K (OTÕ) (79)

for any orthogonal (β = 1) or unitary (β = 2) matrices O
and Õ. Rotational invariance of the prior was not needed
in the Hermitian case of dictionary learning, but it seems
required in the less symmetric present setting. We jointly
denote X := (S, T ) and x := (s, t ) ∈ KN×K × KM×K . Let
dPX,K (x) := dPS,K (s) dPT,K (t ). The joint posterior is

dPX |Y,K (x|Y ) = 1

Z (Y )
dPX,K (x) exp

β

2
Tr

×
(√

λ

N
Y †st† +

√
λ

N
Yts† − λ

N
s†st†t

)
.

(80)
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Note the invariance of the model under (S, T ) → (SU , TU )
for any orthogonal or unitary U . The object of interest is the
average free entropy

E fN := 1

NM
E lnZ (Y ).

It is linked to the mutual information by

1

MN
I[Y ; (S, T )] = −E fN + βλ

2MN2
ETrS†ST †T .

B. Replica trick and spectral replica symmetry

As before, working in the Bayes-optimal setting allows us
to simply rename the ground truth x0 = X which will play the
same role as all other replicas xa = (sa, ta) ∈ KN×K × KM×K

of x. We set∫
dPX,K ({x}u

0) · · ·

=
∫
KNK (u+1)

u∏
a=0

dPS,K (sa)
∫
KMK (u+1)

u∏
a=0

dPT,K (ta) · · · .

The replica trick (55) requires computing the moments EZu

of the partition function. As in Sec. V we consider first the
more cumbersome complex case β = 2. Model (78) is then

equivalent to

ReYi j ∼ N
(√

λ

N

〈Si, T̄ j〉 + 〈S̄i, T j〉
2

,
1

2

)

(i, j) ∈ [N] × [M].

ImYi j ∼ N
(√

λ

N

〈Si, T̄ j〉 − 〈S̄i, T j〉
2i

,
1

2

)

We introduce the K × K (a priori non-Hermitian) overlap
matrices and their SVD decompositions:

Qab
s :=

(
1

N

∑
i�N

sa
ik s̄b

i�

)
k,��K

= (sa)ᵀs̄b

N
= Aab

s σab
s Bab

s ,

Qab
t :=

(
1

N

∑
j�M

t̄a
jkt b

j�

)
k,��K

= (ta)†tb

N
= Aab

t σab
t Bab

t .

The overlaps (Qab
s )a<b are of rank ns := min(N, K ), and thus

(σab
s )a<b have ns nonzero entries on their diagonal, while

(Qab
t )a<b have rank nt := min(M, K ) implying that (σab

t )a<b

have nt nonzero entries on their diagonal. Now, we integrate
Y which is, conditionally on (S, T ), a complex Gaussian mul-
tivariate random variable, by using formula (56) and obtain
that

EZu =
∫

dPX,K
({x}u

0

)
EY |x0

∏
a�u

exp 2
N,M∑
i, j

[√
λ

N
ReYi j

〈
sa

i , t̄a
j

〉+ 〈
s̄a

i , ta
j

〉
2

− λ

2N

(〈
sa

i , t̄a
j

〉+ 〈
s̄a

i , ta
j

〉
2

)2]

× exp 2
N,M∑
i, j

[√
λ

N
ImYi j

〈
sa

i , t̄a
j

〉− 〈
s̄a

i , ta
j

〉
2i

− λ

2N

(〈
sa

i , t̄a
j

〉− 〈
s̄a

i , ta
j

〉
2i

)2]

=
∫

dPX,K
({x}u

0

) 0,u∏
a<b

exp
2λ

N

N,M∑
i, j

(〈
sa

i , t̄a
j

〉+ 〈
s̄a

i , ta
j

〉
2

×
〈
sb

i , t̄b
j

〉+ 〈
s̄b

i , tb
j

〉
2

+
〈
sa

i , t̄a
j

〉− 〈
s̄a

i , ta
j

〉
2i

×
〈
sb

i , t̄b
j

〉− 〈
s̄b

i , tb
j

〉
2i

)

=
∫

dPX,K
({x}u

0

) 0,u∏
a<b

exp
2λ

N

N,M∑
i, j

(
Re
〈
sa

i , t̄a
j

〉
Re
〈
sb

i , t̄b
j

〉+ Im
〈
sa

i , t̄a
j

〉
Im
〈
sb

i , t̄b
j

〉)

=
∫

dPX,K
({x}u

0

) 0,u∏
a<b

exp
2λ

N

N,M∑
i, j

Re
(〈

sa
i , t̄a

j

〉〈s̄b
i , tb

j〉
)

=
∫

dPX,K
({x}u

0

) 0,u∏
a<b

exp βλNReTrQab
s

(
Qab

t

)†
.

The product form of the prior measure

dPX,K
({x}u

0

) =
u∏

a=0

dPS,K (sa) dPT,K (ta)

induces a j.p.d.f. factorized over the two types of overlaps:

dP(Qs,Qt ),K
[(

Qab
s , Qab

t

)
a<b

]
= dP(Qs ),K

[(
Qab

s

)
a<b

]
dP(Qt ),K

[(
Qab

t

)
a<b

]
. (81)

At this stage we need one additional assumption when com-
pared with the Hermitian case of Sec. V. For each pair a < b

of replica indices let i.i.d. Haar matrices Uab,V ab ∼ μ
(β )
K in-

dependent of everything. We assume the following equality in
distribution in the large size limit [129], which is suggested
by the combination of the independence (81) between the two
types of overlaps together with the rotational invariance (79)
of both priors (from which the overlap matrices Qab

s and Qab
t

must inherit).

Assumption (equality in law): For any pair a < b:

TrQab
s

(
Qab

t

)† ∼ Tr
[
UabQab

s V ab
(
Qab

t

)†]
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as M, N, K → +∞ proportionally. As a consequence,

EZu ∝
∫

dP(Qs,Qt ),K
[(

Qab
s , Qab

t

)
a<b

]

×
0,u∏
a<b

exp βλNReTrQab
s

(
Qab

t

)†

=
∫

dP(Qs ),K
[(

Qab
s

)
a<b

]
dP(Qt ),K

[(
Qab

t

)
a<b

]

×
∫ 0,u∏

a<b

dμ
(β )
K (Uab) dμ

(β )
K (V ab)

× exp βλNReTr
[
UabQab

s V ab
(
Qab

t

)†]
. (82)

We now change variables for the SVD decompositions of the
overlaps:

dP(Qs ),K
[(

Qab
s

)
a<b

]
dP(Qt ),K

[(
Qab

t

)
a<b

]
= dP(As,Bs )|(σs ),K

[(
Aab

s , Bab
s

)
a<b

∣∣(σab
s

)
a<b

]

× dP(At ,Bt )|(σt ),K
[(

Aab
t , Bab

t

)
a<b

∣∣(σab
t

)
a<b

]
× dP(σs ),K

[(
σab

s

)
a<b

]
dP(σt ),K

[(
σab

t

)
a<b

]
.

The spectral replica symmetric ansatz reads in this case:

Assumption (spectral replica symmetry):

P(σs ),K
[(

σab
s

)
a<b

] →
0,u∏
a<b

p̃S,K
(
σab

s

)
(83)

P(σt ),K
[(

σab
t

)
a<b

] →
0,u∏
a<b

p̃T,K
(
σab

t

)
,

where p̃S,K corresponds to the j.p.d.f. of singular values of a
product N−1s†s̃ between i.i.d. samples from the prior PS,K , and
similarly for p̃T,K with samples from PT,K . Again, → means
that both sides weakly converge to the same distribution as
N, M, K → +∞. Thus

EZu ∝
∫ 0,u∏

a<b

d p̃S,K
(
σab

s

)
d p̃T,K

(
σab

t

) ∫
dP(As,Bs )|(σs ),K

[(
Aab

s , Bab
s

)
a<b

∣∣(σab
s

)
a<b

]
dP(At ,Bt )|(σt ),K

[(
Aab

t , Bab
t

)
a<b

∣∣(σab
t

)
a<b

]

×
∫ 0,u∏

a<b

dμ
(β )
K (Uab) dμ

(β )
K (V ab) exp βλNReTr

[
UabAab

s σab
s Bab

s V ab
(
Bab

t

)†
σab

t

(
Aab

t

)†]
.

The mechanism here is to absorb the left and right singular vectors into the Haar distributed matrices: we redefine
(Aab

t )†UabAab
s → Uab and Bab

s V ab(Bab
t )† → V ab which remain independent and Haar distributed; these changes have unit

Jacobian determinant. Thus, the distributions of singular vectors, which a priori couple the different pairs of replicas, are
integrated and decoupling of the integrals over the pairs of indices a < b takes place. This yields

EZ (Y )u ∝
[ ∫

d p̃S,K (σs) d p̃T,K (σt )dμ
(β )
K (U ) dμ

(β )
K (V ) exp βλNReTr

(
UσsVσt

)]u(u+1)/2

=
{∫

dσs dσt exp MN

[
ln p̃S,K (σs)

MN
+ ln p̃T,K (σt )

MN
+ K2

MN
J (β )

K (σs, σt , 2λ)

]}u(u+1)/2

.

Saddle-point estimation and taking u → 0+ yields the fol-
lowing conjecture for the mutual information and, moreover,
the nonuniversal scalar overlaps (see the justifications below
(65)):

qs := lim
N→+∞

1

N
E〈|TrsS†|〉 = lim

N→+∞
1

N
E〈|TrQs|〉

= lim
N→+∞

1

N
|TrE〈Qs〉| = 1

N
|TrQs| + oK (1). (84)

Scalar overlap qt is defined similarly but replacing in (84) the
matrices (s, S, Qs) by (t, T , Qt ). Here the overlaps

Qs := N−1s†s̃ and Qt := N−1t†t̃

for two i.i.d. samples x = (s, t ) and x̃ = (s̃, t̃ ) from the joint
posterior distribution PX |Y,N given by (80) (these should not be
confused with the samples drawn from the priors appearing in
the statement below).

Result 8 (Replica symmetric formula for dictionary learn-
ing). Let p̃S,K by the j.p.d.f. of the K singular values [which are

O(1)] of N−1s†s̃, where s, s̃ are i.i.d. N × K random matrices
drawn from prior PS,K . Similarly, let p̃T,K be the j.p.d.f. of
the K singular values of N−1t†t̃ , where t, t̃ are i.i.d. M × K
matrices drawn from PT,K . The mutual information of model
(78) verifies

1

MN
I

[
(S, T );

√
λ

N
ST † + Z

]

= − K2

2MN
sup

(σs,σt )∈SK

[
ln p̃S,K (σs)

K2
+ ln p̃T,K (σt )

K2

+ J (β )
K (σs, σt , 2λ)

]
+ βλ

2MN2
ETrS†ST †T + τK . (85)

The set SK is defined as

SK := {
(σs, σt ) ∈ RK

�0 × RK
�0 :

σs is rank min(N, K ), σt is rank min(M, K )
}
.
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Constant τK fixes I ((S, T ); Z) = 0, i.e.,

τK := 1
2 sup

(σs,σt )∈SK

gRS
K (σs, σt , λ = 0) + oK (1),

where gRS
K : RK

�0 × RK
�0 × R�0 → R is the replica symmetric

potential function defined by the curly brackets {· · · } in the
variational problem (85). Denote (σ∗

s , σ
∗
t ) the overlaps singu-

lar values achieving the supremum in (85). The scalar overlaps
are

qs = 1

N
Trσ∗

s + oK (1), qt = 1

N
Trσ∗

t + oK (1). (86)

We can express the result using density order parameters,
under an even weaker decoupling assumption than (83). The
steps are similar to what is done in Sec. V E so we will be
briefer. Let the empirical distributions of singular values

ρ̂ab
s,K (x) :=

∑
k�K

δ
(
σ ab

s,i − x
)

K
, ρ̂ab

t,K (x) :=
∑
k�K

δ
(
σ ab

t,i − x
)

K
.

We assume that the random (ρ̂ab
s,K )a<b jointly verify a LDP at

scale K2:

DP̂s,K
[(

ρ̂ab
s

)
a<b

] ∼ exp
(−K2L̃s

[(
ρ̂ab

s

)
a<b

]) 0,u∏
a<b

D
[
ρ̂ab

s

]
,

and similarly for (ρ̂ab
t,K )a<b with rate functional L̃t . Then the

weaker decoupling assumption reads

Assumption (spectral replica symmetry, weaker form):

L̃s/t
[(

ρ̂ab
s/t

)
a<b

] →
0,u∑
a<b

Ls/t
[
ρ̂ab

s/t

]
.

The rate functional Ls is naturally taken to be the one cor-
responding to the empirical distribution of singular values
of a product of two i.i.d. samples from the prior PS,K , and
similarly for Lt but with samples from PT,K . Start again
from (82). Absorb the singular vectors of the overlaps in
the Haar distributed matrices Uab and V ab, so that the rect-
angular spherical integrals appearing in (82) only depend
on the singular values (σab

s , σab
t )a<b. Only the measures

dP(σs ),K [(σab
s )a<b] dP(σt ),K [(σab

t )a<b] then remain. These in-
duce j.p.d.f. over the above empirical distributions of singular
values. As seen from (50), asymptotically, the rectangular
spherical depends only on the density of singular values. All
these observations combined with the aforementioned LDPs
and decoupling ansatz (VI B) allow us to simplify (82) into

EZu ∝
[ ∫

D[ρ̂s]D[ρ̂t ] exp K2(−Ls[ρ̂s] − Lt [ρ̂t ]

+ J (β )[ρ̂s, ρ̂t , 2λ] + oK (1))

]u(u+1)/2

.

Saddle-point estimation and (55) then yields the following
variational formulation.

Result 9 (Replica symmetric formula for dictionary learn-
ing). Assume that the empirical distribution of singular values
of N−1s†s̃, where s, s̃ are i.i.d. N × K random matrices drawn
from prior PS,K , verifies a LDP at scale K2 with rate func-
tional Ls. Similarly, assume that the empirical distribution of

singular values of N−1t†t̃ , where t, t̃ are i.i.d. M × K from
prior PS,K , verifies a LDP at scale K2 with rate functional Lt .
The mutual information verifies, in the limit K → +∞ with
N/K → α and M/K → γ ,

1

MN
I

[
(S, T );

√
λ

N
ST † + Z

]

→ − 1

2αγ
sup

(ρs,ρt )∈S
[J (β )[ρs, ρt , 2λ] − Ls[ρs] − Lt [ρt ]]

+ βλ

2
lim

K→+∞
ETrS†ST †T

MN2
+ τ. (87)

The optimization is over probability densities with finite non-
negative support belonging to

S := {(ρs, ρt ) = {[1 − min(1, α)]δ0 + min(1, α)ρ̃s,

[1 − min(1, γ )]δ0 + min(1, γ )ρ̃t }, (ρ̃s, ρ̃t ) ∈ P�0 × P�0}.
Constant τ fixes the constraint I ((S, T ); Z) = 0, i.e.,

τ := 1

2αγ
sup

(ρs,ρt )∈S
gRS[ρs, ρt , λ = 0],

for the replica symmetric potential functional gRS : P�0 ×
P�0 × R�0 → R defined by the curly brackets in (87). The
densities achieving the supremum in (87) are

(ρ∗
s , ρ∗

t ) = [(1 − min(1, α)]δ0 + min(1, α)ρ̃∗
s ,

[1 − min(1, γ )]δ0 + min(1, γ )ρ̃∗
t ).

The overlaps are then given by

qs =
∫

dρ∗
s (x) x, qt =

∫
dρ∗

t (x) x.

Note that in the more symmetric special case of M = N
and PS,K = PT,K [which does not correspond to the Hermitian
dictionary learning problem (52) as S and T remain i.i.d.], by
symmetry, the replica symmetric formula can be simplified as
(setting Ls = Lt = L)

1

MN
I

[
(S, T );

√
λ

N
ST † + Z

]

→ − sup
ρ∈Sdiag

[
J (β )[ρ, ρ, 2λ]

2α2
− L[ρ]

α2

]

+ βλ

2
lim

K→+∞
ETrS†ST †T

N3
+ τdiag,

where Sdiag is the “diagonal subset” of S where additionally
ρs = ρt (and the definition of τdiag is modified from τ accord-
ingly). The unique scalar overlap is in this case qs = qt =∫

dρ∗(x) x where ρ∗ achieves the supremum in the variational
problem for the mutual information.

VII. COMPARISON TO PREVIOUS WORKS,
CONCLUSION AND OPEN PROBLEMS

The Bayes-optimal setting of linear-rank dictionary learn-
ing has been previously studied in the inspiring works [52–56]
(in the real case β = 1). But these approaches provide only
approximations to the exact asymptotic formulas. In [55] they
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assume that the entries of STᵀ in (78) are jointly Gaus-
sian while they are not; see [57] for more explanations. It
also corresponds to assume that the overlap matrix Qab is
parametrized by a single number. In his thesis [56] Schmidt
went further. He proposed instead that the overlap really is
a matrix but symmetric (while there is no reason for it to
be so) and completely independent of the replica indices.
This assumption that both eigenvalues and eigenvectors are
replica independent is physically equivalent to assume that the
overlaps (Qab)a<b concentrate entrywise. However, we expect
that only the statistics of eigenvalues or singular values can
be self-averaging as is often the case in random matrix theory.
The same phenomenon happens in large covariances matrices:
only the spectral properties become deterministic while the
matrix entries fluctuate even in the large size limit.

In the most generic version of the method leading to Re-
sult 5, our ansatz is only at the level of the distribution of
singular values of the overlaps Qab = Aabσab

Q Bab: the singular
values of the matrices σab

Q are assumed to decouple and to
have identical statistics in the large size limit. Nothing is
assumed about the singular vectors. The spectral decoupling
assumption (61) allows us to carry on the computation while
completely capturing the relevant rotational degrees of free-
dom and invariances. The spectral replica method therefore
allows us to reduce the challenging task of computing the
quenched free entropy (or mutual information), which is an
integral over �(N2) matrix elements (and that additionally
should be averaged over the data distribution), into two well
defined RMT subproblems:

(1) Obtaining the j.p.d.f. of the singular values (or eigen-
values) of a product of two i.i.d. random matrices drawn from
the prior distribution PX,N . Or alternatively, to obtain the rate
functional controlling the large deviations of the empirical
spectral distribution.

(2) Analyzing a Coulomb gas, i.e., an optimization prob-
lem over �(N ) interacting degrees of freedom representing
the singular values (or eigenvalues) of certain matrix order
parameters entering the analysis. Or equivalently, solving a
functional optimization problem over the associated asymp-
totic densities.

As already discussed, the first task does not require a priori
the prior PX,N to be factorized over the entries of the matrix
X . So in cases where the j.p.d.f. pM (or the rate functional L)
can be evaluated, the spectral replica method yields concrete
asympotic formulas for the mutual information and MMSE.
To conclude, we have studied two classes of matrix inference
problems in the Bayesian-optimal setting: matrix denoising,
and symmetric and nonsymmetric dictionary learning. Most
importantly, they are analyzed in the challenging scaling
regime of linear-rank matrix signals for which very few
prior results exist. These problems bear some similarity with
matrix models originating in high-energy physics, but with
one crucial aspect when applied to inference, namely, the
presence of a quenched average over the data. The analysis
of matrix denoising could be carried out using known tools
from random matrix theory, in particular the use of spherical
integrals and related perturbative expansions. On the other
hand for dictionary learning our analysis combines the use of
spherical integrals with a replica symmetric ansatz, which we
call the spectral replica method. For dictionary learning, the

solutions are expressed in terms of nontrivial variational
problems reminiscent of Coulomb gases (but with extra com-
plications), which reduce the number of degrees of freedom
from �(N2) down to �(N ). Finding numerical solutions of
the variational problems appears to be highly nontrivial. There
are two difficulties: one due to the appearance of spherical
integrals, and a second due to the determination of the j.p.d.f.
of products of i.i.d. random matrices (the distribution pM),
or of the rate functional associated with the large deviations
of their empirical spectral densities. We have outlined in
Sec. V F how the second problem can sometimes be reduced
to the calculation of other spherical integrals. We conjecture
that our solutions of the denoising and dictionary learning
problems are exact in the thermodynamic limit. In Sec. V D
we have presented a sanity check in a simple case. However
this case hardly constitutes a satisfying check. Finding other
more interesting checks remains one of the most important
problems. A more promising and much less trivial check has
been outlined in Sec. V F. The proposed strategy is based on
the method of biorthogonal polynomials for exactly comput-
ing the integral resulting from our analysis in the case of
Hermitian dictionary learning with a Ginibre signal, which
will then be comparable against our predictions for matrix de-
noising using Matytsin’s hydrodynamic mapping [88]. While
we believe that this is not out of reach, it is certainly not
an easy task. The variational problems can also form the
starting point of perturbative expansions in regimes of small
and large signal-to-noise ratio, and/or expansions in powers
of the inverse rank. It may then be possible to obtain nontrivial
comparisons with the “high-temperature” expansions derived
in [57] based on the Plefka-George-Yedidia formalism. As
a matter of fact, even if our proposed solutions were not
exact, since they are based on a rather weak form of replica
symmetric ansatz (the spectral replica symmetry) they could
still constitute a good approximation, that would be useful in
nonperturbative regimes. Finally, we hope that eventually our
study can inspire rigorous progress on these problems. A first
desirable step would be to provide proofs of Conjectures 3 and
4 for the easier denoising problem.
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APPENDIX A: SPHERICAL INTEGRALS

In this Appendix we present the HCIZ formula in the
Hermitian and general non-Hermitian matrix cases. For the
derivations we refer to the very readable original papers by
Itzykson and Zuber [63] and Mehta [66].

1. Hermitian case

Consider Hermitian M × M matrices A, B. These are diag-
onalized by unitary matrices and have real eigenvalues. Recall
the notation A = UAλA(UA)†, B = UBλB(UB)†. Recall the

024136-24



STATISTICAL LIMITS OF DICTIONARY LEARNING: … PHYSICAL REVIEW E 106, 024136 (2022)

definition of the Vandermonde (5). The HCIZ formula reads∫
U (M )

dμ
(2)
M (U ) exp γ MTr(AU†BU )

=
∏

k�M−1 k!

(γ M )M(M−1)/2

det(exp γ MλA
i λB

j )


M (λA)
M (λB)
, (A1)

where μ
(2)
M is the normalized Haar measure over the group

of unitary M × M matrices and [exp γ MλA
i λB

j ] is the matrix
[exp(γ MλA

i λB
j )]i, j�M . Note that on the left-hand side we can

replace A, B by λA, λB since UA, UB leave the Haar measure
invariant. Note also that by permutation symmetry the ratio
of determinants is positive and independent of the ordering
of eigenvalues. In the limit M → +∞ the spherical integral
can be described in terms of an hydrodynamical system (the
complex Burgers equation) thanks to the work of Matytsin
[88] and proven in [87]. See also [102,130]. This is not used
in this paper but may be useful for future analyses.

2. General non-Hermitian case

Let A, B be two general M × M matrices. Their singu-
lar value decomposition is A = UAσAV A and B = UBσBV B

where σA, σB are the diagonal matrices of nonnegative singu-
lar values and UA, V A, UB, and V B are unitary matrices. The
spherical integral involves the modified Bessel function of the
first kind:

I0(x) :=
∫ π

0

dθ

π
exp(x cos θ ).

This function is positive, monotone increasing, I0(0) = 1, and
grows as exp x at infinity. We have∫

U (M )×U (M )
dμ

(2)
M (U ) dμ

(2)
M (V ) exp γ MReTr(AUBV )

= 2M(M−1)
(∏

k�M−1 k!
)2

M!(Mγ )M(M−1)

det
[
I0
(
Mγ σ A

i σ B
j

)]

M[(σA)2]
M[(σB)2]

.

As before, on the left-hand side we can replace A, B by σA, σB,
and the ratio of determinants is positive and invariant under
permutations of singular values. This formula first obtained in
[108] and proven in [109] can be derived by the same methods
used for the classical HCIZ formula based on the solution
of the heat equation. Like for the standard spherical integral,
there also exists an asymptotic M → +∞ representation of
the rectangular spherical integral in terms of a complex hy-
drodynamical system [110,111].

APPENDIX B: MINIMUM MEAN-SQUARE ERROR:
A MORE EXPLICIT FORMULA

By the I-MMSE relation (12), we obtained in Result 3
that the MMSE is directly proportional to the derivative with
respect to the signal-to-noise ratio λ of the HCIZ integral.
Its dependence in λ is through the data-matrix eigenvalues
λY . From the HCIZ formula (see Appendix A) we get in the
complex case β = 2, using the Jacobi formula

∂

∂Xi j
ln detX = (X−1) ji,

that the HCIZ derivative verifies

N2 d

dλ
I (2)
N (λS,λY ,

√
λ) = N2

2
√

λ

d

d
√

λ
I (2)
N (λ,

√
λλY , 1)

= 1

2
√

λ

d

d
√

λ
ln det

[
exp NλS

c

(√
λλY

d

)]− 1

2
√

λ

d

d
√

λ
ln det

[(√
λλY

c

)d−1]

= 1

2
√

λ

∑
i, j�N

d ln det
[

exp NλS
c

(√
λλY

d

)]
d exp NλS

i

(√
λλY

j

) d exp NλS
i

(√
λλY

j

)
d
√

λ

− 1

2
√

λ

∑
i, j�N

d ln det
[(√

λλY
c

)d−1]
d
(√

λλY
i

) j−1

d
(√

λλY
i

) j−1

d
√

λ

= 1

2
√

λ

∑
i, j�N

{[
exp NλS

c

(√
λλY

d

)]−1}
jiNλS

i

[
exp NλS

i

(√
λλY

j

)]d
√

λλY
j

d
√

λ

− 1

2
√

λ

∑
i, j�N

{[(√
λλY

c

)d−1]−1}
ji( j − 1)

(√
λλY

i

) j−2 d
√

λλY
i

d
√

λ
.

Introducing the Y eigenvectors YψY
i = λY

i ψY
i , the Hellmann-Feynman theorem implies

dλY
i

d
√

λ
= (

ψY
i

)†
SψY

i .

Thus

d
√

λλY
i

d
√

λ
= (

ψY
i

)†
(
√

λS + ξ)ψY
i +

√
λ
(
ψY

i

)†
SψY

i

= (
ψY

i

)†
(2

√
λS + ξ)ψY

i .
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Putting everything together in (25) we find that the MMSE equals (when β = 2)

1

N2
E‖S − E[S|Y ]‖2 = 4

N
ETrλ2

S − 2√
λN2

∑
i, j�N

{[
exp NλS

c

(√
λλY

d

)]−1}
jiNλS

i

[
exp NλS

i

(√
λλY

j

)](
ψY

j

)†
(2

√
λS + ξ)ψY

j

+ 2√
λN2

∑
i, j�N

{[(√
λλY

c

)d−1]−1}
ji( j − 1)

(√
λλY

i

) j−2(
ψY

i

)†
(2

√
λS + ξ)ψY

i + oN (1).

Besides the matrix inversions this formula also requires to
compute eigenvectors of Y = √

λS + ξ; it may be more prac-
tical to use (ψY

i )†(2
√

λS + ξ)ψY
i = λY

i + √
λ(ψY

i )†SψY
i . If

one were to start instead from Result 1 the computation
would be similar, because at the stationary point, the total λ

derivative is computed by taking a partial derivative only with
respect to the explicit λ dependence. Indeed, the terms coming
from the implicit dependence in the solution λs of the fixed
point equations do not contribute.

APPENDIX C: MATHEMATICA CODES

1. Small signal-to-noise expansion

The two first functions provided below allowing one to
convert moments to free cumulants and vice versa are taken
from [131]. This function gives the free cumulants as function
of generic moments (Mi ) of a density:

ln[1]:=m[z_] := 1 + M1z + M2zˆ2 + M3zˆ3

+M4zˆ4 + M5zˆ5

+M6zˆ6 + M7zˆ7 + M8zˆ8;

Simplify[Table[{k, (−(k−1)ˆ(−1)/k!)

∗D[m[z]ˆ(1−k), z, k]/.z− > 0}, {k, 2, 8}]]
The next function gives the moment generating function ex-
pressed with the free cumulants and thus allows us to read
the expression of the moments in terms of free cumulants. We
force the values of the first two free cumulants to k1 = 0 and
k2 = 1 (but this is not necessary):

lm[2] := k1 = 0; k2 = 1; m[z] = 1;

r[z] := k1 + k2z + k3zˆ2 + k4zˆ3

+k5zˆ4 + k6zˆ5

+k7zˆ6 + k8zˆ7 + k9zˆ8;

Do[rtmp[z_] = PolynomialMod[zr[z],

zˆ(k + 1)];

m[z_] = PolynomialMod[1 +
rtmp[zm[z]], zˆ(k + 1)],

k, 0, 8];

Collect[m[z], z]

We now express the asymptotic moments mi = θi :=
limN→+∞ N−1TrSi of the signal S as a function of the free
cumulants (ki ) of its asymptotic spectral density due to the
previous function. We focus on traceless signals m1 = 0 = k1

and with normalized variance m2 = 1 = k2; the first condition
does not change anything from the information-theoretic point
of view as explained in Remark 1 below Result 3, and the
second condition simply amounts to a rescaling of λ if not a
priori verified:

In[3] := m3 = k3;

m4 = k4 + 2;

m5 = 5k3 + k5;

m6 = 3k32 + 6k4 + k6 + 5;

m7 = 7k3k4 + 21k3 + 7k5 + k7;

m8 = 28k3ˆ2 + 8k3k5 + 4k4ˆ2

+28k4 + 8k6 + k8 + 14;

We express the free cumulants (ci ) of the data Y as a function
of the free cumulants (ki ) of the signal S. The (ci ) are the
(φ̄i) in the Zinn-Justin and Zuber expansion [106] (see also
[105] for the same expansion in terms of trace moments, also
found in [106]). The Wigner matrix ξ only shifts the second
free cumulant of

√
λS (which is λ) by 1. Below, variable snr

refers to λ:

In[4] := c2 = snr + 1;

c3 = k3snrˆ(3/2);

c4 = k4snrˆ2;

c5 = k5snrˆ(5/2);

c6 = k6snrˆ3;

c7 = k7snrˆ(7/2);

c8 = k8snrˆ4;

The terms (Fn) in the Zinn-Justin and Zuber expansion of the
spherical integral [106], expressed with the free cumulants
(ci ) of the data matrix, and the moments (mi ) of the signal
S; the (mi ) are the (θi ) in the expansion found in [106]:

In[5]F2 = c2/2;

F3 = c3m3/3;

F4 = c4m4/4 − 1/2(c2ˆ2/2 + c4);

F5 = c5m5/5 − m3(c2c3 + c5);
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F6 = −1/2m3ˆ2(c2ˆ3/3 + c2c4 + c3ˆ2 + c6) + 1/6(2c2ˆ3 + 12c2c4 + 5c3ˆ2 + 7c6)

−m4(c2c4 + c3ˆ2/2 + c6) + (c6m6)/6;

F7 = −m3m4(c2ˆ2c3 + c2c5 + 2c3c4 + c7) + m3(5c2ˆ2c3 + 7c2c5 + 8c3c4 + 4c7)

−m5(c2c5 + c3c4 + c7) + c7m7/7;

F8 = −m3m5(c2ˆ2c4 + c2c3ˆ2 + c2c6 + 2c3c5 + c4ˆ2 + c8) + m3ˆ2(2c2ˆ4

+16c2ˆ2c4 + 20c2c3ˆ2 + 16c2c6 + 24c3c5 + 11c4ˆ2 + 9c8)

−1/2m4ˆ2(c2ˆ4/4 + c2ˆ2c4 + 2c2c3ˆ2 + c2c6 + 2c3c5 + 3/2c4ˆ2 + c8)

+1/2m4(c2ˆ4 + 11c2ˆ2c4 + 14c2c3ˆ2 + 16c2c6 + 18c3c5 + 11c4ˆ2 + 9c8)

−3/8(3c2ˆ4 + 24c2ˆ2c4 + 24c2c3ˆ2 + 24c2c6 + 24c3c5 + 15c4ˆ2 + 10c8)

−m6(c2c6 + c3c5 + c4ˆ2/2 + c8) + c8m8/8;

The expansion of the mutual information is, according to our
Result 3, given up to O(λˆ4) by

In[6] := MI8 = snr − F2snr − F3snrˆ(3/2)

−F4snrˆ2 − F5snrˆ(5/2)

−F6snrˆ3 − F7snrˆ(7/2)

−F8snrSˆ4;

MutInfo = Collect[Simplify[MI8], snr];

Only the first four orders are reliable. This code gives
the generic expansions (46) and (47) in the case m1 =
0 and m2 = 1 (but this can be easily adapted using the
code).

2. Useful code to produce Figs. 1 and 2

This parts evaluates the spectral density of the data matrix
Y by solving the transcendental equation (34) for its Green
function. The spectral density is then extracted from its imag-
inary part:

In[7] := snr = 1; step = 0.0005; zAndrho = { };
init = I/5; bound = 4;

Do[zAndrho = Append[zAndrho,

{z, Abs[Im[g/.FindRoot[SetAccuracy[z == Sqrt[3snr]

∗Coth[gSqrt[3snr]] + g, 30], g, init, WorkingPrecision− > 20]]]/Pi}],
{z,−bound, bound, step}];

As there may be multiple solutions depending on the initial
point init for the search (that may need to be tuned), a
sanity check is to check that the solution found is properly
normalized:

In[8] := Print[′′Normalization = ′′,

Total[zAndrho[[All, 2]]]step];

Now we find an interpolating function for the spectral density
of Y from the previously equally spaced computed points, us-
ing Hermite polynomials. Plotting this interpolating function
is what gives the asymptotic red curves in Fig. 1:

In[9] := z = zAndrho[[All, 1]];

rho = Chop[zAndrho[[All, 2]]];

rhoInterp = ListInterpolation[rho,

Min[z], Max[z], Method− > ′′Hermite′′];

We can now compute the asymptotic mutual information us-
ing (33), based on the interpolation function, and compare the

results to the Wigner case:

In[10] := MI = snr + Log[snr12]/4

+0.5NIntegrate[rhoInterp[x]

∗rhoInterp[y]Log[Abs[(x − y)

/(Exp[xSqrt[12snr]]

−Exp[ySqrt[12snr]])]],

{x, Min[z], Max[z]},
{y, Min[z], Max[z]}];
Print[Abs[MI − 0.5Log[1 + snr]]];

Using these pieces of code and running them for various λ,
one can obtain the pink dots in Fig. 2. The finite-size curves
(blue and orange dots) are instead simply obtained by aver-
aging the associated formulas over many large realizations of
the model.
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