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Rate equation limit for a combinatorial solution of a stochastic aggregation model
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In a recent series of papers, an exact combinatorial solution was claimed for a variant of the so-called Marcus-
Lushnikov model of aggregation. In this model, a finite number of aggregates are initially assumed to be present
in the form of monomers. At each time step, two aggregates are chosen according to certain size-dependent
probabilities and irreversibly joined to form an aggregate of higher mass. The claimed result given an expression
for the full probability distribution over all possible size distributions in terms of the so-called Bell polynomials.
In this paper, we develop the asymptotics of this solution in order to check whether the exact solution yields
correct expressions for the average cluster size distribution as obtained from the Smoluchowski equations. The
answer is surprisingly involved: For the generic case of an arbitrary reaction rate, it is negative, but for the
so-called classical rate kernels, constant, additive, and multiplicative, the solutions obtained are indeed exact. On
the other hand, for the multiplicative kernel, a discrepancy is found in the full solution between the combinatorial
solution and the exact solution. The reasons for this puzzling pattern of agreement and disagreement are unclear.
A better understanding of the combinatorial solution’s derivation is needed, the better to understand its range of
validity.
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I. INTRODUCTION

In various systems irreversible aggregation of “clusters”
A(m) of mass m plays an important role. For instance, in
aerosol physics, suspended particles coagulate (stick) driven
by van der Waals forces; similar processes are important in
polymer chemistry and astrophysics. The clusters are in gen-
eral quite varied, going from galaxies to planetary systems. A
standard reference for aggregation within aerosol physics is
the book by Drake [1] for systems involving the physics of
clouds and precipitation, see for instance Ref. [2]. A broad
general introduction is also given in Ref. [3]. An overview of
related problems that have interested the author is found in
Ref. [4].

In such systems one is among other things interested in the
cluster size distribution as a function of time. The simplest
approach consists in the analysis of kinetic equations. We
consider the reaction scheme

A(k) + A(l ) −→
K (k,l )

A(k + l ). (1)

The A(k) correspond to aggregates consisting of k monomers,
denoted by A(1), and the numbers K (k, l ) denote the rates at
which A(k) reacts with A(l ).

The kinetic description of such a system involves the time-
dependent concentrations ck (t ) of A(k). The equations read:

ċ j (t ) = 1

2

∞∑
k,l=1

K (k, l )ck (t )cl (t )[δk+l, j − δk, j − δl, j]. (2)
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A basic property of (2) is the following: At a formal level, the
total mass contained in the system is conserved:

d

dt

∞∑
j=1

jc j (t ) = 0. (3)

This property can fail, however, if at some finite critical
time tc

∞∑
k,l=1

kK (k, l )ck (t )cl (t ) (4)

diverges. In such a case the total mass starts decreasing with
time after this divergence. Such systems are called gelling
systems.

There exist many results concerning these equations. They
can be solved exactly for the following rate kernels:

K (k, l ) = 1 constant kernel, (5a)

K (k, l ) = k + l additive kernel, (5b)

K (k, l ) = kl multiplicative kernel. (5c)

The constant and additive kernels are nongelling, whereas
the multiplicative kernel displays gelation. To show how this
may arise, we display its solution for c j (t ) = δ j,1,

c j (t ) = j j−2

j!
t j−1e− jt (t � 1), (6a)

= j j−2e− j

j!

1

t
(t � 1). (6b)

For t � 1 it is seen that the mass indeed remains constant.
On the other hand, for t > 1, all c j (t ) are decreasing, and the
mass does so as well. It is equal to 1/t .

2470-0045/2022/106(2)/024133(10) 024133-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9269-1248
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.024133&domain=pdf&date_stamp=2022-08-30
https://doi.org/10.1103/PhysRevE.106.024133


F. LEYVRAZ PHYSICAL REVIEW E 106, 024133 (2022)

Furthermore, an extensive scaling theory exists to describe
the large-time and large-size behavior of the ck (t ). In the
nongelling cases, there exists a function s(t ) known as the
characteristic size, with the following property: As k → ∞
and t → ∞ in such a way that k/s(t ) = x remains constant,
there is a scaling function �(x) such that

lim
t→∞;k/s(t )=x

[k2ck (t )] = �(x). (7)

For details see, for instance, Ref. [4]. For gelling systems, a
similar behavior holds in the vicinity of the critical time:

lim
t→tc;k/s(t )=x

[kτ ck (t )] = �(x), (8)

where τ is an exponent that depends on the specific kernel,
which is, for instance, equal to 5/2 for the multiplicative
kernel.

Let us shortly summarize the results of the scaling theory.
To this end we define several quantities: The rate constants are
assumed to be homogeneous in the sizes k and l with exponent
λ, that is,

K (ak, al ) = aλK (k, l ). (9)

We further define the exponents μ and ν by the relation

K (i, j) � iμ jν (1 � i � j), (10)

describing the behavior in the strongly asymmetric case i � j.
Both the large-x and small-x behaviors of �(x) are determined
by the above exponents: The system is gelling if λ > 1 and
nongelling otherwise. If the system is nongelling, the small-x
behavior of �(x) depends on whether μ > 0, μ = 0 or μ < 0:
In the former case, �(x) goes as x1−λ, in the third it goes
to zero faster than any power, whereas in the second it has
a small-x behavior that must be determined separately in each
particular case. The large-x behavior, on the other hand, is
always of the type x2−λ exp(−const · x) except when ν = 1, in
which case the exponent arising before the exponential must
be determined for every special case.

This paper concerns a combinatorial solution proposed in
Refs. [5–9] of a discrete microscopic model underlying the
Smoluchowski equations (2). We shall refer to this solution,
which uses in a fundamental manner the so-called Bell poly-
nomials, as the Bell Polynomial Ansatz (BPA).

The structure of the paper is the following: In Sec. II we
present in detail the discrete Marcus-Lushnikov model and
the BPA; in Sec. III we summarize the results to be shown
in the rest of the paper; in Sec. IV we derive the formulas
leading to an exact expression for the solution of (2) as a
consequence of the BPA. We also show there that this solution
cannot be generally valid; the exact validity of the approach
for various classical kernels is discussed in Sec. V and we
present conclusions in Sec. VI.

II. THE DISCRETE MARCUS-LUSHNIKOV MODEL AND
ITS PROPOSED COMBINATORIAL SOLUTION

We start by describing a more microscopic model, known
as the Marcus-Lushnikov model, describing the underlying
stochastic dynamics of the aggregation process [10,11]. In
this model, there are initially N particles, all of which are
monomers, and the states of the system are described by the

vector of integers n = (n1, . . . , nN ) which satisfy the condi-
tion

∑∞
k=1 knk = N . Here nk is the total number of aggregates

A(k) in the state n.
This model, and a purported solution for it, will occupy

us throughout this paper. It may therefore be of interest to
state briefly why this model is of interest. Clearly, it stands
with respect to the continuous model of Smoluchowski in
the same relation as a microscopic model of the molecular
dynamics—or more precisely of the Langevin—type might
stand to the equations of hydrodynamics. And indeed, the
same differences exist. In the Monte Carlo model we study,
many questions can be asked which have no meaning within
the hydrodynamical framework: For instance, we may ask
by how much the number of monomers at a given time t
varies from run to run, or more generally yet, what is its
distribution. Such questions have been studied, for instance,
in Refs. [12,13].

Another issue concerns large clusters. The microscopic
model under study only involves clusters of size less than a
given number N , whereas the Smoluchowski equations in-
volve infinitely many possible cluster sizes. When the system
gels, it is assumed that part of the mass goes into an “infinite
cluster.” But clearly the rate equations can tell us nothing
about the nature of such clusters. However, the Marcus-
Lushnikov model can be studied for large values of N , and
the distribution of cluster sizes can be studies for both “small”
and “large” clusters. Such was the purpose, for instance, of
Lushnikov’s work on the Marcus-Lushnikov model applied
to the multiplicative kernel [14–17], where it was shown that
after gelation there is a single cluster of size of order N ac-
counting for the mass deficit. It should be noted that this is not
necessarily general: It was shown by Monte Carlo simulations
in Ref. [18] that in certain systems with combined aggregation
and fragmentation, the size of the “infinite clusters” grows as
Nγ with γ < 1. The properties of such Monte Carlo simula-
tions have also recently been studied in Ref. [19].

From all this follows that there are several properties of
interest of aggregating systems—or related generalizations
thereof—which cannot be obtained from the rate equa-
tions alone and for which the study of stochastic models, such
as the Marcus-Lushnikov model, is of considerable interest.

Let us here make a general remark on notation: In the tran-
sition between the above mentioned microscopic model and
the kinetic model given by (2), we must pass to a continuum
limit, in which several variables, extensive in the microscopic
model, are divided by N to yield a continuous variable of (2).
With the sole exception of the quantities nk , all such variables
will be denoted by capital letters.

The aggregation process is then described as a stochastic
process in which at each time step a transition takes place
between a state n and another resulting from the aggregation
of one aggregate of size k and another of size l . Specifically,
the transition probability between n and n′ via an aggregation
of A(k) and A(l ) is only nonzero if

n′
j = n j − 1 ( j = k, l ), (11a)

n′
k+l = nk+l + 1, (11b)

n′
j = n j ( j �= k, l, k + l ). (11c)
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The rates rk,l of this transition is given by

rk,l (n → n′) = K (k, l )nknl (k �= l ),

= K (k, k)
nk (nk − 1)

2
(k = l ). (12)

Defining the normalization factors Nk and the transition prob-
abilities pk,l as

Nk =
∑

l

rk,l , pk,l = N−1
k rk,l , (13)

we obtain the dynamics of the probability distribution P(n; S)
by

P(n; S + 1) =
N∑

k,l=1

∑
n′

pk,l (n
′ → n)P(n′; S), (14)

where S is the time, which in this model only takes integer
values.

An essential difference between this model and the ag-
gregation process described above should be immediately
pointed out: In this stochastic model, an aggregation event oc-
curs at each time step, whereas in the aggregation process, the
K (k, l ) are rates in a continuous time process. As we shall see,
this changes the time variable, but it does not affect anything
else. The continuous variable equivalent to S is σ = S/N .

Let us here shortly discuss the somewhat complex issue
of the relation between the time t of the original Marcus-
Lushnikov model as defined by (15) and the variable σ of
the corresponding discrete model. As noted above, the “time”
variable is simply N − K , where K is the total number of
particles at the step S. On the other hand, an infinitesimal
increase of t in (15) corresponds to a random variation of
the number of particles depending on the number of reactions
taking place in the given time interval. Thus, at fixed t , in
the continuous time Marcus-Lushnikov model, the number of
particles is a random variable, whereas for the discrete variant,
the number of particles is given at each time step. In the limit
we are interested in, however, this has no influence, as the
variance of the random number of particles at given time goes
to zero as N → ∞.

The original stochastic model introduced by Marcus [10]
and Lushnikov [11] indeed involves transition rates, and not
probabilities: These are defined as in (12), with no further
normalisation; the continuous time equivalent of (14) is

∂P(n; t )

∂t
=

N∑
k,l=1

∑
n′

[
rk,l (n

′ → n)P(n′; t )

− rk,l (n → n′)P(n; t )
]
. (15)

This process is the true equivalent of the reaction rate equa-
tions (2), but we shall concentrate on the dynamics defined
by (14), since it is for this that a combinatorial solution, the
Bell Polynomial Ansatz (BPA), has been proposed [5–9]. To
emphasize the difference, we shall call the model described
by (14) the discrete Marcus-Lushnikov model

To state this solution we define some additional quantities:
The sequence ξk is defined by the following recursion relation

(k − 1)ξk =
k−1∑
l=1

K (l, k − l )ξlξk−l , (16a)

ξ1 = 1, (16b)

Here (16a) only applies for k � 2. These quantities play an
important role in the short-time behavior of the solutions of
(2). As t → 0 one has for instance, for the initial condition
ck (0) = δk,1

ck (t ) � ξkt k−1. (17)

Their asymptotic behavior as k → ∞ has been studied
[4,20,21] and they behave as k−λ except for the case of kernels
having ν = 1, for which the behavior must be studied on a
case-by-case basis.

We now introduce some further notation: Underlined let-
ters such as z and w will always represent vectors with
components as follows: z = (z1, . . . , zN ). We shall use the fol-
lowing abbreviated notations involving the vector of complex
variables:

zw =
N∏

k=1

zwk
k z w = (z1w1, . . . , zNwN ). (18)

We further introduce the following abbreviations:

ξ = (ξ1, . . . , ξN ) m! = (1!, 2!, . . . , N!). (19)

We now define the generating function of the probability
distribution P(n; S) as a function of

�(z; S) =
∑

n

P(n; S)zn, (20)

The BPA yields the following expression for �(z; S):

�(z, S) = BN,N−S (m!ξz)

BN,N−S (m!ξ )
. (21)

Here BN,N−S (x) is the Bell polynomial defined as follows:
The series of polynomials Bn,m(a), where a is (exceptionally)
an infinite sequence (a1, a2, . . .), are given by the generating
function

∞∑
n�m�1

Bn,m(a)
xn

n!
ym = exp

[
y

( ∞∑
r=1

ar

r!
xr

)]
. (22)

It is, however, readily checked that Bn,m(a) only depends on
ak for 1 � k � n − m + 1, so that the expressions given above
are well defined. For more details on Bell polynomials, see for
instance Ref. [22].

III. SUMMARY OF RESULTS

The quantities c j (t ) satisfying (2) correspond, in terms of
the stochastic model described above, to the quantities

n j (S) =
∑

n

n jP(n; S). (23)

Additionally to its S dependence, n j (S) depends on N . It
is well known [12,13,23] that, in the continuum limit, the
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discrete Marcus-Lushnikov model tends to the kinetic equa-
tions in the following sense:

lim
S,N→∞
S/N=σ

n j (S)

N
= c j (t ), (24a)

∞∑
k=1

ck (t ) = 1 − σ. (24b)

This means that (24b) provides the correct connection
between t and σ and that taking the N → ∞ limit while main-
taining σ constant leads to the correct concentration profile
c j (t ). Additionally, it can be shown that not only does the
average value of n j (s) converge to the correct limit but that
the probability distribution becomes infinitely sharp around
the values defined by the kinetic equations (2).

Using an asymptotic formula for the Bell polynomials to
be derived later, see (43), one finds an exact expression for the
above described limit in terms of the BPA (21): Define

G(w) =
∞∑
j=1

ξ jw
j, (25a)

w�(σ ) = argmin
0<w<wc

[(1 − σ ) ln G(w) − ln w], (25b)

where wc is the convergence radius of G(w). One then finds

lim
N,S→∞
S/N=σ

n j (S)

N
= z j

∂

∂z j
ln �(z, S)

∣∣∣∣
z=1

= z j
∂

∂z j
ln

× BN,N−S (m!ξz)

∣∣∣∣
z=1

= 1 − σ

G[w∗(σ )]
ξ jw

∗(σ ) j .

(26)

Here we have used the definition of �(z; S), see (20), in the
first equality and the BPA, see (21), in the second. The third
will follow, as mentioned above, from asymptotic estimates
on Bell polynomials to be derived in Sec. IV, see (43). From
this we deduce that the right-hand side of (26) is an exact
solution of (2) whenever (21) is a solution of the discrete
Marcus-Lushnikov model defined by (14), and vice versa, we
obtain that the BPA, see (21), cannot be an exact solution of
the discrete Marcus-Lushnikov model unless (26) solves the
Smoluchowski equations (2).

Generically, it is readily seen from what we know of
scaling theory that (26) does not solve the Smoluchowski
equations. Indeed, since the entire aggregation process de-
scribed in the discrete Marcus-Lushnikov model stops when
S = N , it follows that the infinite time limit corresponds to
the σ → 1 limit. As is also readily seen, if G′(w) → ∞ as
w → wc, then w∗(σ ) → wc as σ → 1. Equation (26) thus
leads to the following scaling form:

c j (t ) � j−λ exp

{
− j ln

[
w�(σ )

wc

]}[ ∞∑
k=1

ck (t )

]
, (27)

the derivation of which is given in Appendix A. To describe
this in terms of the scaling theory, we set

s(t ) =
{

ln

[
w�(σ )

wc

]}−1

. (28)

Using as always the normalization

∞∑
k=1

kck (t ) = 1, (29)

we obtain after some straightforward manipulations that, for
the nongelling case, the scaling function is of the form

�(x) = const · x2−λe−x. (30)

The elementary computations are given in Appendix A. A
particularly problematic feature of this result is that it holds
good for λ < 2. This means in particular that it does not yield
gelling behavior for λ > 1.

While this is in good agreement with the large- j behavior
as known from scaling theory, it is in strong disagreement
with the known small- j behavior. Note that the discrepancy
involves the size distribution and not the correspondence be-
tween t and σ . Further, since the formula does agree in the
limit of sizes large with respect to typical size, the disagree-
ment can also not be resolved by changing the definition of
the sequence ξ j : Such an attempt could introduce agreement
at small values of j but would then spoil the agreement at
large j.

Specifically, the kernel solved in Ref. [9], K (k, l ) = 1/k +
1/l has, as can be shown exactly, see Ref. [24], the following
large time behavior

lim
t→∞

[ ∞∑
k=1

ck (t )

]−1

exp

[∫ t

0

∞∑
k=1

ck (t ′) dt ′
]

c1(t ) = 1. (31)

Clearly this result is incompatible with (27).
Yet another kind of behavior that cannot be subsumed

under the scheme of (27) is the following: Define α j and w j

via

lim
t→∞ [tw j c j (t )] = α j . (32)

Now it can be shown that the w j in certain cases depend
nontrivially on j. For instance, for the kernel K (k, l ) = 2 −
qk − ql with 0 < q < 1, which has been extensively treated in
[25,26], one finds that

w j = 2 − q j . (33)

Similar behavior also arises in the case in which the reaction
rates K (k, l ) take three different constant values, depending
on whether both masses are equal to 1, only 1, or neither [27].

We therefore see that the claim of general validity made
for the BPA in Refs. [5–9], cannot be upheld. The reasoning
presented in these papers must thus contain some flaw, which
is however by no means obvious. In order to illustrate the
nature and the extent of the possible disagreement between
the BPA and the results of a Monte Carlo simulation of the
discrete Marcus-Lushnikov model, let us consider the specific
case illustrated in Fig. 1, the details of which are given in the
caption: As we see, there is a very strong disagreement for low
sizes, specifically for monomers, whereas the two cluster size

024133-4



RATE EQUATION LIMIT FOR A COMBINATORIAL … PHYSICAL REVIEW E 106, 024133 (2022)

j

co
n
ce

n
tr

at
io

n

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  10  20  30  40  50  60  70  80  90  100

(a)

j

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  20  40  60  80  100  120  140  160

co
n
ce

n
tr

at
io

n

(b)

j

co
n
ce

n
tr

at
io

n

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  20  40  60  80  100  120  140  160

(c)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0  20  40  60  80  100  120  140  160
j

ra
ti

o

(d)

FIG. 1. Here we compare the cluster size distribution obtained through the BPA to that obtained through direct simulation of the discrete
Marcus-Lushnikov model. The case considered is a system with the reaction rates K (k, l ) = 1/k + 1/l , with N = 5000 and S = 4750,
implying a total number of particles of 250. This corresponds to a number density

∑
k ck (t ) of 1/20, and hence from the scaling theory

of Type III kernels [4], the typical size is of the order of 20. Since the total number of monomers is 5000, we are not strongly affected by
finite-size effects. On all figures, the x axis corresponds to the cluster size. The simulations performed involved 105 runs. Panel (a) displays
the two cluster size distributions on a linear scale, the full line denoting the BPA and the dotted line the simulation results. Panel (b) shows
the same on a log-log scale, which indicates the very strong deviations at the origin, together with reasonable agreement at large sizes. Panel
(c) tests this more precisely by showing the logarithm of the quotient of the numerical solution to the BPA one. There we see how, after very
strong initial variations, the quotient slowly decreases instead of tending to a constant,as predicted here. The reason for the discrepancy appears
to lie in the nonasymptotic behavior of the BPA expression for the concentration profile, shown in panel (d) which displays the quotient of the
exact BPA results and its asymptotic behavior.

distributions are roughly proportional for sufficiently large
sizes.

Nevertheless, the identity between the small- j and the
large- j behaviors is characteristic for the so-called classical
kernels, namely the constant, additive, and multiplicative ker-
nels, as well as their combinations. We shall in fact explicitly
show that (26) does provide an exact solution in those cases,
for the multiplicative kernel at least before the gel time.

The fact that the average value of n j/N is exact for these
kernels clearly does not guarantee the accuracy of the full
probability distribution. An explicit comparison between the
exact distribution of the discrete Marcus-Lushnikov model
and the BPA was performed for the case N = 20 and S = 4,

starting from the initial condition n1 = 20 and n j = 0 for
j � 2. The former is readily evaluated for small systems using
explicit enumeration of (14).

These were found to coincide exactly for both the constant
and the additive kernel, yet to differ in the case of the mul-
tiplicative kernel. We state the results for the latter case. At
S = 4, five states only have nonzero probabilities:

n1 = (12, 4, . . .) n2 = (13, 2, 1, . . .)

n3 = (14, 0, 2, . . .) n4 = (14, 1, 0, 1, . . .)

n5 = (15, 0, 0, 0, 1, . . .), (34)
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where the final zeros have not been written explicitly. The
exact probabilities for the multiplicative kernel are given by

P(n1; 4) = 130

517
= 0.2515 . . .

P(n2; 4) = 22 400

48 081
= 0.4659 . . .

P(n3; 4) = 22 480

336 567
= 0.0668 . . .

P(n4; 4) = 460 485

2 580 347
= 0.1785 . . .

P(n5; 4) = 96 552

2 580 347
= 0.0374 . . . , (35)

whereas the ones arising from the BPA are

P(n1; 4) = 273

1 081
= 0.2525 . . .

P(n2; 4) = 504

1 081
= 0.4662 . . .

P(n3; 4) = 72

1 081
= 0.0666 . . .

P(n4; 4) = 192

1 081
= 0.1776 . . .

P(n5; 4) = 40

1 081
= 0.0370 . . . . (36)

While it is seen that these are numerically quite close, the two
are clearly different. On the other hand, for the additive and
constant kernels, even for the case N = 20 and S = 16, which
has 70 accessible states, the comparison between the BPA
and an exact enumeration, yields perfect agreement. There is
thus essentially no doubt concerning the exactness of these
two solutions. Indeed, Lushnikov [11,28] has presented exact
solutions for these kernels for the corresponding continuous
model. These can presumably be carried over to the discrete
case.

IV. THE N → ∞ AVERAGE CLUSTER SIZE
DISTRIBUTION

Let us first derive an explicit expression for n j as a function
of �(z; S). One finds

n j = z j
∂

∂z j
ln �(z; S)|z=1. (37)

Substituting the BPA (21) into (37) yields

n j = z j
∂

∂z j
ln[BN,N−S (m!ξz)]|z=1. (38)

To evaluate this in the limit of large N and S with S/N = σ ,
and 0 < σ < 1, we need an appropriate asymptotic expression
for the Bell polynomial.

From the definition of Bell polynomials, see (22), we ob-
tain using Cauchy’s expression for the coefficients of a power
series:

∞∑
m=1

1

n!
Bn,m(a)ym = 1

2π i

∮
C

dw

wn+1
exp

[
y

( ∞∑
r=1

ar

r!
wr

)]
.

(39)

Here C is a contour enclosing the origin but no singularity
of the integrand. Now, comparing the coefficients of y one
obtains the following well-known relation:

m!

n!
Bn,m(a) = 1

2π i

∮
C

dw

wn+1

( ∞∑
r=1

ar

r!
wr

)m

. (40)

A substitution now yields straightforwardly

(N − S)!

N!
BN,N−S (m!ξz) = 1

2π i

∮
C

G(w|z)N−S

wN+1
dw, (41a)

G(w|z) =
∞∑
j=1

ξ j z jw
j . (41b)

Here C is a contour enclosing the origin but no singularity
of G(w|z). Specifically, we may think of a circle around the
origin with a radius r < wc. Since the Taylor series of G(w)
has positive coefficients, the maximum value of G(w) on this
circle is assumed as the real axis is crossed. The same remark
holds for the integrand of (41).

It therefore follows, using the method of stationary phase,
that

lim
S,N→∞
S/N=σ

1

N
ln

[
(N − S)!

N!
BN,N−S (m!ξz)

]

= (1 − σ ) ln G[w�(σ |z)|z] − ln w�(σ |z), (42)

where w�(σ |z) is defined similarly to (25b)

w�(σ |z) = argmin
0<w<wc (z)

[(1 − σ ) ln G(w|z) − ln w]. (43)

The somewhat messy details are relegated to Appendix B.
Summarizing, however, it may be said that this is a straight-
forward application of the method of stationary phase, as
described in Bender and Orszag [29]. Note that the asymptotic
expression (43) does not hold universally for all sequences ξ j .
Essential use is made both of the positivity of the ξ j and of the
fact that the ξ j grow regularly (in the sense, for instance, that
the nearest singularity to the origin is on the positive real axis,
to the exclusion of other singularities at the same distance).
The above derivation of (43) is quite elementary, and I assume
it to be already known but have not found a reference for it.

We now need to evaluate the derivative with respect to z j

of the right-hand side of (43). We first use the following well-
known fact: For an arbitrary function φ(x, λ), let

x�(λ) = argmin
x

( f (x, λ)) g(λ) = f (x∗(λ), λ), (44)

then

g′(λ) = ∂ f

∂λ
(x∗(λ), λ). (45)

To use this result, we take the function

(1 − σ ) ln G(w(σ |z)|z) − ln w(σ |z), (46)

as f (x, λ), where w plays the role of x and z j the role of λ.
Using this result, we only need to take the derivative with

respect to the z dependence of G(w(σ )|z). This leads to

lim
S,N→∞
S/N=σ

n j

N
= 1 − σ

G[w(σ )]
ξ jw(σ ) j, (47)
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as stated earlier.
Let us now fill in some of the missing details: We first

show that, on the interval 0 � w � wc the function (1 −
σ ) ln G(w) − ln w indeed takes a minimum at w(σ ). Indeed,
the second derivative is given by

1 − σ

G(w)2
[G(w)G′′(w) − G′(w)2] + 1

w2
> 0, (48)

where the positivity follows from the positivity of the ξ j and
the Cauchy-Schwarz inequality. As a consequence, because of
the Cauchy-Riemann equations, the same function has a local
maximum in the imaginary direction, which is the one of the
contour.

We now discuss under what circumstances w(σ ) is an
interior minimum satisfying the equation

(1 − σ )w(σ )
G′[w(σ )]

G[w(σ )]
= 1. (49)

As we move from w = 0 to w = wc, both G′(w) and G(w)
increase. If as w → wc G′(w) diverges, then the existence of
a (unique) solution of (50) follows straightforwardly. On the
other hand, if G′(wc) < ∞, then there is a value 0 < σ < 1
such that (50) has no interior solution. As we shall see, this
is what happens in the case of the postgel solution of the
multiplicative kernel.

V. EXACT VALIDITY FOR THE CLASSICAL KERNELS

Let us now check that for the three classical cases, the
solution given by (26) indeed corresponds to the known exact
solution. In all cases, the quantities ξ j defined in (16) and the
corresponding generating function G(w) defined in (25a) are
known exactly, so that verifying the correctness of the solution
(26) is in principle straightforward.

Let us consider the case of the multiplicative kernel, since
the average n j for the other two can be expressed in terms
of binomial coefficients, for which the results are readily
obtained.

In the following we perform the computations reqired to
evaluate the BPA solution, but all steps are part of the standard
approach to solving the multiplicative kernel, as reviewed,
for instance, in Reference [4]. It follows from the recursion
relation (16) that the generating function for the ξ j , namely
G(w), satisfies the ordinary differential equation:

wG′(w) − G(w) = 1
2 [wG′(w)]2 G′(0) = 1. (50)

This has the unique implicit solution

w = (1 − √
1 − 2G) exp(

√
1 − 2G − 1). (51)

We now substitute (51) into

(1 − σ ) ln G − ln w (52)

and minimize with respect to G. One obtains

G = 2σ (1 − σ ) w = 2σe−2σ . (53)

If we finally substitute these expressions into the right-hand
side of (26), one obtains

c j (t ) = ξ j (2σ ) j−1e−2 jσ . (54)

Finally, we need to connect σ and t . We know the expression
(24b) for σ . But we can obtain the sum over all ck (t ) from the
Smoluchowski equations

∞∑
k=1

ck (t ) = 1 − t

2
(t � 1), (55a)

= 1

2t
(t � 1). (55b)

The limitation on the value of t arises, of course, from the
fact that the equation for

∑∞
k=1 ck depends on the mass, which

itself is only equal to 1 for t � 1.
Note that (54) is only true for t � 1, so we only consider

(55a), which leads to σ = t/2, and thus to the exact equa-
tion for the concentrations, compare with (6). Here we use the
fact that, for the multiplicative kernel, ξ j = j j−2/ j!.

We do not yet know the solution for σ > 1/2, which cor-
responds to the postgel phase. It is clear that the maximum of
the function (52) is now at the end of the convergence interval,
that is, at w = wc = e−1 and G = Gc = 1

2 independently of σ .
If we now substitute these into the right-hand side of (26) we
obtain

c j (t ) = 2ξ je
− j (1 − σ ) = ξ je− j

t
, (56)

where we have used the expression (55b) for the particle
number. This is in fact the correct solution of (2) as it stands.

Note that this result is only valid for the values of j which
are of order one, not for those which are of order N : This is, of
course, a relevant remark, since beyond the gel point there are
such aggregates and they form a finite part of the total mass.
But since the asymptotic developments derived above fail for
j ∼ N , we cannot make any remarks on the gel particles.

This is a rather remarkable result. Indeed, for the post-
gel multiplicative kernel, the Smoluchowski equations can
be meaningfully given two forms, which lead to different
solutions:

ċ j (t ) = 1

2

j−1∑
k=1

k( j − k)ck (t )c j−k (t ) − jc j (t )
∞∑

k=1

kck (t ), (57a)

ċ j (t ) = 1

2

j−1∑
k=1

k( j − k)ck (t )c j−k (t ) − jc j (t ). (57b)

Here (57a) is simply (2) for K (k, l ) = kl and (57b) is
obtained from (57a) by assuming the constancy of the mass,
even though the equation’s solution eventually violates it. The
solution of (57a) is (6), whereas the solution of (57b) is simply
(6a) for all times, that is, the solution is analytic. After t = 1,
of course, the solution of (57b) no more satisfies the assump-
tion of conserved mass, which was used for its derivation.

Both these formulations are expected to be valid, each in
an appropriate context. The former given by (57a) is known
as the Stockmayer solution and is expected to hold when no
interaction between the finite (sol) particles and the gel is
possible. In the opposite case, the solution described by (57b),
known as the Flory solution, is expected to hold. For a detailed
discussion of this issue see Ref. [30].

The BPA thus leads to the exact Stockmayer solution. In
the case of the Marcus-Lushnikov model, the correct result
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depends on details of the model. Thus, in a related model, that
of a random graph, we have initially N sites and link at each
time step two randomly chosen sites. Before gelation, this is
equivalent to the discrete Marcus-Lushnikov model as N →
∞. After gelation, the random graph model is known to follow
the Flory solution [30]. However, the random graph model’s
equivalence to the discrete Marcus-Lushnikov model does not
hold after the gel time: indeed, in the random graph model,
it occurs with finite probability that two sites both belonging
to the infinite cluster are chosen and joined, thereby leaving
the cluster size distribution unmodified. Such a process has no
equivalent in the discrete Marcus-Lushnikov model. A variant
of the random graph model in which cycles are forbidden was
analysed in Ref. [30]. There it was shown that the decay of
c j (t ) as t → ∞ was exponential, thereby contradicting the
Stockmayer solution.

The BPA thus rather remarkably yields exactly a well-
known gelling solution. With respect to the discrete Marcus-
Lushnikov model, it appears most likely that the solution
obtained via the BPA does not describe the model correctly,
but the coincidence with a correct solution of a version of the
Smoluchowski’s equations remains striking.

For the other two kernels, we have the well-known rela-
tions

Ge−G = w (58)

for the additive kernel and

G = w

2 − w
(59)

for the constant kernel, from which the exact solutions can be
derived in an elementary manner. The fact that these solutions
correspond to the exact solutions of (2) is readily confirmed.

VI. CONCLUSIONS

Summarizing, we have derived analytically the solution
to the Smoluchowski equations that arises from the solu-
tion of the discrete Marcus-Lushnikov model proposed in
Refs. [5–9]. As is readily verified, in the general case these ex-
pressions do not satisfy the properties known from the general
scaling theory of the Smoluchowski equations as described in
Ref. [4]. Specifically, the concentration profile thus obtained
agrees qualitatively well in the limit of cluster sizes large
with respect to the typical size but deviates strongly from the
known behavior in the opposite limit.

As is well-known, however, the three exactly solvable
cases, the constant, additive, and multiplicative kernels, have
the remarkable property that their small-size and large-size
behaviors coincide. In that case, it is verified that the analytic
solution derived in this paper from the Bell Polynomial Ansatz
(BPA) does indeed coincide exactly with the corresponding
solution of the Smoluchowski equation, with the exception
of the postgel multiplicative kernel, for which the solution
obtained via the BPA is the Stockmayer result, whereas the
exact result is presumably the Flory solution.

To complicate matters further, it turns out that the BPA for
the full probability distribution is almost certainly exact for all
N in the case of the additive and constant kernels but that such
is not the case for the multiplicative kernel. Conjecturally, one

might assume that, in the large-N limit, the BPA converges to
the exact pregel solution for the full probability distribution,
and similarly that it converges to a probability distribution
different of that of the Marcus-Lushnikov model in the postgel
case, namely one that yields the Stockmayer solution. Since,
for small N , there is no sharp difference between pregel and
postgel stages, the existence of a discrepancy at small N and
small times is perhaps understandable.

Considering the remarkable successes of the BPA, it would
clearly be extremely desirable to obtain a better understanding
of the mechanism underlying of its failure in the general case.
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APPENDIX A: THE SCALING FUNCTION FROM (26)

In all cases except when ν = 1, the ξ j behave as j−λ

[21]. This implies that G(w) goes as (wc − w)λ−1, where this
should be understood as meaning the singular part only. Thus,
constant and linear terms dominating this behavior may exist,
depending on the value of λ.

Consider first λ < 1, that is, the nongelling case. We
then have G(w) → ∞ as w → wc. The equation determining
w(σ ) reads

(1 − σ )w(σ )
G′[w(σ )]

G[w(σ )]
= 1. (A1)

Since λ < 1, both G(w) and G′(w) diverge, and their ratio
goes as (wc − w)−1. It follows that w(σ ) − wc) is propor-
tional to 1 − σ as σ → 1. G[w(σ )] then diverges as (1 −
σ )λ−1. Substituting into (26) then yields

n j (σ )

N
= const · j−λ(1 − σ )2−λ exp

(
−const · j

1 − σ

)
,

(A2)
which has the scaling form indicated in (30).

If 1 < λ < 2, then G(wc) remains finite, but G′(w) di-
verges as (1 − σ )λ−2 as σ → 1. A similar computation then
yields

n j (σ )

N
= const · j−λ(1 − σ ) exp

[
−const · j

(1 − σ )1/(2−λ)

]
,

(A3)
which again confirms the scaling form (30). This is particu-
larly problematic, since it implies that no gelation arises for
1 < λ < 2, in contradiction to well-known exact results [31].

APPENDIX B: DERIVATION OF THE SADDLE-POINT
APPROXIMATION (43)

As a first step, let us show the following elementary result:
Let f (x) be a real valued function on the real interval [a, b],
which has a unique maximum at x∗ which is strictly inside
[a, b]. Then

I lim
N→∞

1

N
ln

∫ b

a
exp [N f (x)]dx = f (x∗). (B1)
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In the following we denote the integral above by IN . Without
loss of generality we assume x∗ to be zero.

We now express f (x) as

f (x) = f (0) + f ′′(0)
x2

2
+ g(x), (B2)

where g(x) = O(x3) as x → 0. We now separate the integral
IN in two parts, IN = JN + KN , with

JN =
∫ N−α

−N−α

exp[N f (x)]dx, (B3a)

KN =
(∫ −N−α

a
+

∫ b

N−α

)
exp[N f (x)]dx, (B3b)

where 1/3 < α < 1/2.
We shall show that JN satisfies (B1) and KN/JN → 0 as

N → ∞, thereby proving the result. Since α > 1/3, we find
that Ng(x) → 0 on the whole range of integration of JN , so
that

JN = eN f (0)
∫ N1/2−α

−N1/2−α

exp[−N | f ′′(0)|x2/2]dx

� eN f (0)

√
2π

| f ′′(0)|N , (B4)

where the final approximate equality follows from α < 1/2
and N � 1. Note that, since f (0) is a maximum, f ′′(0) < 0,
explaining the notation using absolute values. Of course, the
multiplicative term of order N−1/2 disappears on evaluating
the left-hand side of (B1)

On the other hand, at the border between the integration
domains of JN and KN , the integrand can still be evaluated us-
ing (B2) neglecting g(x). KN/JN is therefore negligible, since
it is of the order exp(−N1−2α| f ′′(0)|). Since the maximum is
unique, the part of the integral KN for which the representation
(B2) cannot be used is also exponentially small against JN and
also negligible.

We now need to cast the integral

I (N, S) = 1

2π i

∮
C

G(w|z)N−S

wN+1
dw (B5)

in the form (B1). In the following, we shall use mainly the fact
that the power series of G(w|z) in terms of w has only positive
coefficients, and that these asymptotically behave as a power
law zk ∼ k−λ.

Defining σ = S/N , we have

I (N, Nσ ) = 1

2π i

∮
C

exp{N[(1 − σ ) ln G(w|z) − ln w]}dw

w
.

(B6)
We define the abbreviation:

H (w|z) = (1 − σ ) ln G(w|z) − ln w. (B7)

The quantity w∗(σ |z) corresponds to the minimum of the
function H (w|z) on the real interval [0,wc(z)]. In the follow-
ing, we shall use as a contour C the circle of radius w∗(σ |z).

Now, since G(w|z) has only positive coefficients, by a stan-
dard theorem of complex analysis [32], its maximum modulus
on C lies on the positive real axis, and the same holds for
G(w|z)/w1/(1−σ ), since |w| is constant on C. The same thus
holds as well for the logarithm and hence for the real part of
H (w|z). Therefore the only maximum on C of Re H (w|z)| is
at w∗(σ |z).

Note, however, that, in order additionally to ensure that the
maximum modulus arising on the real axis is the only one on
C, we must exclude such irregular growth as might occur, for
instance, if the coefficients of the power series of G are only
nonzero for even values of k. We therefore implicitly assume
that such behavior does not arise.

We therefore understand the behavior of the modulus of H .
Let us now look at its real and imaginary parts. The real part
coincides withe the function itself on the real axis and is min-
imum at w∗(σ |z) with respect to purely real variations. From
the Cauchy-Riemann differential equations [32] one finds that
the imaginary part also has vanishing derivative with respect
to imaginary variations. Thus, since the contour C is vertical
at w∗(σ |z), the imaginary part has zero derivative along C.
But since H is real on the real axis, by the Schwarz reflection
principle [32], the imaginary part of H is odd, so that it grows
cubically (or possibly faster) as the distance to the real axis,
and can thus be neglected in the immediate vicinity of the
point w∗(σ |z). We may now apply (B1) without problems and
obtain the desired result (42).

Finally, it should be pointed out that the above approxima-
tion describes the zs dependence of the integral (B6) only for
s � N . Indeed, G(w|z) in can be replaced without changing
the results by GN (w|z) given by

GN (w|z) =
N∑

j=1

ξ jz jw
j . (B8)

In particular, it follows that such integrals as (B6) are inde-
pendent of zs for s > N and the above approximate approach
does not apply for s of order N .
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