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Self-gravitating clusters of Fermi-Dirac gas with planar, cylindrical, or spherical symmetry:
Evolution of density profiles with temperature
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We calculate density profiles for self-gravitating clusters of an ideal Fermi-Dirac gas with nonrelativistic
energy-momentum relation and macroscopic mass at thermal equilibrium. Our study includes clusters with
planar symmetry in dimensions D = 1, 2, 3, clusters with cylindrical symmetry in D = 2, 3, and clusters with
spherical symmetry in D = 3. Wall confinement is imposed where needed for stability against escape. The
length scale and energy scale in use render all results independent of total mass and prove adequate at all
temperatures. We present exact analytic expressions for (fully degenerate) T = 0 density profiles in four of
the six combinations of symmetry and dimensionality. Our numerical results for T > 0 describe the emergence,
upon quasistatic cooling, of a core with incipient degeneracy surrounded by a more dilute halo. The equilibrium
macrostates are found to depend more strongly on the cluster symmetry than on the space dimensionality. We
demonstrate the mechanical and thermal stability of spherical clusters with coexisting phases.
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I. INTRODUCTION

The study of self-gravitating Fermi-Dirac (FD) gases was
launched in the context of white dwarf stars. Fowler [1] at-
tributed their stability to the degenerate electron gas, whose
quantum pressure arising from the Pauli exclusion principle
balances the gravitational attraction at high density. Nonrela-
tivistic white dwarfs at zero temperature represent a polytropic
gas of index n = 3/2 [2]. Their density profile, resulting from
the Lane-Emden equation [3], has a sharp surface at a finite
radius. Stoner [4], Milne [5], and Chandrasekhar [6] showed
that the radius r0 of the star decreases as the mass mtot in-
creases according to the law, mtot = 91.9 h̄6/(G3m8r3

0 ) [2].
Hertel and Thirring [7,8] initiated the statistical mechan-

ical analysis of FD clusters at nonzero temperature in the
context of a study of nonrelativistic neutron stars. They
found density profiles with ∼r−2 tails, which indicates that
finite-mass clusters at thermal equilibrium require artificial
confinement. Moreover, Hertel and Thirring [7] proved that
the mean-field assumption, which neglects correlation effects,
and the Thomas-Fermi (TF) approximation, which neglects
some quantum effects, are highly accurate for macroscopic
systems and exact in a specific thermodynamic limit, namely
N → +∞, r0 → 0, for a fixed and nonzero value of Nr3

0 . This
limit reflects the familiar mass-radius relation, r0 ∝ N−1/3,
of fully degenerate fermion stars. A different limit, N → ∞,
r0 → ∞ for fixed and nonzero N/r0, was analyzed in pi-
oneering studies of de Vega and Sanchez [9,10]. It is the
thermodynamic limit of the classical self-gravitating gas. A
comparative discussion of the two limits (classical and quan-
tum) is found in Refs. [11,12].

The exactness of the TF approximation in the thermo-
dynamic limit can be understood by a comparison of two
quantities of different origin with the same units: energy

density and pressure. In a region of space with radius R and
mass density ρ, the impact of the Heisenberg uncertainty prin-
ciple on the quantum potential is Q = −(h̄2/2m)(�

√
ρ/

√
ρ ),

whereas the impact of the Pauli principle on the pressure is
P = (1/20)(3/π )2/3(h2/m8/3)ρ5/3 [13]. The TF approxima-
tion assumes that the quantum potential energy density is
negligible compared to the quantum pressure, (ρ/m)Q � P,
which is indeed realized for N � 1. In astrophysical condi-
tions, the TF approximation is essentially exact.

The work of Hertel and Thirring also brought forth ev-
idence for the inequivalence of statistical ensembles in the
face of long-range interactions, manifest, e.g., in negative
heat capacities. This inequivalence is by no means unphysi-
cal. It locates the points of mechanical instability differently
in clusters that are thermally isolated (the default in astro-
physics) from clusters that are in contact with a heat bath
(e.g., through the confining wall). These (spinodal) points of
instability are identified in caloric curves (inverse temperature
versus negative internal energy) as points of infinite slope (mi-
crocanonical ensemble) and points of zero slope (canonical
ensemble).

Unlike the gravitational collapse of Maxwell-Boltzmann
(MB) clusters [3,9,10,14–18], any precipitous contraction of
FD clusters is arrested into a core-halo configuration by
fermionic quantum statistics, which excludes multiple level
occupancy. Conversely, an increase in temperature (canonical
ensemble) or internal energy (microcanonical ensemble) pro-
duces an abrupt change from a core-halo configuration to flat
and more spread-out density profile. The relevance of such be-
havior in the context of dark-matter research was investigated
by Bilic and Viollier [19] in the canonical ensemble.

Chavanis [11,20] conducted an exhaustive study of phase
transitions in self-gravitating FD clusters using canonical
and microcanonical ensembles, confirming the results and
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extending the work of Hertel and Thirring [8]. The pa-
pers [11,20] specifically identified and analyzed a zeroth-
order phase transition in the microcanonical ensemble from
gaseous to condensed macrostates, associated with a discon-
tinuity in entropy. The gaseous macrostate is located at the
(spinodal) stability limit. They also discussed a first-order
phase transition in the microcanonical ensemble between
macrostates connected by a vertical Maxwell line on the
caloric curve, associated with a discontinuity in temperature.
This first-order phase transition does not take place in practice
on account of the fact that the lifetimes of metastable states
scale exponentially with the number of particles [21].

The zeroth-order phase transition (with a discontinuity in
the thermodynamic potential) has a counterpart at a different
value of energy, from a condensed macrostate at the stability
limit to a stable gaseous macrostate. The two transitions are
complementary to each other, one representing a mechanical
instability on the way down in energy (collapse) and the
other on the way up (explosion). In both cases the instability
precipitates processes that are associated with an increase in
entropy.

A similar scenario unfolds in the canonical ensemble,
but at different landmarks on the caloric curves, the con-
trol parameter being now the temperature. In particular, the
zeroth-order phase transition is characterized by a discontinu-
ity of Helmholtz free energy and the (unrealized) first-order
phase transition is characterized by a discontinuity in energy
associated with a horizontal Maxwell line. Interestingly, for
tightly confined systems there is no phase transition, for sys-
tems with intermediate confinement a phase transition takes
place in the canonical ensemble but not in the microcanoncial
ensemble, and for systems with loose confinement a phase
transition takes place in both ensembles. This state of affairs
is portrayed in intricate phase diagrams [11]. Similar results
were obtained in the context of the fermionic King model [22],
which does not require an artificial confinement.

Further light on the phase behavior of self-gravitating FD
clusters was shed by studies that extended the space di-
mensionality away from D = 3 to lower and higher values.
They include Refs. [23] and [24] for properties at T = 0 and
T > 0, respectively. One important insight was that D = 4 is
a sort of upper marginal dimensionality for the mechanical
stability of nonrelativistic FD clusters against gravitational
collapse. For D � 4, quantum mechanics cannot stabilize
matter against gravitational collapse even in the nonrelativistic
regime [23,24]. This is similar to a result found by Ehren-
fest [25] who considered the effect of the dimension of space
on the laws of physics and showed that planetary motion and
the Bohr atom would not be stable in a space of dimension
D � 4. A second insight was that the phase behavior exhibits
features of universality across ranges of dimensionality.

In addition to white dwarf and neutron star research [26],
the physics of FD clusters has applications in the study of
conjectured dark matter halos made of massive neutrinos.
As discussed in Refs. [22,27], the FD distribution func-
tion may be justified by the theory of violent relaxation of
Lynden-Bell [28]. The statistical equilibrium state of a dark
matter halo may result from a process of collisionless re-
laxation [28,29] rather than from a process of collisional
relaxation because the relaxation time due to two-body

gravitational encounters in dark matter halos is much larger
than the age of the universe. However, the collisional
relaxation time may be reduced if the fermions are self-
interacting [27]. The equilibrium states generically have a
core-halo structure made of a quantum core (fermion ball)
surrounded by an isothermal halo (envelope) [27,30].

Some authors [31–34] have proposed that a very com-
pact quantum core made of dark matter fermions with mass
∼50 keV/c2 could mimic a supermassive black hole at the
center of the galaxies. Other authors [22,27,35] have consid-
ered a smaller fermion mass of ∼1 keV/c2 and argued that
the quantum core has the shape of a large dark matter bulge. It
is also possible that sufficiently large fermionic dark matter
halos are nondegenerate [36]. We refer to Ref. [27] for a
comparison between these different scenarios. The nature of
dark matter, let alone the values of relevant particle masses,
are very much in dispute.

This work, which emphasizes the distinction between
cluster symmetry and space dimensionality, begins with es-
tablishing the conditions of mechanical stability and thermal
equilibrium (Sec. II). A second point of emphasis is the choice
of practical scales for length and energy (Sec. III). In the
discussion of fully degenerate finite-mass clusters the em-
phasis is on exact results for density profiles (Sec. IV). The
centerpieces for the analysis and interpretation of FD clusters
at T > 0 are robust free-energy expressions and caloric curves
(Sec. V). With these tools in place, we are ready to analyze
density profiles subject to gradual and abrupt changes upon
cooling or heating (Sec. VI) and to describe phase-coexisting
macrostates (Sec. VII).

II. EQUILIBRIUM CONDITIONS

The density profiles of self-gravitating FD gas clusters
analyzed in this work are governed by mechanical stability
and thermal equilibrium. The former is encoded in an equa-
tion of motion (EOM) and the latter in an equation of state
(EOS). In the present context, mechanical stability means hy-
drostatic equilibrium. The only particle interaction included is
the mutual gravitational attraction. The mean-field assumption
is validated by the long range nature of this force [7].

We consider clusters with planar symmetry (Dσ = 1),
cylindrical symmetry (Dσ = 2), and spherical symmetry
(Dσ = 3). All profiles are functions of the distance r from
the center of the cluster. For Dσ = 1, the center is a point,
a line, or a plane in D = 1, 2, 3, respectively. For Dσ = 2,
the center is a point or a line in D = 2, 3, respectively. For
Dσ = 3, the center is a point (in D = 3). We thus write ρv(r)
and p(r) for the radial profiles of particle density and pressure,
respectively. The temperature T is uniform.

The total number of particles in a finite cluster is obtained
from the density profile via the integral,

N = LD−Dσ

∫ R

0
dr ADσ

rDσ −1ρv(r), (1)

where R is the radius of the confining wall, L the length of
a cylinder or of the sides of a plane in cases with Dσ <

D, and AD
.= 2πD/2/�(D/2) is the surface area of the D-

dimensional unit sphere. The condition L � R guarantees that
deviations from the symmetry assumed to hold are negligible.
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Hydrostatic equilibrium relates pressure and density,

d

dr
p(r) = Mρv(r)g(r), (2)

involving the gravitational field,

g(r) = −ADGDM

rDσ −1

∫ r

0
dr′r′Dσ −1ρv(r′). (3)

To accommodate scenarios which include plasmas, we distin-
guish the kinetic mass m (e.g., of electrons) entering the EOS
and the gravitational mass M (e.g., of nucleons per electron)
entering the EOM. The total mass of a cluster is denoted mtot.
The strength GD of the gravitational interaction is empirically
known, of course, only in D = 3.

The EOS (in the local density approximation) for a nonrel-
ativistic FD gas in D dimensions is implicit in the relations,

ρv(r)λD
T = gs fD/2[z(r)], (4a)

uv(r)λD
T = D

2
kBT gs fD/2+1[z(r)], (4b)

p′(r)λD
T

kBT
= gs

d

dz
fD/2+1(z)z′(r), (4c)

between the particle density, the kinetic energy density, and
the pressure, parametrized by the fugacity profile z(r). Here gs

is the spin degeneracy, λT =
√

h2/2πmkBT is the de Broglie
thermal wavelength, and

fn(z)
.= 1

�(n)

∫ ∞

0

dx xn−1

z−1ex + 1
=

∞∑
l=1

(−1)l−1 zl

ln
, z � 0

(5)
are the (polylogarithmic) FD functions with the familiar spe-
cial cases, f0(z) = z/(1 + z), f1(z) = ln(1 + z), and f∞(z) =
z. The entropy density,

sλD
T

gskB
=

(D
2

+ 1

)
fD/2+1(z) − ln z fD/2(z) (6)

is inferred from Eq. (4) via Euler’s equation, uv = T s − p −
μρv with μ = kBT ln z.

We have rendered Eq. (4c) in a way that consistency with
Eq. (2) is ensured even under phase coexistence. Substitution
of Eq. (4c) into Eq. (2) with use of Eq. (3) and the recurrence
relation z f ′

n(z) = fn−1(z) produces the ODE,

z′′

z
+ Dσ − 1

r

z′

z
−

(
z′

z

)2

+ gsADGDM2

λD
T kBT

fD/2(z) = 0, (7)

for the fugacity profile, from which the density profile follows
via Eq. (4a).

For (thermodynamically) open systems, which include
clusters of finite and infinite mass, the boundary conditions
are

z′(0) = 0, 0 < z(0) = z0, (8)

with the (average) total mass, mtot = NM, provided it is finite,
inferred from Eq. (1). Closed systems of finite mass may only
exist under confinement such as imposed by a wall at R < ∞.
For cases with Dσ < D, it is useful to introduce a rescaled

number of particles:

Ñ
.= N

LD−Dσ
. (9)

The second boundary condition Eq. (8) is to be replaced (for
closed systems) by the integral (1) converted into

gsADσ

ÑλD
T

∫ R

0
dr rDσ −1 fD/2(z) = 1. (10)

III. SCALING CONVENTION

For our analysis we have constructed a length scale and an
energy scale that are useful for the description of macroscopic
FD clusters at all temperatures including T = 0. These scales
work equally well for the gaseous part of Bose-Einstein (BE)
clusters [37]. The length scale rs and temperature scale Ts

are derived from the thermal wavelength and a macroscopic
reference volume as follows:

r̂
.= r

rs
, T̂

.= T

Ts
, (11)

ÑλD
Ts

= ADσ

Dσ

rDσ

s ,
1

r2
s

= 1

2Dσ

ADGDM2

λD
Ts

kBTs
. (12)

The first Eq. (12) divides the hypersphere of radius rs into
Ñ hypercubes of side λTs . The second Eq. (12) relates the
coefficient in the last term of Eq. (7), which must be an inverse
squared length, with rs. Relations (12) determine rs and Ts as
functions of particle mass m and total mass mtot = NM for
cases with Dσ = D (see Appendix A). If Dσ < D, then we
use m̃tot = ÑM with Ñ from Eq. (9) instead, which can still
be used as a measure for how massive the cluster is.

Expressed in the dimensionless variables thus defined, in-
cluding the relation ẑ(r̂)

.= z(r), the ODE (7) becomes

ẑ′′

ẑ
+ Dσ − 1

r̂

ẑ′

ẑ
−

(
ẑ′

ẑ

)2

+ 2Dσ

T̂
ρ(r̂) = 0, (13)

where we use the dimensionless density,

ρ(r̂)
.= λD

Ts
ρv(r̂) = gs T̂ D/2 fD/2(ẑ), (14)

and rewrite Eq. (10) in the form

Dσ

∫ R̂

0
dr̂ r̂Dσ −1ρ(r̂) = 1. (15)

Contact with a frequently used alternative scaling convention,
whose advantage is to demonstrate the classical limit, is es-
tablished in Appendix A.

IV. DEGENERATE CLUSTERS

FD clusters of finite mass at zero temperature are stable
against particle escape. They are also stable against gravi-
tational collapse for 1 � Dσ � D � 3 as long as the total
mass does not push the Fermi momentum into the relativistic
regime. Density profiles of fully degenerate FD clusters are
important anchor points for the analysis of the effects of rising
temperature (Sec. VI). Relativistic effects in temperature and
mass variations will be investigated elsewhere [38].
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For the purpose of investigating T = 0 density profiles, we
distill out of the ODE (7) for the fugacity z(r) an ODE for
the chemical potential μ(r) = kBT ln z(r) in the limit T →
0, using the leading term in the asymptotic expansion of FD
functions,

fD/2(z) � (βμ)D/2

�(D/2 + 1)
. (16)

The ODE for the chemical potential, expressed in scaled vari-
ables, μ̂

.= μ/kBTs and r̂
.= r/rs, which for Dσ = D has the

structure of a Lane-Emden equation, reads

μ̂′′ + Dσ − 1

r̂
μ̂′ + 2gsDσ

�(D/2 + 1)
μ̂D/2 = 0. (17)

We are seeking a solution with boundary conditions,

μ̂′(0) = 0, μ̂(r̂0) = 0, (18)

where the cluster radius r̂0 is implicitly determined by the
normalization condition (15) adapted as follows:

gsDσ

�(D/2 + 1)

∫ r̂0

0
dr̂ r̂Dσ −1[μ̂(r̂)]D/2 = 1. (19)

The tacit assumption is that R̂ > r̂0. Fully degenerate FD
clusters are self-confined.

The (scaled) density and pressure profiles, expressed via
chemical potential, inferred from Eqs. (4) and the asymp-
totics (16), become

ρ(r̂) = gs[μ̂(r̂)]D/2

�(D/2 + 1)
θ (r̂0 − r̂), (20)

p̂(r̂)
.= p(r)

kBTsλ
−D
Ts

= gs[μ̂(r̂)]D/2+1

�(D/2 + 2)
θ (r̂0 − r̂), (21)

which confirms the result of Ref. [23] that we are dealing
with polytropes of index n = D/2, independent of Dσ (see
Appendix C for more details). The linear cusp of μ̂(r̂) at r̂0

determines the power-law cusp singularities of the density
ρ(r̂) and the pressure p̂(r̂) at the surface of the cluster via
Eqs. (20) and (21).

In the following we analyze the solutions of Eqs. (17)–(19)
separately for the six combinations 0 � Dσ � D � 3. Within
the nonrelativistic regime, all scaled profiles are universal, i.e.,
independent of total mass.

A. Dσ = D = 1

The ODE (17) for the scaled chemical potential μ̂(r̂) sim-
plifies into

μ̂′′ + 2 gs

�(3/2)
μ̂1/2 = 0. (22)

We solve it by transcribing it to

r̂′′ − 2 gs

�(3/2)

√
μ̂ [r̂′]3 = 0, (23)

for the inverse function r̂(μ̂), thus reducing it effectively to
first order (see Ref. [39] for a different approach). The first
integral is carried out by separation of the variables μ̂ and

( )

( )

( )

FIG. 1. Universal profiles for the scaled chemical potential, den-
sity, and pressure of the nonrelativistic FD gas with Dσ = D = 1 at
T = 0.

ŝ
.= r̂′(μ̂) with use of the boundary condition, r̂′(μ̂0) = −∞:∫ ŝ

−∞

dŝ′

ŝ′3 = 2 gs

�(3/2)

∫ μ̂

μ̂0

dμ̂′√μ̂′. (24)

We thus obtain

r̂′(μ̂) = −
(

3 �(3/2)

8 gs

)1/2
√

1

μ̂
3/2
0 − μ̂3/2

. (25)

The inverse profile then reads

r̂(μ̂) = r̂0 −
(

3 �(3/2)

8 gs

)1/2 ∫ μ̂

0

dμ̂′√
μ̂

3/2
0 − μ̂3/2

, (26)

for 0 � μ̂ � μ̂0. Implementing r̂(μ̂0) = 0 from Eq. (18)
yields

r̂0 =
(

3 �(3/2)

8 gs

)1/2

μ̂
1/4
0

∫ 1

0

dx√
1 − x3/2

(27)

= 1

4

√
3π3/2

gs

�(5/3)

�(7/6)
μ̂

1/4
0 . (28)

Condition (19) is satisfied by the values μ̂0 = 0.76162 and
r̂0 = 0.656793 if we set gs = 2.

In Fig. 1 we plot the profile for the chemical potential de-
rived from the solution (26) and the profiles (20) and (21) for
density and pressure, respectively. The function μ̂(r̂) vanishes
linearly at r̂ = r̂0 (to leading order), implying cusp singular-
ities, ρ ∼ (r̂0 − r̂)1/2 and p̂ ∼ (r̂0 − r̂)3/2 for the other two
functions. When particles are added, the radius of the cluster
increases at the rate r0 ∼ N1/3 and the pressure at the center
of the cluster increases at the rate p(0) ∼ N2.

B. Dσ = 1, D = 2

For this case the ODE (17) becomes linear,

μ̂′′ + 2 gsμ̂ = 0, (29)

and the solution for gs = 2 which satisfies the boundary con-
ditions (18) and (19) takes the form

μ̂(r̂) = cos(2 r̂), (30)

implying r̂0 = π/4 and μ̂0 = 1. This profile along with the
profiles (20) and (21) are shown in Fig. 2.
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FIG. 2. Universal profiles for the scaled chemical potential, den-
sity, and pressure of the nonrelativistic FD gas with Dσ = 1, D = 2
at T = 0.

The chemical potential and the density have proportional
profiles, approaching zero linearly at r̂0, whereas the pressure
vanishes quadratically at the surface of the cluster. Adding
particles does not change the radius of the cluster. In con-
sequence, the local density grows linearly with mass. The
central pressure increases quadratically with mass.

C. Dσ = 1, D = 3

The ODE to be solved in this case is

μ̂′′ + 2 gs

�(5/2)
μ̂3/2 = 0 (31)

for the function μ̂(r̂) or the (effectively first-order) ODE,

r̂′′ − 2 gs

�(5/2)
μ̂3/2 [r̂′]3 = 0, (32)

for the inverse function r̂(μ̂). The resulting inverse profile
becomes

r̂(μ̂) = r̂0 −
(

5 �(5/2)

8 gs

)1/2 ∫ μ̂

0

dμ̂′√
μ̂

5/2
0 − μ̂′5/2

, (33)

for 0 � μ̂ � μ̂0. Implementing conditions (18) and (19)
yields the relation

r̂0 =
(

5 �(5/2)

8 gs

)1/2

μ̂
−1/4
0

∫ 1

0

dx√
1 − x5/2

= 1

4

√
15π3/2

2 gs

�(7/5)

�(9/10)
μ̂

−1/4
0 , (34)

and the values μ̂0 = 1.225233, r̂0 = 0.901549. The pro-
files (20) and (21) follow directly (see Fig. 3).

The linear cusp of the chemical potential at r̂0 is universal
in Dσ = 1. The cusp singularities of density and pressure be-
come weaker as D increases. The (unscaled) radius r0 shrinks
with increasing mass: r0 ∼ N−1/5.

D. Dσ = D = 2

The term with a first-order derivative in the ODE (17)
for Dσ > 1 removes the advantage of switching to inverse
functions. However, for D = 2, the ODE

μ̂′′ + 1

r̂
μ̂′ + 4 gsμ̂ = 0 (35)

FIG. 3. Universal profiles for the scaled chemical potential, den-
sity, and pressure of the nonrelativistic FD gas with Dσ = 1, D = 3
at T = 0.

is recognizable as characteristic of Bessel functions. The so-
lution which satisfies the boundary conditions (18) and (19)
with gs = 2 is well known [23]:

μ̂(r̂) = μ̂0 J0(2
√

2r̂). (36)

The radius r̂0 of the cluster is determined by the first zero of
the Bessel function. The value μ̂0 then follows from Eq. (19).
We thus obtain μ̂0 = 1.60198 and r̂0 = 0.850234. The pro-
file (36) along with the profiles (20) and (21) are shown in
Fig. 4.

The chemical potential and the density are directly propor-
tional and vanish linearly at the edge of the cluster whereas the
pressure vanishes quadratically. Features shared by all cases
with D = 2 include that the average density and total mass
are proportional, the radius of the cluster is independent of
the mass, and the central pressure increases quadratically with
mass.

E. Dσ = 2, D = 3

This case requires that we numerically solve the ODE

μ̂′′ + 1

r̂
μ̂′ + 4 gs

�(5/2)
μ̂3/2 = 0, (37)

subject to the simultaneous conditions (18) and (19). The
solution is unique and has the values, μ̂0 = 1.88488, for the
central chemical potential and, r̂0 = 0.92098, for the cluster

FIG. 4. Universal profiles for the scaled chemical potential, den-
sity, and pressure of the nonrelativistic FD gas with Dσ = D = 2 at
T = 0.
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FIG. 5. Universal profiles for the scaled chemical potential, den-
sity, and pressure of the nonrelativistic FD gas with Dσ = 2, D = 3,
at T = 0.

radius. The solution μ̂(r̂) of Eq. (37) and the profiles of ρ(r̂),
p̂(r̂) inferred from Eqs. (20) and (21) are shown in Fig. 5.

F. Dσ = 3, D = 3

The universal profiles for this case are of textbook famil-
iarity [2]. The analysis of

μ̂′′ + 2

r̂
μ̂′ + 6 gs

�(5/2)
μ̂3/2 = 0 (38)

must again be carried out numerically in its entirety. The
specifications of the solution which satisfies the three con-
ditions (18) and (19) are μ̂0 = 2.88587 and r̂0 = 0.932973.
The resulting profiles of μ̂(r̂), ρ(r̂), and p̂(r̂) are shown in
Fig. 6. While the radius shrinks in real space when particles
are added, r0 ∼ N−1/3, it grows in reciprocal space, μ0 ∼
N4/3. The central pressure rises rapidly with increasing mass:
p(0) ∼ N10/3.

G. Mass-radius relation

Our choice of length scale has the advantage of producing
universal profiles. Clusters of given symmetry and dimen-
sionality have their surface at a specific numerical value of the
scaled radius r̂0 irrespective of mass (within the nonrelativistic
regime). In consequence, the mass-radius relation of

FIG. 6. Universal profiles for the scaled chemical potential, den-
sity, and pressure of the nonrelativistic FD gas in Dσ = D = 3 at
T = 0.

TABLE I. Explicit dependence of the length scale rs, which de-
termines the cluster radius at T = 0 via r0 = r̂0rs on the number N of
particles with (kinetic) mass m and (gravitational) mass M. The total
mass is mtot = NM. For cases with Dσ < D we use Ñ as defined in
Eq. (9). The six relations are extracted from Eq. (12).

Dσ D rs

1 1
(

π h̄2

G1

)1/3 N1/3

M2/3m1/3

1 2 h̄
√

2
G2

M−1m−1/2

1 3
(

2h̄6

G3
3

)1/5
Ñ−1/5M−6/5m−3/5

2 2 2h̄√
G2

M−1m−1/2

2 3
(

8π h̄6

G3
3

)1/4
Ñ−1/4M−3/2m−3/4

3 3 (36π )1/3 h̄2

G3
N−1/3M−2m−1

self-gravitating clusters—a quantity of considerable
interest—is encoded in the length scale rs.

In Table I we state the explicit dependence of rs on the
number of particles N , and on the relevant kinetic mass m and
gravitational mass M of particles. The total mass is mtot =
NM. In ordinary matter m is the electron mass and M the mass
of nucleons per electron.

The relations compiled in Table I, at least the entries for
D = 3, are likely to be of importance in dark matter research,
where it is still unclear what particle mass M might dominate
gravity and what particle mass m might dominate the pressure
(via the thermal wavelength). The distinct dependencies of the
cluster radius on the two particle masses is potentially useful
for providing clues about the range of particle masses that
qualify as constituents of dark matter.

V. FREE ENERGIES AND CALORIC CURVES

For the analysis of density profiles at T > 0 it is useful
to have caloric curves—functional relations between inverse
scaled temperature and negative scaled internal energy—
available as a road map on which relevant landmarks can be
identified, namely points of instability in both the canonical
and microcanonical ensembles. Caloric curves were analyzed
in Ref. [24] for D = Dσ using a different scaling convention
(Appendix A).

In the following, we present caloric curves and use them
as a guide for the interpretation of how T > 0 density profiles
evolve between the MB limit and the fully degenerate state.
Another diagnostic tool for the same purpose in the canonical
ensemble is the Helmholtz free energy:

F = E − T S = U + W − T S, (39)

where U is the kinetic energy, E = U + W the internal en-
ergy, S the entropy, and W the (gravitational) potential energy.
In the microcanonical ensemble, the role of thermodynamic
potential is taken over by the entropy S.
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A. Kinetic energy and entropy

From the expressions developed earlier we infer the fol-
lowing integrals for the kinetic energy and the entropy:

Û
.= U

NkBTs
= Dσ gsT̂

D/2+1 D
2

∫ R̂

0
dr̂ r̂Dσ −1 fD/2+1(ẑ),

(40)

Ŝ
.= S

NkB
= Dσ gsT̂

D/2
∫ R̂

0
dr̂ r̂Dσ −1

×
[(D

2
+ 1

)
fD/2+1(ẑ) − ln ẑ fD/2(ẑ)

]
, (41)

implying

Û − T̂ Ŝ = −Dσ gsT̂
D/2+1

∫ R̂

0
dr̂ r̂Dσ −1

× [ fD/2+1(ẑ) − ln ẑ fD/2(ẑ)]. (42)

B. Potential energy

The construction of the potential energy W for self-
gravitating clusters requires some thought. In all cases 1 �
Dσ � D � 3 we choose a reference state (pseudo-vacuum)
different from the ground state (physical vacuum), namely the
state with all particles confined to 0 � r � rc at uniform den-
sity in real space. All differences �W between macrostates
are independent of rc.

We calculate the differential dW as work performed
against gravity when a thin layer of mass is translocated from
the reference density profile to the actual density profile, a
method developed in the context of a self-gravitating lattice
gas [40]. This construction turns out to be also useful for
BE clusters [37]. Alternative expressions for W , which are
equivalent and derived from the virial theorem, can be found
in Appendix B.

For FD clusters with planar symmetry (Dσ = 1) we arrive
at the expression,

Ŵ
.= W

NkBTs
= 2

∫ R̂

0
dr̂2r̂2σ1(r̂2)ρ(r̂2) − 2

3
r̂c,

σ1(r̂2)
.=

∫ r̂2

0
dr̂ρ(r̂) = − T̂

2

ẑ′(r̂)

ẑ(r̂)
. (43)

The corresponding expression for clusters with cylindrical
symmetry (Dσ = 2) has a quite different look:

Ŵ = 4
∫ R̂

0
dr̂2 r̂2 σ2(r̂2) ρ(r̂2) ln

(
r̂2√

σ2(r̂2)

)
− ln r̂c,

σ2(r̂2)
.= 2

∫ r̂2

0
dr̂ r̂ρ(r̂) = − T̂

2
r̂

ẑ′(r̂)

ẑ(r̂)
. (44)

The logarithmic terms, characteristic for cylindrical symme-
try, disappear for spherical symmetry (Dσ = 3):

Ŵ = −6
∫ R̂

0
dr̂2r̂2σ3(r̂2)ρ(r̂2) + 6

5
r̂−1

c ,

σ3(r̂2) = 3
∫ r̂2

0
dr̂ r̂2ρ(r̂) = − T̂

2
r̂2 ẑ′(r̂)

ẑ(r̂)
. (45)

FIG. 7. Caloric curves for the FD cluster (solid line) and MB
cluster (dashed line) with planar symmetry and R̂ = ∞ in three-
dimensional space. The dotted line marks the energy of the fully
degenerate cluster identified in Sec. IV C. The MB result reflects the
internal energy E = 5

2 NkBT (see Appendix B).

The dependence on D in all cases is contained in the profiles
ẑ(r̂) and ρ(r̂).

C. Caloric curves

An examination of caloric curves sets the stage for the
analysis of T > 0 density profiles in Sec. VI. Our scaling
convention suggests that we plot β̂

.= kBTs/kBT versus Ê
.=

E/NkBTs. The scaled radius of confinement R̂
.= R/rs is a

useful parameter. A more detailed discussion of caloric curves
can be found in Refs. [11,24]. In Appendix A we explain
the different scaling conventions in use. In the following, we
highlight systems for Dσ = 1, 2, 3 in D = 3. The symmetry
of the cluster has a stronger impact on caloric curves than the
dimensionality of the space.

Caloric curves of clusters with planar symmetry are mono-
tonically increasing across the complete range of inverse
temperature (see Fig. 7). The range of negative internal energy
has no lower limit, but reaches an upper limit, at Êmin = 10

9 r̂0,
where r̂0 = 0.9015 . . . is the radius of the self-confined cluster
identified in Sec. IV C.

The featureless structure of these caloric curves predicts
that the cooling of FD clusters with planar symmetry incites a
very gradual response throughout. The cooling of MB clusters
with planar symmetry is equally uneventful. The FD caloric
curves deviate from the MB caloric curve as the exclusion
principle comes into play. Effects of wall confinement (not
shown) are significant only when the space is very tight or
the temperature very high (for confined systems, E ∼ D

2 NkBT
when T → +∞).

The caloric curves for FD clusters with cylindrical sym-
metry are still strictly monotonic as shown in Fig. 8(a), but
they are no longer featureless. There is a plateau in the
vicinity of the characteristic temperature T̂MB = 1

2 , where the
MB cluster is known to undergo a gravitational collapse as
evident in Fig. 8(b). Here the plateau reaches all the way
to Ê → −∞, where the MB cluster has contracted to a
point.

The FD caloric curves with the plateau feature represent
a phenomenon of incipient gravitational collapse, more or
less gently arrested by the counteracting exclusion pressure.
However, there is no hint of gravitational collapse if the aver-
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(a) (b)

FIG. 8. (a) Caloric curves for FD clusters with confining radius
R̂ = 1.50, 4.70, 14.9, 47.0, 149 (right to left) and R̂ = ∞ (dotted
line). The dashed lines marks the energy of the fully degenerate FD
cluster identified in Sec. IV E. (b) Caloric curve for MB clusters of
any R̂. The dotted line marks temperature T̂MB = 1

2 at which the MB
clusters collapse.

age interparticle distance is comparable to thermal wavelength
already at temperatures near T̂MB. This is the case under tight
confinement. In summary, despite the added structure, the
strict monotonicity of all FD caloric curves for clusters with
cylindrical symmetry rules out any mechanical instabilities or
phase transitions.

A whole new level of drama is on display in the caloric
curves for FD clusters with spherical symmetry (Fig. 9). Here
we see everything that we already identified and much more.
In very tight quarters (R̂ � 1), the caloric curve is monotonic
and featureless as is the case universally in planar clusters.
As we relax the confinement by increasing R̂, a shoulder
makes its appearance, which is reminiscent of caloric curves
of cylindrical clusters.

Upon further widening of the space to which the FD gas
is confined, hitherto unseen structures emerge. The first novel
structural feature that makes its appearance is local maximum
followed by a local minimum, two points with zero slope.
They signal the presence of multiple macrostates with dif-
ferent internal energy at the same temperature. The points of
zero slope indicate locations of mechanical instability in the
canonical ensemble.

A further loosening of the confinement introduces points
on the caloric curve with infinite slope, indicating the presence
of multiple macrostates at different temperature with the same
internal energy. Such points are well known to be associated
with mechanical instabilities in the microcanonical ensem-
ble [11]. Both types of instabilities point to hysteretic behavior

FIG. 9. Caloric curves of FD clusters with spherical symme-
try with confining radius (a) R̂ = 0.648, 3.01, 14.0, 64.8, (b) R̂ =
14.0, 64.8, 301. The inset zooms into a part of the curve for R̂ = 301
(named dinosaur’s neck [11]) not shown in the main plot and com-
pares it with a similar feature of the MB caloric curve (dashed line).

of one-phase macrostates (Sec. VI), but they also point to
the possibility of phase coexistence (Sec. VII), a phenomenon
hitherto unexplored.

VI. EMERGENT DEGENERACY

We have seen that density profiles of fully degenerate
finite-mass FD clusters have compact support. This is no
longer the case for equilibrium macrostates at nonzero tem-
perature. The cluster surfaces becomes fuzzy—an attribute
related to the absence of short-range cohesive forces in our
modeling. The density profile acquires a tail out to infinite
distances from the center of the cluster. Wall confinement be-
comes necessary to equilibrate finite-mass clusters at nonzero
temperature in some cases.

A. Asymptotics of self-confined clusters

It is instructive to take a look at the asymptotic decay laws
of density profiles up front. The exact analysis, which follows
the approach of Ref. [40], starts from

ẑ′(r̂)

ẑ(r̂)
r̂Dσ −1 = −2Dσ

T̂

∫ r̂

0
dr̂′r̂′Dσ −1ρ(r̂′), (46)

inferred from Eqs. (2), (3), and (4c). With Eq. (15) we can
write

ẑ′(r̂)

ẑ(r̂)
r̂Dσ −1 = − 2

T̂

[
1 −

∫ ∞

r̂
d r̂′r̂′Dσ −1ρ(r̂′)

]
. (47)

The finite-mass condition for density profiles with power-law
decay is a lower bound for the exponent

ρ(r̂) ∼ r̂−η, η > Dσ . (48)

This condition ensures that the integral in Eq. (47) becomes
negligibly small at large r̂. In the low-density asymptotic
regime we have ẑ′/ẑ = ρ ′/ρ. We thus extract from Eq. (47)
the limit,

lim
r̂→∞

ρ ′(r̂)

ρ(r̂)
r̂Dσ −1 = − 2

T̂
, (49)

which only depends on the symmetry of the cluster, but not
on the dimensionality of the space. The solution of Eq. (49)
yields exponential asymptotics for planar clusters,

ρ(r̂)as ∼ e−2r̂/T̂ : Dσ = 1, (50)

and power-law asymptotics for cylindrical clusters,

ρ(r̂)as ∼ r̂−2/T̂ : Dσ = 2. (51)

The finite-mass condition (48) restricts the temperature
range for the power-law asymptotics (51) to 0 < T̂ < 1. We
shall see that the self-confinement condition for cylindrical
clusters is more stringent and restricts power-law asymptotics
to 0 < T̂ < 1

2 .
Self-confined clusters with spherical symmetry at nonzero

temperature only exist if they have infinite mass. The leading
asymptotic decay of the density profile is independent of
temperature in this case [2]:

ρ(r̂)as ∼ 2r̂−2 : Dσ = 3. (52)
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FIG. 10. (a) Rescaled density profiles of the FD gas in Dσ =
D = 1 at high T̂ . The dashed line represents the MB profile (53),
which is independent of T̂ in rescaled units. (b) Density profiles of
FD clusters at low T̂ . The dashed line represents the T̂ = 0 profile
from Sec. IV A.

B. Planar symmetry

It is well known that an unconfined MB cluster with planar
symmetry remains stable against evaporation or gravitational
collapse at any nonzero temperature. The exact density profile
is [40–46]

ρ(r̂)MB = 1

T̂
sech2

(
r̂

T̂

)
. (53)

The exponential FD asymptotics (50) is also realized in the
MB profile (53), as expected. With decreasing T̂ , ρ(r̂)MB

gradually becomes narrower and more strongly peaked at
the central plane of the cluster, approaching a δ-function in
the limit T̂ → 0. Deviations of the FD density profile from
the MB result (53) are expected to emerge gradually. The
exclusion principle kicks into action when the (local) aver-
age interparticle distance becomes comparable to the thermal
wavelength. This criterion is first met near the center of the
cluster, where the density is highest.

The central density of the FD cluster is indeed suppressed
relative to that of an MB cluster as shown in Fig. 10(a). The
dashed line represents the universal MB density profile in
rescaled units. The solid lines illustrate how the FD density
profile (for D = 1) deviates from it as the temperature is being
lowered from a high value. The MB result is independent of
D. The FD deviations are similar in D = 2, 3 (not shown),
albeit somewhat slower with increasing D, as might be ex-
pected.

The D-dependence of the FD profiles becomes more con-
spicuous at low D as shown in Figs. 10(b) and 11. The
solutions of the ODE (13) at T̂ > 0 converge neatly toward the
solutions of the ODE (17) at T̂ = 0. The density of particles
at large distances is exponentially suppressed according to

FIG. 11. Density profiles of planar FD gas in (a) D = 2 and
(b) D = 3 at low T̂ . The dashed lines represent the T̂ = 0 profiles
from Sec. IV B and Sec. IV C, respectively.

FIG. 12. (a) Rescaled FD density profiles in Dσ = D = 2 at
T̂ > T̂MB in a disk-shaped space. The dashed line represents the
MB profile (55). (b) Scaled FD density profiles at T̂ < T̂MB in an
unconfined space. The dashed line represents the T̂ = 0 profile from
Sec. IV D.

Eq. (50) in all D, but the limiting T̂ = 0 profile strongly
depends on D.

C. Cylindrical symmetry

MB gas clusters with cylindrical symmetry, which we
again use as a benchmark, are vulnerable to both particle
escape and gravitational collapse. In a wall-confined space of
radius R̂—a disk in D = 2 or a cylinder in D = 3—MB clus-
ters are stable against gravitational collapse for temperatures
above the threshold value [40,45–57],

T̂MB = 1
2 . (54)

The exact density profile reads [40,45]:

ρ(r̂)MB = 1

R̂2

2T̂ (2T̂ − 1)

[(r̂/R̂)2 + 2T̂ − 1]2
. (55)

A one-parameter family of density profiles exists in the com-
bined limit,

T̂ → T̂MB, R̂ → ∞,
T̂ 2

2R̂2(2T̂ − 1)
→ c > 0, (56)

at the border between collapse or escape [40,46]:

ρ(r̂)MB = 4c

T̂MB

[
1 + 2c

(
r̂

T̂MB

)2]−2

. (57)

This includes the collapsed state (c → ∞) and the evaporated
state (c → 0). The density profile (57) of this precarious MB
state without wall confinement does exhibit the power-law
asymptotics (51) for the FD cluster, albeit only at the thresh-
old temperature. FD clusters with cylindrical symmetry are
equally vulnerable to particle escape, but not to gravitational
collapse. Whereas the MB profile (55) acquires an unlimited
central density as T̂ approaches T̂MB from above, the FD
particles resist such squeezing on account of the exclusion
principle.

For the sake of brevity, we focus on dimension D = 2.
The results for D = 3 are very similar except in the limit
T̂ → 0 (Sec. IV D). Connecting the FD solutions of (13) with
the MB result (55) graphically again requires some rescaling,
as shown in Fig. 12(a). The choice of a large R̂ facilitates a
convergence between FD and MB profiles not far above T̂MB.
The approach of the FD profiles T > 0 toward the T̂ = 0
profile from Sec. IV D is shown in Fig. 12(b) using different
scales.
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FIG. 13. Density profiles for the FD cluster with Dσ = D = 2 at
(a) T̂ = 0.45 (dashed line), T̂ = 0.5 (solid lines) and (b) T̂ = 0.55.
The radius of wall confinement, R̂ = 1.12, 3.54, 11.2, 35.4, 112 is
indicated by the endpoint of each solid curve.

The presence of self-confinement at T̂ < T̂MB and its
absence at T̂ > T̂MB are illustrated in Fig. 13 from a dif-
ferent angle [40]. When we widen the space for the gas
at constant sub-threshold temperature T̂ = 0.45 by isother-
mally increasing the radius R̂, the profile shows virtually no
response [dashed line in Fig. 13(a)]. At that temperature, self-
confinement is robust and the observed power-law decay is in
accord with the asymptotics (51).

When the wall confinement is quasistatically and isother-
mally relaxed at T̂MB, the cluster responds differently as shown
by the solid lines in Fig. 13(a). A power-law tail, ∼r̂−4, sur-
vives and becomes increasingly conspicuous for large R̂, in
agreement with the asymptotics (51). What makes the profile
at T̂MB qualitatively different from the sub-threshold profiles is
the presence of a flat portion of increasing width and decreas-
ing height around the center of the cluster. Self-confinement
is no longer operational.

Whereas self-confinement is already absent at T̂MB, the
structure of density profiles is yet different at higher tem-
peratures such as shown in Fig. 13(b) for T̂ = 0.55. Here
the flat portion becomes more dominant, extending over a
wider region, and the power-law tail has disappeared. The
only evidence of gravity is the reduced density near the wall.

There are no abrupt changes when a wall-confined FD
cluster with cylindrical symmetry is heated up or cooled down
quasistatically. This trait is shared with planar clusters, where
wall-confinement is not even necessary. An unconfined FD
cluster with cylindrical symmetry will spread out gradually
when heated up. Its density will become low everywhere
before T̂MB is reached, at which point it will behave MB-like.

Confinement with a wide radius R̂ makes it possible to
observe a crossover between density profiles that can be inter-
preted as incipient escape. Within a relatively short interval of
rising T̂ , the density profile changes from a core/halo variety
to flat variety (Fig. 13). This crossover has also been seen in
the caloric curves (Fig. 8). We shall see next that a switch
from cylindrical to spherical symmetry impacts both the MB
and the FD clusters qualitatively, but in quite different ways.

D. Spherical symmetry

Here the inequivalence of ensembles matters, as the struc-
ture of caloric curves made clear (Sec. V). For the sake
of brevity, our focus will be on the canonical ensemble.
Analogous reasoning produces corresponding results for the
microcanonical ensemble. Spherical gas clusters of finite mass

FIG. 14. (a) Density profiles of a confined FD gas (solid curves)
and MB gas (dashed curves) in Dσ = D = 3 at temperatures near
T̂C. (b) Density profile of an FD gas on approach to the fully degen-
erate limiting case (dashed curve). Wall confinement turns into self
confinement at T̂ = 0.

at nonzero temperature must be stabilized against escape by
wall confinement. This attribute is independent of statistics.
For the stability against gravitational collapse, the statistics
does matter, of course. The finite-mass MB cluster is only
stable above a threshold temperature which depends on the
radius of confinement [3,9,15,18],

T̂C = T̃C

R̂
, T̃C = 0.794422 . . . . (58)

Unlike in the case of cylindrical symmetry (Sec. VI C), where,
on the verge of collapse, the MB gas is highly concentrated
at the center of the cluster, the density profile of a spherical
MB cluster at the point of collapse is still broad with the gas
pushing against the wall.

In the caloric curves of cylindrical FD clusters we have
noted an incipient instability for large R̂ around T̂MB, where
the MB cluster undergoes a real instability. We shall see that
spherical FD clusters under tight confinement behave simi-
larly, but now in the vicinity of T̂C, where the spherical MB
cluster collapses. Under more loose confinement, by contrast,
the spherical FD cluster exhibits a real instability, again near
T̂C, yet very unlike the MB instability.

We begin our analysis of the spherical FD cluster with
finite mass by establishing the contacts with the high-T and
low-T anchor points. In Fig. 14(a) we compare density FD
and MB profiles as T̂ approaches T̂C from above. The defenses
against compression are getting weaker in the MB gas and
stronger in the FD gas. At the lowest T̂ , the collapse of the
former is imminent. In Fig. 14(b) we show the convergence of
the latter to the fully degenerate profile discussed in Sec. IV F.

For the transformation of high-temperature profiles
[Fig. 14(a)] into low-temperature profiles [Fig. 14(b)] and vice
versa we distinguish between a regime (i) of tight confine-
ment and a regime (ii) of loose confinement. In regime (i)
for small R̂, the density profile is unique at all temperatures
and evolves gradually between the high-T̂ MB-like profile
and the self-confined Fermi ball in the low-T̂ limit. In regime
(ii) for large R̂, on the other hand, there exists a temperature
interval with multiple coexisting solutions of Eq. (13). No
smooth and continuously varying density profile across that
interval exists. Singular behavior is inevitable when the cluster
is quasistatically heated up or cooled down.

We have located the border between the two regimes at
R̂c 
 2.655. In the following, we compare one case from each
regime. We pick R̂ = 2 for regime (i) and R̂ = 4 for regime
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FIG. 15. Fugacity ẑ0 at the center of the cluster versus scaled
temperature T̂ for the cases with (a) R̂ = 2 and (b) R̂ = 4. The values
of local extrema in (b) are T̂L 
 0.182 and T̂H 
 0.224. Both curves
continue with negative slope toward T̂ = 0 and ẑ0 → ∞.

(ii). In case (i), ẑ0 is a single-valued monotonic function
of T̂ and in case (ii) a multiple-valued monotonic function
(Fig. 15). This means that the density profile is unique at all
temperatures in case (i) and at temperatures T̂ < T̂L or T̂ > T̂H

in case (ii). However, between the temperatures T̂L and T̂H in
case (ii), there exist three coexisting profiles.

In Fig. 16 we show how the density profiles evolve across
a range of temperatures for cases (i) and (ii). Figure 16(a)
depicts profiles across an interval of T̂ where the most rapid
(yet still gradual) change occurs. As T̂ is being lowered, dom-
inance shifts gradually from thermal fluctuations (dispersing
agent) to gravity (aggregating agent). The latter is, in turn,
counteracted by the exclusion principle (agent akin to steric
repulsion).

In Fig. 16(b) we show three coexisting density profiles
for temperatures from the interval T̂L < T̂ < T̂H. In this case,
lowering T̂ has a more dramatic effect. At T̂ > T̂H the only
solution is a flat profile ρg, similar to the ones shown. The
profile ρg represents a gaseous phase. At T̂H two additional
solutions emerge. Initially the two solutions are identical, then
evolve differently. The solution ρd represents a degenerate
cluster surrounded by a gaseous halo with a fuzzy interface.
The solution ρi (shown dashed) represents an unstable inter-
mediate profile.

The stability status of the three solutions is most evident in
Fig. 17, which shows the free energy versus temperature. Near
and below T̂H, the solution ρg is stable and the solution ρd

is metastable. At T̂t the stability status between the solutions
switches. Here the free energies associated with the profiles
ρg and ρd cross each other while the unstable profile ρi has

FIG. 16. Density profiles at specific scaled temperatures T̂ for
(a) R̂ = 2 and (b) R̂ = 4. The three sets of profiles in panel (b) named
ρg, ρi, and ρd, represent gaseous profiles, (unstable) intermediate
profiles, and profiles with a degenerate core and a gaseous halo,
respectively. The intercept of the solid (dashed) curves decreases
(increases) with rising T̂ .

FIG. 17. Free energy versus temperature of the macrostates with
central fugacities as shown in Fig. 15(b). The three branches cor-
respond to profiles identified in Fig. 16(b). The crossing point is at
T̂t 
 0.207.

a higher free energy. Below T̂t the stable profile is ρd. It will
gradually evolve into the T = 0 profile analyzed earlier. The
metastable solution ρg and the unstable solution ρi merge at
T̂L, where both disappear.

Notice the similarity to and difference from the MB gas.
Cooling precipitates an abrupt change in both cases. In the MB
case that change is a gravitational collapse. In the FD case, it
is a partial collapse, arrested midway by the repulsive short-
range interaction, which is rooted in the exclusion principle.

It is tempting to identify the temperature T̂t as the point of
a first-order transition and the temperatures T̂H, T̂L as spinodal
points. The significance of T̂t is doubtful for two reasons stated
below. The values T̂H, T̂L, on the other hand, correspond to
points of zero slope in the caloric curve. The Poincaré turning
point criterion [58] identifies them as points of mechanical
instability associated with a canonical ensemble (Sec. V). De-
creasing the value of R̂ within regime (ii) toward R̂c 
 2.655
makes the values of T̂H and T̂L move closer together and merge
at the border to regime (i).

Chavanis [21] pointed out that the lifetimes of metastable
states such as investigated here are extremely long. For all
practical purposes, they can be treated as stable macrostates.
Processes that require the transport of matter over significant
energy barriers across large distances are very slow. This is the
first reason that undermines the significance of T̂t . The second
reason is that first-order transitions at constant T̂ are only
generic in homogeneous systems. No quasistatic processes
have yet been identified between macrostates with density
profiles ρg and ρd.

VII. PHASE COEXISTENCE

The conclusions reached in the preceding paragraph
do not rule out the existence of a two-phase macrostate
composed of segments of different solutions of the ODE (13)
with boundary conditions that satisfy the applicable stability
conditions. The very long lifetimes of metastable single-phase
macrostates do not speak against this possibility. An incipient
cluster can evolve from very diverse initial configurations. A
cluster may very well settle into a two-phase macrostate if
such a state has a lower free energy at a given temperature
than either of the single-phase macrostates.
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FIG. 18. Mechanically stable density profiles at temperature T̂ =
0.2 for a spherical cluster with R̂ = 4. The one-phase profiles are
labeled ρg and ρd. The two-phase profile ρc is discontinuous at r̂1 =
0.929. (a) Full range of scaled distance r̂. (b) Zoomed-in view of the
same data.

A. Conditions for single phase boundary

A density profile (in Dσ = D = 3) with confinement at
radius R̂ and one phase boundary at radius r̂1 results from a
pair of solutions of the ODE (13) at given T̂ . Six specifications
need to be fixed. The two parameters,

r̂1, ϕ
.= m1

mtot
, (59)

locate the phase boundary and determine the mass fraction
of the inner phase. Additionally, there are the four boundary
conditions,

ẑ(0), ẑ′(0), ẑ(r̂1), ẑ′(r̂1). (60)

The two local conditions,

ẑ′(0) = 0, ẑ′(r̂1) = − 2

T̂

ϕ

r̂2
1

ẑ(r̂1), (61)

satisfy smoothness at the center and guarantee mechanical
stability at the phase boundary, whereas the two integral con-
ditions,∫ r̂1

0
dr̂ r̂2ρv(r̂) = ϕ,

∫ R̂

r̂1

dr̂ r̂2ρv(r̂) = 1 − ϕ, (62)

determine the mass fractions and guarantee that the total mass
is conserved. These four conditions give us a two-parameter
family of two-phase profiles separated by one phase boundary.

B. Two-phase density profile

The phase boundary is necessarily associated with a dis-
continuity in density—a step down over a distance short
compared to the (rather long) length scale in use. Our task
is to search for two-phase solutions within the temperature
interval T̂L < T̂ < T̂H, where a stable and a metastable one-
phase solution are known to exist.

Here we merely show evidence that two-phase solutions do
indeed exist and that such solutions have a lower free energy
than the single-phase solutions at the same temperature. In
Fig. 18 we show the data for one representative case.

The smooth one-phase profiles are again labeled ρg for the
gaseous type and ρd for the core-halo type. Their free energies
are

F̂g = −1.003, F̂d = −1.026, (63)

respectively. The two-phase profile, labeled ρc, has a step-
down discontinuity at r̂1 = 0.929. Most importantly its free
energy,

F̂c = −1.062, (64)

is lower than that of either single-phase profile.
Among the two-parameter family of two-phase solutions

at fixed T̂ , one has the lowest-free-energy. We expect the
two-phase solution with the lowest-free-energy to merge with
a type-ρd one-phase solution at T̂L and to merge with a type-ρg

one-phase solution at T̂H. These expectations, if confirmed, do
not yet prove that the equilibrium state in that temperature in-
terval has a single phase boundary. The nontrivial mechanical
stability condition may very well favor a state with more than
one phase boundary.

If a first-order transition between type-ρg and type-ρd

single-phase profiles exists, then that transition takes place
over a range of temperatures, most likely the entire interval
T̂L < T̂ < T̂H. Working out such a scenario in detail is com-
putationally demanding. It will have to include the analysis
on length scales sufficiently short to resolve the structure of
the phase boundary between gaseous phases. This will be the
project of a separate publication.

VIII. CONCLUSION AND OUTLOOK

The shape of density profiles for self-gravitating clusters of
nonrelativistic FD gases depends on both the symmetry of the
cluster and the dimensionality of the space. We have analyzed
six combinations of the two attributes across the full range
of temperature—from fully degenerate clusters with compact
support to the MB limit of low-density clusters. The length
scale introduced for this study turns all density profiles at
given temperature into universal curves, independent of the
total mass. This length scale and the associated energy scale
are equally useful for the study of BE clusters as demonstrated
in a companion paper [37].

We have extended the list of analytic expressions for exact
density profiles of degenerate clusters to four and identified
the important specifications for all six cases, including the
mass-radius relation and the cusp singularity of the density
profile at the surface of the cluster. The distinct dependence of
the cluster radius on the kinetic mass, the gravitational mass,
and the number of particles is potentially useful in dark matter
research.

Cooling down a cluster quasistatically from high tem-
perature changes the density profile in ways that strongly
depend on the symmetry and weakly on the dimensionality.
For clusters with planar symmetry, the evolution of the density
profile from the MB profile with exponential tails into a fully
degenerate compact Fermi slab is very gradual and without
landmarks. No wall confinement is necessary at any tempera-
ture.

Clusters with cylindrical symmetry, by contrast, require
wall confinement against escape above a certain thresh-
old temperature. Below that threshold, the density profiles
have power-law tails with temperature-dependent exponents.
Cooling down a wall-confined cylindrical cluster across
the threshold temperature produces an accelerated change
in the density profile—an incipient gravitational collapse,
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softly arrested midway by the implications of FD statis-
tics. An attribute shared by cylindrical and planar clusters
is that mechanically stable macrostates are unique at any
temperature.

Finite clusters with spherical symmetry, which need wall
confinement at all nonzero temperatures, do not, in general,
share this last attribute. We have identified regimes with two
mechanically stable macrostates—one thermally stable and
the other metastable—across a finite interval of temperature.
Cooling down and heating up a cluster across this interval
causes mechanical instabilities at its far end, thus producing
effects of hysteresis. We have identified, inside this temper-
ature interval, the existence of a two-phase macrostate with
one phase boundary, which has a lower-free-energy than either
one-phase macrostate. We have sketched a scenario of a first-
order transition starting at one end of the temperature interval
and reaching completion at the other end.

Investigating self-gravitating FD and BE clusters on a
common length scale facilitates comparative studies such as
intended here and in Ref. [37]. FD clusters and BE clusters
have a common MB limit at high temperature, but evolve
differently upon cooling. BE clusters lack the robustness of

FD clusters against gravitational pressure. Condensation is
initiated at a nonzero temperature in all cases. The critical
singularities depend on the symmetry of the cluster and di-
mensionality of the space [37].

A natural extension of this work will investigate a suc-
cession of relativistic effects, first the consequences of a
relativistic energy-momentum relation and then the conse-
quences of general relativity. In the first part, currently in the
works [38], we demonstrate the crossover of T = 0 density
profiles between universal nonrelativistic shapes and universal
ultrarelativistic shapes. We also investigate how the mass-
radius relation varies with the symmetry of the cluster and the
dimensionality of the space and how the stability of spherical
FD clusters depend on mass and temperature.

APPENDIX A: ALTERNATIVE SCALING CONVENTION

Here we establish, for the sake of transparency, the re-
lations between the length scale and energy scale used in
Ref. [24] and the scaling conventions introduced in Sec. III
for this work. We begin by stating the explicit dependence of
the length scale rs and the energy scale kBTs used in this work
as inferred from Eqs. (12):

(kBTs )1+D/Dσ −D/2 = 1

2
GD

AD
Dσ

(ADσ

Dσ

)−2/Dσ

(2π h̄2)D/Dσ −D/2M2m−D/Dσ +D/2Ñ2/Dσ , (A1)

rDσ

s = Dσ

ADσ

(2π h̄2)D/2Ñ m−D/2(kBTs)−D/2. (A2)

The alternative scaled length (for Dσ = D) is defined as fol-
lows (in our units):

ξ
.= r

rP
, r2

P = kBT λD
T

gsADGDm2
�(D/2). (A3)

In the limit T → 0, the length scale rP shrinks to zero in D =
1, stretches to infinity in D = 3, and is T -independent in D =
2. Its relation to rs from Eq. (12) is( rP

rs

)2
= �(D/2)

2Dgs
T̂ 1−D/2. (A4)

The bridge between our ODE (7) for the fugacity z(r) and
the corresponding ODE arrived at in Ref. [24] is spanned as
follows. We write

zξ (ξ )
.= z(r), z′

ξ = z′rP, z′′
ξ = z′′r2

P, (A5)

which transcribes Eq. (7) into

z′′
ξ

zξ

+ D − 1

ξ

z′
ξ

zξ

−
(

z′
ξ

zξ

)2

+ �(D/2) fD/2(zξ ) = 0. (A6)

With the relation,

z−1
ξ (ξ ) = k eψ (ξ ), (A7)

between the fugacity and the potential ψ (ξ ) the ODE (A6)
becomes

1

ξD−1

d

dξ

(
ξD−1 dψ

dξ

)
= ID/2−1(keψ (ξ ) ), (A8)

where In(t ) = �(n − 1) fn+1(t−1). Both scaling conventions
produce one-parameter families of solutions. The parameter
only enters one of the boundary conditions. For Eq. (A8) that
parameter is k and for (A6) it is zξ (0).

Either parameter, k or zξ (0), contains several physical
quantities that we might wish to vary separately: the confining
radius R, the temperature T , and the number N of particles (or
the total mass mtot = NM). In Refs. [24] the parameter k is
split into two (dimensionless) parts. One is the scaled radius
of confinement,

α
.= R

rP
, (A9)

and the other the degeneracy parameter,

μ
.= η0A2

D2D/2−1GD/2
D mD/2−1

tot RD(4−D)/2. (A10)

The energy scale used in Refs. [24] can be stated as follows:

η−1 .= kBT

kBTP
, kBTP = GDmmtot

RD−2
. (A11)

Its relation to kBTs from Eqs. (12) and (A11) is

TP

Ts
= 2R̂2−D. (A12)

The scaled temperatures are related via

η−1 = 1
2 R̂D−2T̂ . (A13)

024132-13



KIREJCZYK, MÜLLER, AND CHAVANIS PHYSICAL REVIEW E 106, 024132 (2022)

The scaled radius of confinement α is T -dependent whereas R̂
is not. The two are related as follows:

α =
√

2Dgs

�(D/2)
T̂ (D/2−1)/2R̂. (A14)

It is useful to express the degeneracy parameter μ in terms
of the scaled radius of confinement α and the scaled inverse
temperature η:

μ = α2ηD/2−1. (A15)

The relation between μ and R̂ then follows directly:

μ = 2D/2 Dgs

�(D/2)
R̂2D−D2/2. (A16)

Caloric curves can be produced alternatively by keeping μ

fixed and varying α (as done in Ref. [24]) or by keeping R̂
fixed and varying T̂ (as done in Sec. V). The two sets are not
identical, but there is a one-on-one correspondence between
maxima, minima, and locations of infinite slope. Note that the
scale Ts depends on h̄ but not on R; it is adapted to the large
domain limit R → ∞. By contrast, the scale TP depend on R
but not on h̄; it is adapted to the classical limit h̄ → 0.

APPENDIX B: VIRIAL THEOREM

Here we develop an expression for the virial theorem per-
taining to clusters with Dσ < D in generalization to the results
for Dσ = D previously established by Chavanis and Sire [39].
We begin with the definition of the virial for the gravitational
force,

VDσ ,D
.= m

∫
dDr ρv r · ∇�. (B1)

The gravitational potential � is inferred from Eq. (3) via

d

dr
�(r) = −g(r) = AD

ADσ

GDM̃(r)

rDσ −1
, (B2)

where

M̃(r)
.= M(r)

LD−Dσ
= mADσ

∫ r

0
dr′ r′Dσ −1ρv(r′). (B3)

We can thus simplify the integral in Eq. (B1):

VDσ ,D = AD
ADσ

GDLD−Dσ

2

∫ R

0

dr

rDσ −2

d

dr
[M̃(r)]2. (B4)

For cases with Dσ = 2 the integral is simple and, alas, useless
for our purpose:

V2,D = AD
4π

GDm̃totmtot, (B5)

where m̃tot
.= mtot/LD−Dσ . For cases with Dσ �= 2, an integra-

tion by parts brings the virial into the form,

VDσ ,D = AD
ADσ

GD
2

LD−Dσ

×
[

m̃2
tot

RDσ −2
+ (Dσ − 2)

∫ R

0
dr

[M̃(r)]2

rDσ −1

]
. (B6)

With Eq. (B2) we can relate the virial more directly to the
gravitational potential:

VDσ ,D = ADGDLD−Dσ m̃2
tot

2ADσ
RDσ −2

+ (Dσ − 2)
ADσ

LD−Dσ

2ADGD

∫ R

0
dr rDσ −1

[
d�

dr

]2

.

(B7)

The next thread relates the gravitational potential energy W
to the same �(r):

W = m

2

∫
dDr ρv� = 1

2 ADGD

∫
dDr �∇2�

= ADσ
LD−Dσ

2 ADGD

[
RDσ −1�(R)

d

dr
�(R)

−
∫ R

0
dr rDσ −1

[
d�

dr

]2]
, (B8)

where we used the Newton-Poisson equation, ∇2� =
ADGDmρv, in the first step, and integrated by parts
in the second. We can simplify the first term in the
last expression by using Eq. (B2), evaluated at R with
M̃(R) = m̃tot.

Convenient choices for the integration constants
set �(0) = 0 in Dσ = 1, �(R) = 0 in Dσ = 2, and
�(∞) = 0 in Dσ > 2. The expressions, valid for r � R,
read

�(r) = − 1

(Dσ − 2)

ADGDm̃tot

ADσ
rDσ −2

, : Dσ �= 2, (B9a)

�(r) = ADGDM̃

2π
ln

( r

R

)
: Dσ = 2. (B9b)

With these substitutions, Eq. (B8) becomes

W = − ADLD−Dσ

2ADσ
(Dσ − 2)

GDm̃2
tot

RDσ −2

− ADσ
LD−Dσ

2ADGD

∫ R

0
dr rDσ −1

[
d�

dr

]2

: Dσ �= 2,

(B10a)

W = −πLD−2

ADGD

∫ R

0
dr r

[
d�

dr

]2

: Dσ = 2. (B10b)

Comparison of Eq. (B10) with Eq. (B7) yields the important
intermediate result,

VDσ ,D = −(Dσ − 2)W. (B11)

Next we establish the relationship between the virial VDσ ,D
and the kinetic energy U . We start from the condition (2) of
mechanical equilibrium,

∇p = −mρv∇�, (B12)

which permits the virial (B1) to be rendered in the form,

VDσ ,D =
∫

dDr r · ∇p, (B13)
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and, after an integration by parts, in the form,

VDσ ,D = −ADσ
LD−Dσ RDσ p(R)

+ DσADσ
LD−Dσ

∫ R

0
dr rDσ −1 p(r). (B14)

The second term in this expression is related to the kinetic
energy via the EOS (4), which thus produces the second
intermediate result (still for Dσ �= 2),

2
Dσ

D U − VDσ ,D = ADσ
LD−Dσ RDσ p(R). (B15)

The combination of Eqs. (B11) and (B15), which relates the
potential energy and the kinetic energy for self-gravitating FD
clusters with planar symmetry (D = 1) or spherical symmetry
(D = 3), thus constitutes the virial theorem in the general
form required for this study:

2
Dσ

D U + (Dσ − 2)W = ADσ
LD−Dσ RDσ p(R). (B16)

For clusters with cylindrical symmetry (Dσ = 2), the combi-
nation of Eqs. (B5) and (B15) produce the identity,

4

DU − AD
4π

GDm̃totmtot = 2πLD−2R2 p(R). (B17)

From the virial theorem, we can obtain explicit exact re-
sults in special cases:

(i) If we consider Dσ = 1, p(R) = 0 (valid in an infinite
domain or when the density profile is a Dirac distribution),
and the MB statistics, from the relations E = U + W , 2 1

DU −
W = 0 and U = D

2 NkBT , we find that the caloric curve is
given by

E =
(D

2
+ 1

)
NkBT . (B18)

(ii) If we consider Dσ = 2, p(R) = 0 (valid in an infinite
domain or when the density profile is a Dirac distribution), and
the MB statistics, from the relations 4

DU − AD
4π

GDm̃totmtot =
0 and U = D

2 NkBT , then we find that the temperature is
given by

kBT = AD
8πN

GDm̃totmtot. (B19)

APPENDIX C: POLYTROPES

Gaseous polytropes with index n are characterized by a
pure power-law dependence of pressure on density:

p ∝ ργ , γ = 1 + 1

n
. (C1)

Internal energy expressions for polytropes with index n =
D/2 are a useful way to characterize FD clusters in D di-
mensions at T = 0. Following the strategy of Ref. [39], but
including clusters with Dσ < D, we begin by extracting from
the asymptotics carried out in Sec. IV the relation between
pressure and density,

p(r) =
(

�D/2�(D/2 + 1)

gs

)2/D
ρv(r)1+2/D

(D/2 + 1)
, (C2)

which has the form (C1) and can be rendered as follows:

1

ρv(r)

d

dr
p(r) = (D/2 + 1)

d

dr

(
p(r)

ρv(r)

)
. (C3)

Combining it with the condition (B12) of mechanical equilib-
rium, we obtain

− (D/2 + 1)

m

d

dr

(
p(r)

ρv(r)

)
= d

dr
�(r). (C4)

The profile of the gravitational potential thus becomes,

�(r) = �(R) − (D/2 + 1)

m

(
p(r)

ρv(r)
− p(R)

ρv(R)

)
. (C5)

Expressing the internal energy E = U + W and the number
of particles N via the integrals,

E = D
2

∫
dDr p + m

2

∫
dDrρv�, N =

∫
dDrρv, (C6)

we can cast the potential energy into the form,

W = − (D/2 + 1)

D U + (D/2 + 1)N

2

p(R)

ρv(R)
+ Nm

2
�(R).

(C7)
Next we eliminate the kinetic energy U from Eq. (C7) by
invoking the virial theorem, i.e., relations (B16) for Dσ �= 2
and (B17) for Dσ = 2. We thus obtain,

W = 2Dσ

2Dσ − (D/2 + 1)(Dσ − 2)

×
[
−ADGDm̃totmtot

2ADσ
(Dσ − 2)

R2−Dσ + N (D/2 + 1)

2

p(R)

ρv(R)

− (D/2 + 1)

2Dσ

ADσ
LD−Dσ RDσ p(R)

]
, (C8a)

W = N (D/2 + 1)

2

p(R)

ρv(R)
− (D/2 + 1)

4

[AD
4π

GDm̃totmtot

+ 2πLD−2R2 p(R)
]
, (C8b)

for Dσ �= 2 and Dσ = 2, respectively. We have used �(R) =
−ADGDM̃/[ADσ

(Dσ − 2)RDσ −2] for Dσ �= 2 and �(R) = 0
when Dσ = 2. Using Eqs. (B16), (B17), and (C8) we thus
simplify the internal energy expressions for Dσ �= 2 and Dσ =
2 into

E = D
2Dσ

ADσ
LD−Dσ RDσ p(R) +

(
1 − D(Dσ − 2)

2Dσ

)
W,

E = (D/2 − 1)

4

[AD
4π

GDm̃totmtot + 2πLD−2R2 p(R)

]

+ N (D/2 + 1)

2

p(R)

ρv(R)
, (C9)

respectively. The above expression for Dσ = 2 is only use-
ful for incomplete polytropes, where p(R)/ρv(R) �= 0, or
complete polytropes with D �= 2. For complete polytropes,
including those where Dσ = D = 2, we derive an alter-
nate expression for the potential energy. Replacing R by
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r0, the radius marking the surface of the cluster, and using
p(r0)/ρv(r0) = 0, Eq. (C8) reduces to the Betti-Ritter for-
mula [2]:

W = −Dσ

2Dσ − (D/2 + 1)(Dσ − 2)

ADGDM̃M

ADσ
(Dσ − 2)

r2−Dσ

0 ,

W = ADGDm̃totmtot

4π
ln

( r0

R

)
− (D/2 + 1)

ADGDM̃M

16π
,

(C10)

for Dσ �= 2 and Dσ = 2, respectively. The energy for the
complete polytrope can now be written in the form

E = −1

2

2Dσ − D(Dσ − 2)

2Dσ − (D/2 + 1)(Dσ − 2)

ADGDm̃totmtot

ADσ
(Dσ − 2)rDσ −2

0

,

E = ADGDm̃totmtot

4π
ln

( r0

R

)
+ (D/2 − 1)

ADGDm̃totmtot

16π
,

(C11)

where we have used E = U + W and eliminated the kinetic
energy by means of the virial theorem.
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